Formal Languages and Automata Theory -Video course

COURSE OUTLINE

Unit 1: (D. Goswami)

Introduction to the course. Texts and References are given. **Unit 2: (D. Goswami)** Alphabet Strings Languages Finite Perresentation of languages Fi

Alphabet, Strings, Languages, Finite Representation of languages, Regular Expressions.

Unit 3: (K. V. Krishna)

Context-free Grammars (CFGs) - Formal definition, sentential forms, leftmost and rightmost derivations, the language of a CFG. Derivation tree or Parse tree - Definition, Relationship between parse trees and derivations. Parsing and ambiguity, Ambiguity in grammars and Languages. Regular grammars.

Unit 4: (D. Goswami)

Finite automata (FA) -its behavior; DFA - Formal definition, simplified notations (state transition diagram, transition table), Language of a DFA. NFA - Formal definition, Language of an NFA, Removing, epsilon-transitions. Equivalence of DFAs and NFAs.

Unit 5: (K. V. Krishna)

Myhill-Nerode Theorem and minimization of finite automata

Unit 6: (D. Goswami)

Establishing the equivalence between regular languages, regular grammars and finite automata.

Unit 7: (K. V. Krishna)

2DFA, Moore and Mealy automata.

Unit 8: (K. V. Krishna)

Some closure properties of Regular languages -Closure under Boolean operations, reversal, homomorphism, inverse homomorphism, etc. Pumping lemma, proving languages to be non regular.

Unit 9: (D. Goswami)

Simplification of CFGs - Removing useless symbols, epsilon- Productions, and unit productions, Normal forms - CNF and GNF

Unit 10: (K. V. Krishna)

Some closure properties of CFLs -Closure under union, concatenation, Kleene closure, substitution, homomorphism, reversal, intersection with regular set, etc. Pumping lemma.

Unit 11: (K. V. Krishna)

Pushdown automata and showing the equivalence between PDA and CFG.

Unit 12: (K. V. Krishna)

Turing Machines TM -Formal definition and behavior, Transition diagrams, Language of a TM, TM as accepters and deciders. TM as a computer of integer functions. Variants of Turing machines.

Unit 13: (K. V. Krishna)

Grammars and grammatically computable functions.

Unit 14: (D. Goswami)

Recursive languages, Some properties of recursive and recursively enumerable languages, Codes for TMs. A language that is not recursively enumerable (the diagonalization language). The universal language, Undecidability of the universal

NPTEL http://nptel.ac.in

Mathematics

Coordinators:

Dr. Diganta Goswami

Department of Computer Science and EngineeringIIT Guwahati

Dr. K.V. Krishna Department of MathematicsIIT Guwahati language, The Halting problem, Undecidable problems about TMs.

Unit 15: (K. V. Krishna)

Time bounded TMs, The classes P, NP and NP-complete, Cook's Theorem, Some NP-complete problems.

Unit 16: (D. Goswami)

Context-sensitive languages, linear bounded automata and Chomsky Hierarchy.

COURSE DETAIL

Module No. & Module Name	Торіс	No. of Hours
0. Introduction	Lecture 1: Introduction	01
1. Languages and finite representation	Lecture 1: Alphabet, Strings, Languages Lecture 2: Finite Representation	02
2. Grammars	Lecture 1: Grammars (CFG) Lecture 2: Derivation Trees Lecture 3: Regular Grammars	03
3. Finite automata	Lecture 1: Finite Automata Lecture 2: Nondeterministic Finite Automata Lecture 3: NFA <=> DFA	03
4. Minimization of finite automata	Lecture 1: Myhill-Nerode Theorem Lecture 2: Minimization	02
5. RL ↔ RG ↔ FA	Lecture 1: RE => FA Lecture 2: FA => RE Lecture 3: FA <=> RG	03
6. Variants of finite automata	Lecture 1: Variants of FA	01
7. Properties of regular languages	Lecture 1: Closure Properties of RL Lecture 2: Homomorphism Lecture 3: Pumping Lemma	03
8. Simplification of CFGs	Lecture 1: Simplification of CFG Lecture 2: Normal Forms of CFG	02
1	1	1

9. Properties of CFLs	Lecture 1: Properties of CFLs	01
10. Pushdown automata	Lecture 1: Pushdown Automata Lecture 2: PDA <=> CFG	02
11. Turing machines	Lecture 1: Turing Machines Lecture 2: Turing Computable Functions Lecture 3: Combining Turing Machines Lecture 4: Multi Input Lecture 5: Turing Decidable Languages Lecture 6: Variants of Turing Machines	06
12. Structured grammars	Lecture 1: Structured Grammars	01
13. Decidability and undecidability	Lecture 1: Decidability Lecture 2: Undecidability Lecture 3: Undecidability Lecture 4: Undecidability	04
14. Introduction to complexity theory	Lecture 1: Time Bounded Turing Machines Lecture 2: P and NP Lecture 3: NP-Completeness Lecture 4: NP-Complete Problems Lecture 5: NP-Complete Problems Lecture 6: NP-Complete Problems	06
15. Chomsky Hierarchy	Lecture 1: Chomsky Hierarchy	01
	Total	41

References:

- 1. J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Pearson, 2001.
- 2. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice Hall, 1997/Pearson 1998.
- 3. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Narosa, 1979.
- 4. M. Sipser, Introduction to the Theory of Computation, Thomson Asia, 1997.
- 5. D. C. Kozen, Automata and Computability, Springer-Verlag, 1997.