
4. Sampling 

4.1. Concepts of Sampling  

Many variables in Civil engineering are spatially distributed. For example concentration 

of pollutants, variation of material properties such as strength and stiffness in the case of 

concrete and soils are spatially distributed. The purpose of sampling is to obtain estimates 

of population parameters (e.g. means, variances, covariance’s) to characterize the entire 

population distribution without observing and measuring every element in the sampled 

population. Sampling theory for spatial processes principally involves evaluation of 

estimator’s sampling distributions and confidence limits. A very good introduction to 

these methods and the uses and advantages of sampling is provided by Cochran (1977) 

and Beacher and Christian (2003).   

An estimate is the realization of a particular sample statistic for a specific set of sample 

observations. Estimates are not exact and uncertainty is reflected in the variance of their 

distribution about the true parameter value they estimate. This variance is, in turn, a 

function of both the sampling plan and the sampled population. By knowing this variance 

and making assumptions about the distribution, shape, confidence limits on true 

population parameters can be set.  

A sampling plan is a program of action for collecting data from a sampled population. 

Common plans are grouped into many types: for example, simple random, systematic, 

stratified random, cluster, traverse, line intersects, and so on. In deciding among plans or 

in designing a specific program once the type plan has been chosen, one attempts to 

obtain the highest precision for a fixed sampling cost or the lowest sampling cost for a 

fixed precision or a specified confidence interval.  

4.2. Common Spatial Sampling Plans  

Statistical sampling is a common activity in many human enterprises, from the national 

census, to market research, to scientific research. As a result, common situations are 

encountered in many different endeavors, and a family of sampling plans has grown up to 
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handle these situations. Simple random sampling, systematic sampling, stratified random 

sampling, and cluster sampling are considered in the following section.  

4.2.1. Simple random sampling  

The characteristic property of simple random sampling is that individual are chosen at 

random from the sampled population, and each element of population has an equal 

probability of being observed. An unbiased estimator of the population mean from a 

simple random x={x1………..xn} is the sample mean  
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This estimator has sampling variance.  
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where σ2 is the (true) variance of the sampled population and N is the total sampled 

population size. The term (N-n)/N is called the finite population factor, which for n less 

than about 10% of N, can safety be ignored. However, since σ2 is usually unknown. it is 

estimated by the sample variance  
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in which the denominator is taken as n-1 rather than n. reflecting the loss of a degree- of-

freedom due to estimating the mean from the same data. The estimator is unbiased but 

does not have minimum variance. The only choice (i.e. allocation) to be made in simple 

random sampling is the sample size n. Since the sampling variance of the mean is 

inversely proportional to sample size. ( ) 1−∝ nxVar , a given estimator precision can be 

obtained by adjusting the sample size, if σ is known or assumed. A sampling plan can be 

optimized for total cost by assuming some relationship between ( )xVar  and cost in 
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construction or design. A common assumption is that this cost is proportional to the 

square root of the variance, usually called the standard error of the mean, ( )xVarx
21=σ . 

It is usually assumed that the estimates of y  and Y are normally distributed about the 

corresponding population values. If the assumption holds, lower and upper confidence 

limits for the population mean and total mean are as follows: 
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The symbol t is the value of the normal deviate corresponding to the desired confidence 

probability. The most common values are tabulated below: 

 

Confidence probability (%) 50 80 90 95 99 

Normal deviate, t 0.67 1.28 1.64 1.96 2.58 

 

If the sample size is less than 60, the percentage points may be taken from Student’s         

t table with (n-1) degrees of freedom, these being the degrees of freedom in the estimated 

s2. The t distribution holds exactly only if the observations yi are themselves normally 

distributed and N is infinite. Moderate departures from normality do not affect it greatly. 

For small samples with very skew distributions, special methods are needed. An example 

of the application is as follows. 

Example.  

In a site, the number of borehole data sheets to characterize the substrata to obtain design 

parameters is 676. In each borehole data, 42 entries reflecting the various characteristics 
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of soils viz. compressibility, shear strength, compaction control, permeability etc are 

indicated. In an audit conducted, it was revealed that in some datasheets, all the data are 

not entered. The audit party verified a random sample of 50 sheets ( 7% sample) and the 

results are indicated in Table.1 

Table 21 Results for a sample of 50 petition sheets 
Number of signatures, yi Frequency, fi

42 
41 
36 
32 
29 
27 
23 
19 
16 
15 
14 
11 
10 
9 
7 
6 
5 
4 
3 

23 
4 
1 
1 
1 
2 
1 
1 
2 
2 
1 
1 
1 
1 
1 
3 
2 
1 
1 

∑  fi 50 
 
 
We find 

n = ∑  fi = 50,  y = ∑  fi yi = 1471,  ∑  fi yi 
2 = 54,497  

 
Hence  the estimated total number of signatures is  
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The 80% confidence limits are given by 
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This gives 18,107 and 21,669 for the 80 % limits. A complete count showed 21,045 

entries and is close to the upper estimate.  

