Two phase flow with or without phase change is commonly encountered in a variety of engineering processes. The power generation, nuclear reactor technology, food production, chemical process, aerospace and automotive industries are all driving forces in this complex field. Due to its universality in applications, a thorough understanding of two phase flow is of utmost important. Present course is driven by this requirement and distributed broadly into two sub parts. The experimental part will provide knowledge on the selection, installation and use of modern gas-liquid measurement techniques and instruments, such as wire-mesh sensors, needle probes and process microscopy along with the application of data analysis tools. The numerical part will focus on finite-volume methods for Euler-Euler and Euler-Lagrange multiphase flow predictions, and on the associated mathematical models.
2218
91
53
3
29
21
22