Advanced Hydrology - Web course

COURSE OUTLINE

The course will be prepared mainly to address the computational emphasis of advanced hydrology at a post-graduate level, and to provide a balanced approach to important applications in hydrologic engineering and science.

Fundamental mechanisms of hydrologic cycle with the probabilistic approaches will be discussed in a logical progression. A number of selected numerical problems will be solved to illustrate the concepts lucidly.

Contents:

Hydrologic Principles - hydrologic cycles and weather, hydrologic losses; Philosophy of Mathematical Models of Watershed Hydrology; Hydrologic Analysis - watershed concepts, rainfall-runoff, hydrograph analysis, unit hydrograph theory, linear and kinematic wave model, and overland flow models; Routing - lumped flow, distributed flow, dynamic wave routing and Muskingum method; Saint - Venant Equations - Reynold's transport theorem, continuity equation, momentum equation, and energy equation; Hydrologic Statistics statistical parameter estimation, probability distribution, goodness of fit, concepts of probability weighted moments & L-moments, frequency analysis, Markov process, Markov chain and reliability analysis; Hydrologic Simulation Models steps in watershed modeling, major hydrologic models.

COURSE DETAIL

SI. No	Торіс	No. of Hours
1	Hydrologic Principles - hydrologic cycles and weather, hydrologic losses.	02
2	Philosophy of Mathematical Models of Watershed Hydrology.	01
3	Hydrologic Analysis - watershed concepts, rainfall-runoff, hydrograph analysis, unit hydrograph theory.	05
4	Hydrologic Analysis (contd.) - linear and kinematic wave model, overland flow models.	05
5	Routing - lumped flow, distributed flow, dynamic wave routing, Muskingum method.	04
6	Saint-Venant Equations - Reynold's transport theorem, continuity equation, momentum equation, energy equation.	04

NPTEL http://nptel.iitm.ac.in

Civil Engineering

Pre-requisites:

A preliminary background in

- 1. Undergraduate Hydrology and
- 2. Probability & Statistics is desired, but is not essential.

Coordinators:

Dr. Subhankar Karmakar Centre for Environmental Science and Engineering (CESE)IIT Bombay

7	Hydrologic Statistics - statistical parameter estimation, probability distribution, goodness of fit, concepts of probability weighted moments & L -moments.	07
8	Hydrologic Statistics (contd.) - frequency analysis, Markov process, Markov chain, reliability analysis.	07
9	Hydrologic Simulation Models - steps in watershed modeling, major hydrologic models.	05
	Total	40

References:

- 1. Bras, R. L., and Rodriguez-Iturbe, 1994, "Random Functions and Hydrology", Dover Publications, New York.
- 2. Chow, V. T., D. R. Maidment, and L. W. Mays; "Applied Hydrology", McGraw Hill International Editions.
- 3. Haan, C. T., 2002, "Statistical Methods in Hydrology", 2nd ed., Blackwell Publishing, Ames, IA.
- 4. Hoskings, J. R. M. and J. R. Wallis, 1997, "Regional Frequency Analysis, An Approach Based on L-Moments", Cambridge University Press, New York.
- 5. Viessman Jr., W., and G. L. Lewis, "Introduction to Hydrology", 4th ed., Harper-Collins, New York, 1996.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in