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Proof Techniques

To prove statement A =⇒ B.

There are different proof techniques:

Constructive Proofs

Proof by Contradiction

Proof by Contrapositive

Induction

Counter example

Existential Proof
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Which approach to apply

It depends on the problem.

Sometimes the problem can be split into smaller problems
that can be easier to tackle individually.

Sometimes viewing the problem is a different way can also
help in tackling the problem easily.

Whether to split a problem or how to split a problem or
how to look at a problem is an ART that has to be
developed.

There are some thumb rules but at the end it is a skill you
develop using a lot of practice.
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Splitting into smaller problem

If the problem is to prove A =⇒ B and B can be written
as B = C ∧D then note that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

For example:

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).
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Splitting of Problems in Smaller Problems

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).

The above problem is same as proving the following two
problems:

Problem (First Part)

If b is an odd prime then b2 ≡ 1(mod 4).

Problem (Second Part)

If b is an odd prime then 2b2 ≥ (b + 1)2.

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



Splitting of Problems in Smaller Problems

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).

The above problem is same as proving the following two
problems:

Problem (First Part)

If b is an odd prime then b2 ≡ 1(mod 4).

Problem (Second Part)

If b is an odd prime then 2b2 ≥ (b + 1)2.

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



Redundant Assumptions

There can be assumption that are not necessary.

We can throw them.

If A =⇒ B then A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

Which assumption are not needed is something to guess
using your intelligence.
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Splitting of Problems in Smaller Problems

Problem

If b is an odd prime then 2b2 ≥ (b + 1)2 and b2 ≡ 1(mod 4).

The above problem is same as proving the following two
problems:

Problem (First Part)

If b is an odd integer then b2 ≡ 1(mod 4).

Problem (Second Part)

If b is a real number ≥ 3 then 2b2 ≥ (b + 1)2.
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Constructive Proof

To prove A =⇒ B.

There are two techniques:

Direct Proof: You directly proof A =⇒ B.

Case Studies: You split the problem into smaller problems.
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Direct Proof: Example 1

Problem

If n is an odd integer then n2 ≡ 1(mod 4).

Since n is odd. So N = 2k + 1 for some integer k.
So n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.
So (n2 − 1) = 4(k2 + k).
Since k is an integer so k2 + k is also an integer and hence
4 | n2 − 1.
Hence n2 ≡ 1(mod 4).
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Direct Proof: Example 2

Problem

If b is any real number ≥ 3 then 2b2 > (b + 1)2.

First Proof:
Since b ≥ 3 so (b− 1) ≥ 2 and hence (b− 1)2 ≥ 4.
Thus (b− 1)2 > 2.
So b2 − 2b + 1 > 2.
Hence b2 > 2b + 1.
Adding b2 to both sides we get 2b2 > b2 + 2b + 1 = (b + 1)2.
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A simple approach to obtain a proof

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a back ward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



A simple approach to obtain a proof

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a back ward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



A simple approach to obtain a proof

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a back ward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



A simple approach to obtain a proof

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a back ward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).

Discrete Mathematics Lecture 7: Proof Techniques (Direct Proof) (Part 2)



Direct Proof: Example 2

Problem

If b is any real number ≥ 3 then 2b2 > (b + 1)2.

Second Proof (Backward Proof):
To prove: 2b2 > (b + 1)2 for b ≥ 3
⇐⇒ 2b2 > b2 + 2b + 1 for b ≥ 3
⇐⇒ b2 − 2b− 1 > 0 for b ≥ 3
⇐⇒ (b− 1)2 − 2 > 0 for b ≥ 3
⇐⇒ (b− 1)2 > 2 for b ≥ 3

And this is true because b ≥ 3 =⇒ (b− 1) ≥ 2
=⇒ (b− 1)2 ≥ 4 > 2.
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Direct proof

For proving A =⇒ B we can start with the assumption A
and step-by-step prove that B is true.

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a backward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).
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