Functional Analysis - Web course

COURSE DETAIL

Module No.	Topic/s	Hours
1	Spaces: Linear spaces and linear operators; Normed linear spaces and inner product spaces; Banach spaces; More about inner product spaces; Bessel's inequality; Fourier expansion, Parseval's formula and Riesz Fischer theorem; Projection theorem.	10
2	Operators: Bounded linear operators; Space of f bounded linear operators and D u a I space; Riesz representation theorem; Adjoint of an operator; Self adjoint, normal and unitary operators; Dual of some sequence spaces and function spaces; Compact operators.	10
3	Some Important Theorems: Closed graph theorem, open mapping theorem, and uniform boundedness principle; Hahn Banach extension theorem and its consequences.	10
4	Spectral Results: Eigen spectrum and approximate Eigen spectrum; Resolvent set and spectrum; Spectral results for self adjoint, normal and unitary operators; Spectral representation for compact self adjoint operators; Singular value representation of compact operators.	10

NPTEL

http://nptel.iitm.ac.in

Mathematics

Pre-requisites:

- 1. A first course in Linear Algebra.
- 2. A first course in Real Analysis.
- 3. A first course in Measure theory and Integration.

Additional Reading:

- B. Bollabas, Linear Analysis: An Introductory course, Cambridge Mathematical Text Books, New York, 1994.
- 2. C. Goffman and G. Pedrick, *First Course in Functional Analysis*, Prentice Hall of India, New Delhi, 1995.
- A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, 2nd Edition, Wiley, New York, 1980.

Text:

1. **M.T. Nair**, *Functional Analysis: A first Course*, Prentice Hall of India, New Delhi, 2002 (Second Printing: 2008)

References:

- 2. **B.V.Limaye**, *Functional Analysis*, New Age International Limited, Publishers, New Delhi, 1996.
- 3. **E. Kreyszig**, *Introductory Functional Analysis with Applications*, John Wiley & Sons, New York, 2001
- 4. **G.F. Simmons**, *Introduction to Topology and Modern Analysis*, McGraw-Hill Kogakusha, Ltd., New Delhi, 1963

A joint venture by IISc and IITs, funded by MHRD, Govt of India

Coordinators:

Prof. M.T. Nair Department of MathematicsIIT Madras

http://nptel.iitm.ac.in