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Mathematical Proofs

How to check if a statement is correct?

For example:
For all n the integer n2 − n + 41 is a prime.
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Proof

One can prove the statement either

Empirically or experimentally: Try the statement for a
number of cases and if the statement holds we would say
the statement is correct.

Mathematically: Use mathematical reasoning to prove the
statement.
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Empirical Proof

For all n the integer n2 − n + 41 is a prime.

Empirical Proof:
For n = 1, we have n2 − n + 41 = 41, which is a prime.
For n = 2, we have n2 − n + 41 = 43, which is a prime.
For n = 3, we have n2 − n + 41 = 47, which is a prime.
For n = 4, we have n2 − n + 41 = 53, which is a prime.
....

So we conclude that n2 − n + 41 is always a prime.
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Pros and Cons of Empirical and Mathematical Proofs

Pros and cons of Empirical Proofs:

(Pros): Easy to give a proof.

(Cons): They are not 100% accurate.

For example in the previous statement: For n = 41 we have
n2 − n + 41 = 1681 = 412 which is not a prime.

So the statement n2 − n + 41 is always a prime is false.
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Pros and Cons of Empirical and Mathematical Proofs

Pros and cons of Mathematical Proofs:

(Pros): It is 100% accurate. No chance of any error in the
deduction.

(Cons): It is hard to prove.
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Thus ...

Mathematical Proof are always better than the Empirical
Proofs.

We will always like to have a mathematical proof.

To come up with different techniques of mathematical proof
we will take the use of Propositional and Predicate Logic.
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Propositional Logic and Predicate Logic

Every statement is either TRUE or FALSE

There are logical connectives ∨, ∧, ¬, =⇒ and ⇐⇒ .

A statement can have a undefined term, called a variable.

But every variable has to be quantified using either of the
quantifiers ∀ and ∃.
Two logical statements can be equivalent if the two
statements answer exactly in the same way on every input.

To check whether two logical statements are equivalent one
can do one of the following:

Checking the Truthtable of each statement
Reducing one to the other using reductions using rules.
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Using Propositional Logic for designing proofs

A mathematical statement comprises of a premise (or
assumptions). And when the assumptions are satisfied the
statement deduces something.

If A is the set of assumptions and B is the deduction then
a mathematical statement is of the form

A =⇒ B

Now how to check if the statement if correct? And if it is
indeed correct how to prove the statement?

Depending on whether A or B (or both) can be split into
smaller statements and how the smaller statements are
connected we can design different techniques for proving
the overall statement of A =⇒ B.

If indeed we can proof that the statement is correct then
we can call it a Theorem.
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Proof Techniques

To prove statement B from A.

Constructive Proofs

Proof by Contradiction

Proof by Contrapositive

Induction

Counter example

Existential Proof

Discrete Mathematics Lecture 6: Mathematical Proof



Which approach to apply

It depends on the problem.

Sometimes the problem can be split into smaller problems
that can be easier to tackle individually.

Sometimes viewing the problem is a different way can also
help in tackling the problem easily.

Whether to split a problem or how to split a problem or
how to look at a problem is an ART that has to be
developed.

There are some thumb rules but at the end it is a skill you
develop using a lot of practice.
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Simplest Splitting

If the problem is to prove A =⇒ B and B can be written
as B = C ∧D then note that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

For example:

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).
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Splitting of Problems in Smaller Problems

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).

The above problem is same as proving the following two
problems:

Problem (First Part)

If b is an odd prime then b2 ≡ 1(mod 4).

Problem (Second Part)

If b is an odd prime then 2b2 ≥ (b + 1)2.
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Redundant Assumptions

There can be assumption that are not necessary.

We can throw them.

If A =⇒ B then A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

Which assumption are not needed is something to guess
using your intelligence.
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Removing Assumptions

Problem (First Part)

If b is an odd prime then b2 ≡ 1(mod 4).

An odd prime has many properties.

Which property do we need to use for our proof.

In this problem we will only need the property that an odd
prime is ≥ 3.

So sufficient to prove :

Problem

If b is a real number ≥ 3 then b2 ≡ 1(mod 4).
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Removing Assumptions

Problem (Second Part)

If b is an odd prime then 2b2 ≥ (b + 1)2.
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In this problem we will only need the property that an odd
prime is an odd integer.
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Now let us try to prove these problems...

Problem

If b is a real number ≥ 3 then b2 ≡ 1(mod 4).

Problem (Second Part)

If b is an odd integer then 2b2 ≥ (b + 1)2.

We will give constructive proofs for these problems.
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Constructive Proof

To prove B from A.
There are two techniques:

Direct Proof: You directly proof A =⇒ B.

Case Studies: You split the problem into smaller problems
depending on the assumptions A.
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Next Video Lecture

We will use direct proof technique to prove the two problems:

Problem

If b is a real number ≥ 3 then b2 ≡ 1(mod 4).

Problem

If b is an odd integer then 2b2 ≥ (b + 1)2.
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Direct Proof: Example 1

Problem

If n is an odd integer then n2 ≡ 1(mod 4).

Since n is odd. So N = 2k + 1 for some integer k.
So n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.
So (n2 − 1) = 4(k2 + k).
Since k is an integer so k2 + k is also an integer and hence
4 | n2 − 1.
Hence n2 ≡ 1(mod 4).
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Direct Proof: Example 2

Problem

If b is any real number ≥ 3 then 2b2 > (b + 1)2.

First Proof:
Since b ≥ 3 so (b− 1) ≥ 2 and hence (b− 1)2 ≥ 4.
Thus (b− 1)2 > 2.
So b2 − 2b + 1 > 2.
Hence b2 > 2b + 1.
Adding b2 to both sides we get 2b2 > b2 + 2b + 1 = (b + 1)2.
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A simple approach to obtain a proof

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a back ward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).
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Direct Proof: Example 2

Problem

If b is any real number ≥ 3 then 2b2 > (b + 1)2.

Second Proof (Backward Proof):
To prove: 2b2 > (b + 1)2 for b ≥ 3
⇐⇒ 2b2 > b2 + 2b + 1 for b ≥ 3
⇐⇒ b2 − 2b− 1 > 0 for b ≥ 3
⇐⇒ (b− 1)2 − 2 > 0 for b ≥ 3
⇐⇒ (b− 1)2 > 2 for b ≥ 3

And this is true because b ≥ 3 =⇒ (b− 1) ≥ 2
=⇒ (b− 1)2 ≥ 4 > 2.
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Next video lecture...

In the next video lecture we will study other proof
techniques.

Revise you propositional logic and prove that the
followings

1 If C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).

2 If A = C ∨D then

(A =⇒ B) ≡ (C =⇒ B) ∧ (D =⇒ B).
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