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Proof Techniques

To prove statement A =⇒ B.

There are different proof techniques:

Constructive Proofs

Proof by Contradiction

Proof by Contrapositive

Induction

Counter example

Existential Proof
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Which approach to apply

It depends on the problem.

Sometimes the problem can be split into smaller problems
that can be easier to tackle individually.

Sometimes viewing the problem is a different way can also
help in tackling the problem easily.

Whether to split a problem or how to split a problem or
how to look at a problem is an ART that has to be
developed.

There are some thumb rules but at the end it is a skill you
develop using a lot of practice.
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Tricks for solving problems

(Splitting into smaller problem) If the problem is to prove
A =⇒ B and B can be written as B = C ∧D then note
that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

(Remove Redundant Assumptions) If A =⇒ B then
A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

(Sometimes proving something stronger is easier) If
C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).
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Constructive Proof: Direct Proof

For proving A =⇒ B we can start with the assumption A
and step-by-step prove that B is true.

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a backward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).
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Constructive Proof: Case Studies

Sometimes the assumption or the premise can be split into
different cases. In that case we can split the problem
according to cases.

If A = C ∨D then

(A =⇒ B) ≡ (C =⇒ B) ∧ (D =⇒ B).
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Proof by Contradiction

Note that

(A =⇒ B) ≡ (¬B ∧A = False)

This is called “proof by contradiction”

To proof A =⇒ B sometimes its easier to prove that

¬B ∧A = False.

A similar statement is

(A =⇒ B) ≡ (¬B =⇒ ¬A)

This is called “proof by contra-positive”
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Contra-positive Proof

A similar statement is

(A =⇒ B) ≡ (¬B =⇒ ¬A)

This is called “proof by contra-positive”

This is particularly useful when B (the deduction) is of the
form C ∨D

In that case

(A =⇒ B) ≡ (¬B =⇒ ¬A) ≡ ((¬C ∧ ¬D) =⇒ ¬A)
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But what if the statement is false

Let the problem state

Problem

Prove or disprove A =⇒ B.

If the statement A =⇒ B is not true then what to do.

A statement is not true is for some setting of the variables
(or sub-statements) to true and false the statement is False.

Prove that ¬(A =⇒ B) is True for some instance.
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Proof by Counter Example

To prove that ¬(A =⇒ B) is True for some instance.

If the problem is actually of the form ∀x, A(x) =⇒ B(x)
then the negation of this statement is

∃x, A(x) ; B(x)

Recall A =⇒ B is same as (B ∨ ¬A). So,

∃x A(x) ; B(x) ≡ ∃x ¬(B(x)∨¬A(x)) ≡ ∃x(¬B(x)∧A(x))

So to prove that the original statement is not true we have
to find an x such that (¬B(x) ∧A(x)) is true.
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Example 1

Problem

Prove or disprove: for all positive integer n, n2 − n + 41 is
prime.

Let us disprove by counter example:
If this statement is not true and we have to find a positive
integer n such that n2 − n + 41 is a not a prime.
Let n = 41. Then n2 − n + 41 is 412 which is not a prime.
Thus we disprove the statement by demonstrating a counter
example.
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Finding Counter Examples can be hard

Problem

Prove or disprove: for all positive integers n, 22
n

+ 1 is a prime.

For n = 0, 22
n

+ 1 = 3 which is a prime.

For n = 1, 22
n

+ 1 = 5 which is a prime.

For n = 2, 22
n

+ 1 = 17 which is a prime.

For n = 3, 22
n

+ 1 = 257 which is a prime.

For n = 4, 22
n

+ 1 = 65537 which is a prime.

For n = 5, 22
n

+ 1 = 4294967297 which is a 641× 67700417.
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Thus ....

Thus to disprove a statement one can do so by giving an
instance where the statements fails.

We call them proof by counter example

Finding a counter example can be very hard and require
both ingenuity and sometimes high computational powers.
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