Course Name: Spread Spectrum Communications and Jamming

Course abstract

A spread spectrum communication system deliberately spreads the spectrum of the signal beyond the required bandwidth needed for information transmission to achieve resilience against hostile jamming, low probability of intercept resulting detectability to be almost impossible as compared to non-spread signals, inherent message privacy and security, good rejection of multipath signals, high degree of ranging precision (due to the large bandwidth involved), and compatibility with code division multiple access (CDMA) capability. Originally adopted in military networks as a means of ensuring secure communication when confronted with the threats of jamming and interception, spread spectrum systems are now the core of commercial applications such as mobile cellular and satellite communications. The Global Positioning System (GPS) is the first commercial communication system that uses spread spectrum signals enabling ranging, jamming protection, multipath protection and high degree of range precision. In today’s world, there are more applications of spread spectrum on the commercial side than on the military side. CDMA is a popular multiple access scheme where several users share the same physical medium, that is, the same frequency at the same time. CDMA is based on spread spectrum technique where the spectral band is spread by multiplying each user’s signal by unique orthogonal pseudorandom sequence. Orthogonality of the codes ensures the retrieval of information without interference from each other where spreading allows the receiver to take benefit from multipath properties of the mobile radio channel. Over the years, the most successful implementation of spread spectrum communication in commercial world lies in cdma 2000, WCDMA and UMTS, a 3G mobile communication system, WLAN, Ultra Wideband Communications (UWB), Body Area Networks, and energy efficient Radio Architecture design for future generation Millimeter Wave (mmWave) communications. The common cordless phone utilizes spread spectrum technology to provide a telephonic interference-rejecting communication link in both 900 MHz and 2.4 GHz bands. In addition, spread spectrum communication methods have been considered an alternative to hard wiring for indoor private branch offices, laboratories, or factories where the transmission medium involves severe multipath fading. The present course introduces basic principle of spread spectrum techniques, key concept of code designing supported by Galois field mathematics, understanding Jamming environment and interference handling mechanisms. The theoretical principles are tempered with their practical significance to cope up with the interest to both researchers and system designers. Learning is facilitated by streamlined derivations, tutorials, and assignments. Several systems examples help students understand the concept and tutorials offer quick practice. After an in–depth exposure to spread spectrum techniques and wireless cellular environment the course takes a thorough tour of training on wireless multiuser system design with spread spectrum technique in MATLAB platform. The course ends with an expose to cdma2000 and WCDMA protocol structure and brief introduction to low probability of intercept methods.


Course Instructor

Media Object

Prof. Debarati Sen

Debarati Sen is presently an Assistant Professor at the G.S.S. School of Telecommunications, IIT Kharagpur since 2013. She, a National Doctoral Fellow, completed her PhD inTelecommunication Engineering from IIT, Kharagpur in 2010. During 2011-2012, she was a Postdoctoral Researcher with the Department of Signals and Systems, Chalmers University of Technology, Sweden. She was with Samsung Research, Bangalore, India, firstly as a Chief Engineer during 2009-2011 and then as a Senior Chief Engineer during 2012-2013. A university topper in her Master in Engineering, she possesses experience at different levels in different institutions/industries throughout her career. Her primary research interests are in the broad areas of Wireless Communications and Optical Communications, mostly, on 5G Communications, Millimeter Wave (mmWave) Communications, Large MIMO Systems, Cloud RAN, Short Range Communications, Green Communications, and Coherent Fiber Optical Communications. More specifically, in mmWave Communications, the focus is on energy efficient Radio Architecture and MAC protocol design, devising Beam-forming Algorithm, Performance and Coverage Analysis of Networks. In Large MIMO, she focuses on Synchronization and Channel Estimation, Joint Decoder Design, Cross Layer Optimization, Resource control issues in massive MIMO. Dr. Sen’s research projects are supported by a variety of Govt. organizations including MHRD, BEL, DeitY, and external collaborators like AIRBUS, Samsung, DAAD (Germany) etc. She has several granted and applied Patents to her credit and published extensively in International Journals and Conferences of repute. She is an editorial board member of two International Journals. Her professional involvement also includes: Member, Mentor Council for NCVT, Govt. of India; Chairing Technical Sessions and TPC membership of top tier IEEE Conferences; Reviewer of IEEE Journals and Conference papers; Delivering invited lectures in academia/industry. She received Best Paper Award at Samsung Tech. Conference 2010, IEI Young Engineers Award 2010, Award of Excellence by Samsung Research, Bangalore in 2010, IETE N.V.G. Memorial Award 2013, DAAD-IIT Faculty Exchange Fellowship 2014 etc. She is a member of IEEE.
More info

Teaching Assistant(s)

No teaching assistant data available for this course yet
 Course Duration : Jan-Apr 2022

  View Course

 Enrollment : 14-Nov-2021 to 31-Jan-2022

 Exam registration : 13-Dec-2021 to 18-Mar-2022

 Exam Date : 24-Apr-2022

Enrolled

Will be announced

Registered

Will be announced

Certificate Eligible

Will be announced

Certified Category Count

Gold

Will be announced

Silver

Will be announced

Elite

Will be announced

Successfully completed

Will be announced

Participation

Will be announced

Success

Elite

Gold





Legend

Final Score Calculation Logic

Enrollment Statistics

Total Enrollment: 800

Assignment Statistics




Score Distribution Graph - Legend

Assignment Score: Distribution of average scores garnered by students per assignment.
Exam Score : Distribution of the final exam score of students.
Final Score : Distribution of the combined score of assignments and final exam, based on the score logic.