3 LDPC Codes: Decoding

Andrew Thangaraj
andrew@iitm.ac.in

i Low-Density Parity-Check Codes

= Linear codes can be specified using either a
generator matrix or a parity-check matrix

= LDPC codes are linear codes with a sparse
parity-check matrix

= Sparse: most of the entries in the matrix are 0Os
= Proposed in 60s
= Since 1990’'s, intense research in the area

= Adopted in many standards
= Wimax, Wifi, DVB etc
= Now, 5G too

i Decoding

= Soft-input soft-output
= [terative
= Message passing
« Approximation: minsum
= Extensive analysis in literature

i Soft-decision Decoding

= Process real values received from the channel
= Channel: BPSK over AWGN(o) edoy
= C=[CG G .. Gl r=1[rr..]
= I=S5;,+ N0ISE —P ve L volue
= C,: codeword bit {0,1}; s;,=1—-2c;, BPSk f:*\\

e

« LLR, /= log [Prob{c,=0|r,-}/Prob{c,=1|r,-}]

R C .t vwv;&‘"“""‘
o = log [p(ric=0)/p(ric=1)]
. For BPSK over AWGN, iﬂ\ .‘
We seek ' °*“"“dﬁ’
[|
\\v"* o

=« L;=log [Prob{c=0|F/}/Prob{c= 1|r}]

e\:»’('\-fc (exeined Ne X

Decoding one bit

1‘.;‘;7 2 4 6 8 10 12 16 18 20

o @ o0
0 K 0 @::: Part of a LDPC

Qe S | matrix
0 2 0 0 .

e Use the received value corresponding to Bit 1
— 1stestimate, I;,=LLR | r; =2r;/ 0? choaedd [(5\5':)

C Pu'.t" P

: : . o :
e Use parity checks that involve the% 2P o

— Row 1: ¢ + ¢4+ g +¢pp =0; 2" estimdte, [;; =LLR | 1y, 15, 199

— Row 5:¢; + ¢, + ¢ip + ¢ = 0; 34 estimate, ;s = LLR | r,, 11, Ty
e

— Row 9: ¢; + ¢ + ¢y + €15 = 0; 4th estimate, [;g=LLR | 1, {4, I'g

—

e Same can be done for all bits

i Efficient Calculation of Conditional LLR

/wﬂl)_ € Yo
= Suppose z = X + V; X,Y,z: binary RVs (indep)
s (1-22) = (1-2x)(1 -2y) +— 3% *w-
= (1-2p,(1)) = (1-2p,(1))(1 - 2|3y(1)) &w’ﬂ
.ltanh(/ /2) = tanh(//2) tanh({,/2) | Q = P;“’ap
. sgn(%) = sgn(%) san(%) 0y, e
. abs(tanh(|/| /2)) = abs(tanh(|4| /2)) abs(tanh(|/| /2))

= Suppose z = Xy + Xy + X3 + ... + X,
= sgn(4) = sgn(4) sgn(4)... sgn(4y)
= |4 = abs(f [f(4) + f(4) + ... + 1(4) 1)
= f(x) = log tanh (|x|/2)

+

/‘/\w\SWW"
Mirtmdm approximation

|Z] = abs(f [f(4) + f(4) + ... + 1(4) 1)

= f(X) = log tanh (|x|/2)

| 4| = min{abs(/), abs(4), ..., abs(/,)}

Saves computation of nonlinear function

Used in a slightly modified format

Almost no loss in the approximation in practice

First Iteration in Tanner
e The first estimate [; comes from
the channel

e [;: passed from bit node i to all
neighbouring check nodes

e Estimates for Bit 1: 14, 5, [are
calculated at check nodes 1, 5, 9

e Estimates passed from check
nodes to neighbouring bit nodes

e This is done for all nodes in
parallel

Next Iteration (i)

= Iterations are done to involve more bits and checks in

the decoding
Iteration 2: bit-to-check

® my =l +lLi5+ Lo, Myg=1; + 111 + Lig; Myg= 1 + 11 + 115

e Similar rule for other bit nodes

Next Iteration (ii)

Iteration 2: check-to-bit g1,)
K\ 8

L] L] q
e Repeat computation of I3, [;5 and 144 using m,;, mg; and
—_
M3 1

e Similar for all check nodes

i Summary

= Row iteration
=« Check node computation
= Computes conditional LLRs for one bit
= Column iteration
= Bit node computation R‘* $ST->©
= Consolidate conditional LLRs
= Repeat for multiple iterations

5P C ST Se

