Low Power VLSI Circuits & Systems - Video course

COURSE OUTLINE

Basics of MOS circuits:

- MOS Transistor structure and device modeling
- MOS Inverters
- MOS Combinational Circuits Different Logic Families

Sources of Power dissipation:

- Dynamic Power Dissipation
 - Short Circuit Power
 - · Switching Power
 - · Gliching Power
- Static Power Dissipation
- Degrees of Freedom

Supply Voltage Scaling Approaches:

- Device feature size scaling
- Multi-Vdd Circuits
- · Architectural level approaches: Parallelism, Pipelining
- Voltage scaling using high-level transformations
- Dynamic voltage scaling
- Power Management

Switched Capacitance Minimization Approaches:

- Hardware Software Tradeoff
- Bus Encoding
- Two's complement Vs Sign Magnitude
- · Architectural optimization
- Clock Gating
- · Logic styles

Leakage Power minimization Approaches:

- Variable-threshold-voltage CMOS (VTCMOS) approach
- Multi-threshold-voltage CMOS (MTCMOS) approach
- Power gating
- Transistor stacking
- Dual-Vt assignment approach (DTCMOS)

NPTEL

http://nptel.iitm.ac.in

Computer Science and Engineering

Pre-requisites:

Digital circuits.

Coordinators:

Prof. Ajit Pal

Department of Computer Science and EngineeringIIT Kharagpur

Special Topics:

- · Adiabatic Switching Circuits
- Battery-aware Synthesis
- · Variation tolerant design
- CAD tools for low power synthesis

COURSE DETAIL

Module No.	Topics	No.of Hours
1	Basics of MOS circuits	10
2	Sources of Power dissipation	6
3	Supply Voltage Scaling Approaches	6
4	Switched Capacitance Minimization Approaches	6
5	Leakage Power minimization Approaches	6
6	Special Topics	6

References:

Text

- 1. Sung Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag Hill.
- 2. Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- 3. A. Bellamour, and M. I. Elmasri, Low Power VLSI CMOS Circuit Design, Kluwer Academic Press, 1995.
- 4. Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995.

Reference

1. Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000.