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Proof Techniques

To prove statement A =⇒ B.

There are different proof techniques:

Constructive Proofs

Proof by Contradiction

Proof by Contrapositive

Induction

Counter example

Existential Proof
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Which approach to apply

It depends on the problem.

Sometimes the problem can be split into smaller problems
that can be easier to tackle individually.

Sometimes viewing the problem is a different way can also
help in tackling the problem easily.

Whether to split a problem or how to split a problem or
how to look at a problem is an ART that has to be
developed.

There are some thumb rules but at the end it is a skill you
develop using a lot of practice.
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Tricks for solving problems

(Splitting into smaller problem) If the problem is to prove
A =⇒ B and B can be written as B = C ∧D then note
that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

(Remove Redundant Assumptions) If A =⇒ B then
A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

(Sometimes proving something stronger is easier) If
C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).

Discrete Mathematics Lecture 11: Proof Techniques (Contradiction) (Part 2)



Tricks for solving problems

(Splitting into smaller problem) If the problem is to prove
A =⇒ B and B can be written as B = C ∧D then note
that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

(Remove Redundant Assumptions) If A =⇒ B then
A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

(Sometimes proving something stronger is easier) If
C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).

Discrete Mathematics Lecture 11: Proof Techniques (Contradiction) (Part 2)



Tricks for solving problems

(Splitting into smaller problem) If the problem is to prove
A =⇒ B and B can be written as B = C ∧D then note
that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

(Remove Redundant Assumptions) If A =⇒ B then
A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

(Sometimes proving something stronger is easier) If
C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).

Discrete Mathematics Lecture 11: Proof Techniques (Contradiction) (Part 2)



Constructive Proof: Direct Proof

For proving A =⇒ B we can start with the assumption A
and step-by-step prove that B is true.

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a backward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).
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Constructive Proof: Case Studies

Sometimes the assumption or the premise can be split into
different cases. In that case we can split the problem
according to cases.

If A = C ∨D then

(A =⇒ B) ≡ (C =⇒ B) ∧ (D =⇒ B).
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Proof by Contradiction

Note that

(A =⇒ B) ≡ (¬B ∧A = False)

This is called “proof by contradiction”

To proof A =⇒ B sometimes its easier to prove that

¬B ∧A = False.

A similar statement is

(A =⇒ B) ≡ (¬B =⇒ ¬A)

This is called “proof by contra-positive”
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Proof by Contradiction

Example: Prove that earth is not flat.

Attempt 1: If a ship is coming from the horizon we first see the
mast (top) of the ship and slowly the complete ship. So the
earth must be round hence not flat.

Attempt 2: Lets assume the earth is flat. Then when a ship
came from the horizon the whole ship would appear at the same
time.
But that does not happen - first the mast is seen then the whole
ship. So a contradiction.
Hence initial assumption that earth is flat does not hold.
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Problem

A real number is rational if it can be written as p/q where
p and q are two integers.

For example: 1, 2, 3, 2/3, 49/99 are rational numbers.

Problem

Prove that
√

3 is not a rational number.
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Prove
√
3 is not rational

We prove by contradiction.

Let
√

3 = p/q

We prove by case by case analysis that if p and q are
integers, not both divisible by 3 then 3q2 cannot be equal
to p2 and hence we get a contradiction.

Case 1: Both p and q are not divisible by 3.

Case 2: p is not-divisible by 3 and q is divisible by 3.

Case 3: p is divisible by 3 and q is not divisible by 3.

If for all the above cases we prove that 3q2 = p2 is not a
possibility then we are done.
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Overview of the proof that
√
3 is not rational

We prove by contradiction.

Let
√

3 = p/q

We can assume p and q has no common factors else we can
factor it out.

In other words we can assume both p and q cannot be
divisible by 3.

Now
√

3 = p/q ⇐⇒ 3 = p2/q2 ⇐⇒ 3q2 = p2

We prove by case by case analysis that if p and q are
integers, not both divisible by 3 then 3q2 cannot be equal
to p2 and hence we get a contradiction.
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Problems for practice

Prove that
√

2 is not rational.

Prove that
√

5 is not rational.

Prove that
√

6 is not rational.
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Rational Numbers

A number x is rational if it can be written as p/q where p and q
are integers.

Prove that:

Rational × Rational = Rational

Rational × Not Rational = Not Rational.
So (−

√
3) is not rational.

1/Rational is rational.

1/(not rational) is not rational. 1/
√

3 is not rational.

Not Rational × Not Rational = ?
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Is
√
2 +
√
3 a rational?

Prove that
√

2 +
√

3 is not rational.

To prove by contradiction what do have to prove:

Let
√

2 +
√

3 be a rational number
√

2 +
√

3 can be written as p
q for any posetive integer p and

q.

If
√

2 +
√

3 = p
q for some posetive integers p and q then

there is some problem
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Is
√
2 +
√
3 a rational?

Prove that
√

2 +
√

3 is not rational.

Let
√

2 +
√

3 = p/q

⇐⇒
√

3 = p/q −
√

2

⇐⇒ 3 = (p2/q2)− 2
√

2p/q + 2

⇐⇒ 2
√

2p/q = (p2/q2)− 1 = (p2 − q2)/q2

⇐⇒
√

2 =
(p2 − q2)

2pq
=

p′

q′

So
√

2 is a rational since (p2 − q2) and 2pq are integers.
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√
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Thus our initial assumption was wrong. Thus
√
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√

3 is not a
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