Introduction to Atmospheric Science - Video course

COURSE OUTLINE

Introduction: The components of the climate system- oceans, cryosphere, terrestrial biosphere, earth's crust and mantle, Role of various components in climate, Hydrological cycle, Carbon cycle, Brief history of climate and the earth system

Atmospheric thermodynamics: Gas laws, Hydrostatic equation, First law, Adiabatic processes, Water vapour in air, Static stability, Second law and entropy, atmospheric dispersion

Radiative transfer: EM spectrum, Radiation laws, Physics of absorption, emission and scattering, Radiative transfer in atmosphere, Planetary radiation budget, Introduction to Remote Sensing

Atmospheric Dynamics: Equations of motion, Geostrophic approximation, Atmospheric General Circulation

Atmospheric Boundary Layer: Surface energy balance and bulk aerodynamic formulae- Vertical structure

Climate dynamics: Present day climate- Climate variability – Climate sensitivity and feedback – Global warming – Climate monitoring and prediction

COURSE DETAIL

Lecture Number	Lecture Topic	
Introduction and Earth system		
1	Atmosphere-A brief survey (Pressure, Temperature and Chemical composition)	
2	Atmosphere-A brief survey contd (Vertical structure of the atmosphere)	
3	The Earth system - Oceans	
4	The Earth system – Marine biosphere	
5	The Earth system – Hydrological cycle	

NPTEL

http://nptel.ac.in

Mechanical Engineering

Coordinators:

Prof. C. Balaji
Department of Mechanical
EngineeringIIT Madras

	<u>, </u>
6	The Earth system – Carbon cycle
7	The Earth system – Carbon in the oceans and Earth's crust
Atmospheric Thermodynamics	
8	Atmospheric Thermodynamics- Introduction
9	The hydrostatic equation
10	Hypsometric equation and pressure at sea level
11	Basic Thermodynamics
12	Concept of air parcel and dry adiabatic lapse rate
13	Potential temperature and problems
14	Skew-T In-P chart
15	Lifting Condensation Level (LCL)
16	Saturated adiabatic and Psedo-adiabatic processes
17	Saturated adiabatic lapse rate
18	Tutorial on using Skew-T In-P chart
19	Normand's rule and static stability
20	Stability contd (Brunt-Vaisala frequency)
21	Conditional and convective stability
22	Second law of Thermodynamics – Clausius- Clayperon equation

Radiative transfer		
23	Atmospheric radiation- Introduction	
24	Quantitative description of radiation	
25	Concept of Black body and Stefan-Boltzmann law	
26	Radiative properties of non-black surfaces	
27	Kirchoff's law	
28	Physics of Absorption, Emission and Scattering in the atmosphere	
29	Physics of Absorption, Emission and Scattering in the atmosphere Contd	
30	Equation of Radiative Transfer (RTE)	
31	Radiative cooling rates	
Atmospheric Dynamics		
32	Atmospheric Dynamics – An Introduction	
33	Hydrostatic and Geostrophic approximations	
34	Cyclostrophic approximation and Thermal winds	
35	Tutorial on atmospheric dynamics	
Atmospheric boundary layer		
36	Surface energy balance and bulk aerodynamic formulae	
37	Vertical structure	
Climate Dynamics		

38	Climate Dynamics – Introduction
39	Climate sensitivity and feedback
40	Transient and equilibrium response
41	Tutorial on climate dynamics and feedback
42	Summary

References:

- 1. Atmospheric science An Introductory Survey, J.M.Wallace and P.V.Hobbs, 2nd Edition, Academic Press, London, 2006.
- 2. The Physics of Atmospheres, John Houghton, 3rd Edition, Cambridge University Press, Cambridge, 2002.
- 3. An Introduction to Atmospheric Thermodynamics, A.A.Tsonis, 2nd Edition, Cambridge University Press, Cambridge, 2007.
- 4. An Introduction to Dynamic Meteorology, J.R.Holton, 4th Edition, Academic Press, London, 2004.
- 5. A Climate Modelling Primer, K.McGuffie and A.Henderson-Sellers, 3rd Edition, John-wiley, New York, 2004.
 - Climate Change 2007 The Physical Science Basis, IPCC Fourth Assessment Report, Cambridge University Press, Cambridge, 2007.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in