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Proof Techniques

To prove statement A =⇒ B.

There are different proof techniques:

Constructive Proofs

Proof by Contradiction

Proof by Contrapositive

Induction

Counter example

Existential Proof
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Which approach to apply

It depends on the problem.

Sometimes the problem can be split into smaller problems
that can be easier to tackle individually.

Sometimes viewing the problem is a different way can also
help in tackling the problem easily.

Whether to split a problem or how to split a problem or
how to look at a problem is an ART that has to be
developed.

There are some thumb rules but at the end it is a skill you
develop using a lot of practice.
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Tricks for solving problems

(Splitting into smaller problem) If the problem is to prove
A =⇒ B and B can be written as B = C ∧D then note
that

(A =⇒ B) ≡ (A =⇒ C ∧D) ≡ (A =⇒ C)∧ (A =⇒ D).

(Remove Redundant Assumptions) If A =⇒ B then
A ∧ C also implies B.

(A =⇒ B) =⇒ (A ∧ C =⇒ B) = True

(Sometimes proving something stronger is easier) If
C =⇒ B then

(A =⇒ C) =⇒ (A =⇒ B).
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Constructive Proof: Direct Proof

For proving A =⇒ B we can start with the assumption A
and step-by-step prove that B is true.

Sometimes a direct proof (as in the previous example) can
be magical and hard to understand how to obtain.

A simpler technique is to have a backward proof.

If we have to prove (A =⇒ B) then the idea is to simplify
B.

And if C ⇐⇒ B then (A =⇒ B) ≡ (A =⇒ C).
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Constructive Proof: Case Studies

Sometimes the assumption or the premise can be split into
different cases. In that case we can split the problem
according to cases.

If A = C ∨D then

(A =⇒ B) ≡ (C =⇒ B) ∧ (D =⇒ B).
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Proof by Contradiction

Note that

(A =⇒ B) ≡ (¬B ∧A = False)

This is called “proof by contradiction”

To proof A =⇒ B sometimes its easier to prove that

¬B ∧A = False.

A similar statement is

(A =⇒ B) ≡ (¬B =⇒ ¬A)

This is called “proof by contra-positive”
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Contra-positive Proof

A similar statement is

(A =⇒ B) ≡ (¬B =⇒ ¬A)

This is called “proof by contra-positive”

This is particularly useful when B (the deduction) is of the
form C ∨D

In that case

(A =⇒ B) ≡ (¬B =⇒ ¬A) ≡ ((¬C ∧ ¬D) =⇒ ¬A)
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Example 1

Problem

If a and b are two positive integers and a2 + b2 is even then
either both a and b are odd or both a and b are even.

A = “a2 + b2 is even”

B = “either both a and b are odd or both a and b are
even.”

C = “both a and b are odd”

D = “both a and b are even”

(A =⇒ B) ≡ (¬B =⇒ ¬A) ≡ ((¬C ∧ ¬D) =⇒ ¬A)
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Example 1

Problem

If a and b are two positive integers and a2 + b2 is even then
either both a and b are odd or both a and b are even.

Is same as ...

Problem

If a and b are two positive integers and one of a or b is odd and
the other is even then a2 + b2 cannot be even.

Discrete Mathematics Lecture 12: Proof Techniques (Contrapositive)



Example 1

Problem

If a and b are two positive integers and one of a or b is odd and
the other is even then a2 + b2 cannot be even.

Proof:

Proof using case studies. There are two cases:

1 a is odd and b is even

2 a is even and b is odd.

Complete the proof by yourself.
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Example 2

Problem

If a and b are real numbers such that the product ab is an
irrational number, then either a or b must be an irrational
number.

A = “the product ab is an irrational number”

B = “either a or b must be an irrational number.”

C = “a must be an irrational number”

D = “b must be an irrational number”

(A =⇒ B) ≡ (¬B =⇒ ¬A) ≡ ((¬C ∧ ¬D) =⇒ ¬A)
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Example 2
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Problem

If a and b are rational numbers then ab is a rational number.
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Example 3

Problem

If n is a positive integer such that n ≡ 2(mod 3), then n is not a
square of an integer.

A = “n ≡ 2(mod 3)”

B = “n is not a square of an integer.”

(A =⇒ B) ≡ (¬B =⇒ ¬A) ≡ ((¬C ∧ ¬D) =⇒ ¬A)
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Example 3

Problem

If n is a positive integer such that n ≡ 2(mod 3), then n is not a
square of an integer.

This is same as ...

Problem

If n is a positive integer and n is a square of an integer then
n 6≡ 2(mod 3).
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Example 3

Problem

If n is a positive integer and n is a square of an integer then
n 6≡ 2(mod 3).

How do you solve this problem?

This is an exercise. We will discuss it in the problem solving
video.
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