Ordinary Differential Equations and Applications - Video course

COURSE OUTLINE

Motivation and real life examples:

Preliminaries; Basics from linear algebra and real analysis like concepts of dependence, independence, basis, Rank-Nullity theorem, determinants and eigenvalues, remarks on Jordan decomposition theorem - convergence, uniform convergence, fixed point theorems, Lipschitz continuity etc.:

First and second order linear equations; Examples, A systematic procedure to solve first order and development of the concept integrating factor, Second order homogeneous and non-homogeneous equations, Wronskian, methods of solving:

General Existence and Uniqueness theory; Picard's iteration, Peano's exisentce theory, Existence via Arzela Ascoli theorem, non-uniqueness, continuous dependence:

Linear systems; Understanding linear system via linear algebra, stability of Linear systems, Explicit phase portrait in 2D linear with constant coefficients:

Periodic Solutions; Stability, Floquet theory, particular case o second order equations-Hill's equation:

Sturm-Liouville theory; Oscillation theorems:

Qualitative Analysis; Examples of nonlinear systems, Stability analysis, Liapunov stability, phase portrait of 2D systems, Poincare Bendixon theory, Leinard's theorem:

Introduction to two-point Boundary value problems; Linear equations, Green's function, nonlinear equations, existence and uniqueness:

COURSE DETAIL

Module No.	Topic/s	Lectures
1	Motivation and real life examples:	4
	 An introduction about differential equations and why this course. 	
	 Present various examples like population growth, spring-mass- dashpot system and other nonlinear system. These 	

NPTEL

http://nptel.ac.in

Mathematics

Pre-requisites:

First course on linear algebra and real analysis (knowledge of multi variable calculus including implicit and inverse function theorems would be preferable)

Additional Reading:

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, Vol. 2, Springer, 1990

Coordinators:

A. K. Nandakumaran

Department of MathematicsIISc Bangalore

P. S. Datti

Department of MathematicsTIFR-CAM, Bangalore

Raju K. George

Department of

	examples will be recalled as and when necessary.		
2	 Preliminaries Basic concepts from linear algebra Some important preliminaries from analysis like uniform convergence, Arzela-Ascoli theorem, fixed point theorems etc. 	5	
3	First and second order linear equations • First order linear differential equations, Exact differential equations and integrating factors. • Second order linear differential equations (homogeneous and non-homogeneous. Equation with constant coefficients, analysis of spring-mass-dashpot system.	5	
	Examples of non-uniqueness, non-existence, importance of existence uniqueness theory, Picard's iteration, Peano's existence theory, Existence via Arzela Ascoli theorem, continuous dependence: Methods of solving (series solution).		
5	• Understanding linear system via linear algebra, stability of Linear systems, Explicit phase portrait of 2D linear systems with constant coefficients, General case, Nonhomogeneous Systems:	5	
6	Qualitative Analysis	9	

	 Examples of nonlinear systems, Stability analysis, Liapunov stability, phase portrait of 2D systems, Poincare Bendixon theory, Leinard's theorem: 	
7	Introduction to two-point Boundary value problems	3
	 Linear equations, Green's function, nonlinear equations, existence and uniqueness: 	

References:

- 1. E.A. Coddington and N. Levinson, *Theory of ordinary Differential Equations*, Tata-McGraw Hill, 1972.
- 2. M. W. Hrisch, S. Smale and R. L. Devaney, *Differential Equations, Dynamical Systems & An Introduction to Chaos*, Academic Press, 2004.
- 3. E. L. Ince, Ordinary Differential Equations, Dover, 1956.
- 4. S. Lefschetz, *Differential Equations: Geometric Theory*, Dover, 1977.
- 5. L. Perko, *Differential Equations and Dynamical Systems*, Springer International Edition, 2001.
- 6. G. F. Simmons, *Differential Equations with Applications and Historical Notes*, Tata-McGraw Hill, 1991.
- 7. G. F. Simmons and S. G. Krantz, *Differential Equations;* Theory, Techniques and Practice, Tata-McGraw Hill, 2007.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in