 

4.2.2. Systematic sampling 

In systematic sampling the first observation is chosen at random and subsequent 

observations are chosen periodically throughout the population. To select a sample of n 

units, we take a unit at random from the first k units  and every kth unit thereafter.  The 

method involves the selection of every kth element from a sampling frame, where k, the 

sampling interval, is calculated as: 

k = population size (N) / sample size (n)  

Using this procedure each element in the population has a known and equal probability of 

selection. This makes systematic sampling functionally similar to simple random 

sampling. It is however, much more efficient (if variance within systematic sample is 

more than variance of population) and much less expensive to carry out. The advantages 

of this approach are that 1) the mistakes in sampling are minimized and the operation is 

speedy, 2) it is spread uniformly over the population and is likely to be more precise than 

the random sampling.  

An unbiased estimate of the mean from, a systematic sample is the same as above 

equation .The sampling variance of this estimate is 
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where it is the interval between samples (k = N/n) and  is the variance of elements 

within the same systematic sample 
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in which  xij is the jth member of the ith interval of the sample. When only one systematic 

sample has been taken (i.e. one set of n observations at spacing k) the variance of the 

mean cannot be evaluated unless an assumption is made about the nature of the sampled 

population. The conventional assumption is that the population can be modeled by a 

linear expression of the form, ii ex += μ , in which μ is the mean and ei is a zero-mean 

random perturbation. For constant mean, this leads to (Cochran 1977) 
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and for linearly trending mean, ib+= 0μμ  
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One must ensure that the chosen sampling interval does not hide a pattern. Any pattern 

would threaten randomness. A random starting point must also be selected. Systematic 

sampling is to be applied only if the given population is logically homogeneous, because 

systematic sample units are uniformly distributed over the population. 

Example: Suppose the auditor in the previous example wants to use systematic sampling, 

then he can choose every  25th or 50th sheet and conduct the study on this sample.  
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A starting point is chosen at random, and thereafter at regular intervals. For example, 

suppose you want to sample 25th sheet from  676 sheets, 676/25=27, so every 27th sheet is 

chosen after a random starting point between 1 and 15. If the random starting point is 11, 

then the sheets selected are 11, 28, 65, 92 etc.  

4.2.3. Stratified random sampling 

When sub-populations vary considerably, it is advantageous to sample each 

subpopulation (stratum) independently. Stratification is the process of grouping members 

of the population into relatively homogeneous subgroups before sampling. The strata 

should be mutually exclusive: every element in the population must be assigned to only 

one stratum. The strata should also be collectively exhaustive: no population element can 

be excluded. Then random or systematic sampling is applied within each stratum. This 

often improves the representativeness of the sample by reducing sampling error. It can 

produce a weighted mean that has less variability than the arithmetic mean of a simple 

random sample of the population. 

There are several possible strategies: 

1) Proportionate allocation uses a sampling fraction in each of the strata that is 

proportional to that of the total population. If the soil sample consists of 60% of boulders 

(boulder stratum) and 40% sand (sand stratum), then the relative size of the two types of 

samples should reflect this proportion.  

2) Optimum allocation (or Disproportionate allocation) - Each stratum is proportionate to 

the standard deviation of the distribution of the variable. Larger samples are taken in the 

strata with the greatest variability to generate the least possible sampling variance. 

Estimates of the total population characteristics can be made by combining the individual 

stratum estimates. For certain populations, stratifying before sampling is more efficient 

than taking samples directly from the total population. Sampling plans that specify a 

simple random sample in each stratum are called stratified random sampling plans. 
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An unbiased estimator of the mean of the total sampled population is  
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Where x  is the population mean, in is the number of strata and h denotes the stratum (i.e. 

N is the size of the hth stratum, and hx   is the corresponding mean). The variance of this 

estimate is 
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where  and  Since the sample from each stratum is simple 

random the estimate of the variance within each can be taken from above equation. Then, 

an estimate of the variance of the total population is 
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4.2.4. Cluster sampling 

In cluster sampling, aggregates or clusters of elements are selected from the sampled 

population as units rather than as individual elements, and properties of the clusters are 

determined. From the properties of the clusters, inferences can be made on the total 

sampled population. Plans that specify to measure every element within clusters are 

called single-staged-cluster plans, since they specify only one level of sampling: plans 

that specify that cluster properties be estimated by simple random sampling are called 

two-staged cluster plans, since they specify two levels of sampling. Higher order cluster 

plans are sometimes used. 

We consider simplest case first: of M possible clusters, in are selected: the ratio 

Mmf =1  called, as before, the sampling fraction. Each cluster contains the same 
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number of elements, N, some number n of which are selected for measurement (f2= n/N).  

An unbiased estimate of the average of each cluster is 
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where, xij is the jth element of the ith cluster. An unbiased estimate of the average of the 

total population is 
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In the more general case, not all of the clusters are of equal size. For example, the             

numbers of joints appearing in different outcrops are different. With unequal sized 

clusters the selection plan for clusters is not as obvious as it was previously. The relative 

probability, of selecting different sized clusters is now a parameter of the plan. 

Commonly, the zj are either taken all equal (simple random sampling of the clusters) or 

proportional to size. The precisions of these two plans are different. For selection with 

equal probability an unbiased estimate of the true total population mean is 
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This assumption ( )ii Nn α  is frequently valid: for example, proportionally more joints are 

typically sampled from larger outcrops than from smaller outcrops. 

For selection with probability proportional to size, an unbiased estimate of the total 

population mean is 
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In all eases, the variance of the total population can be estimated from the variances 

between elements within clusters and the variance between the means of the clusters: 

clusterswithinmeansamong
222 σσσ +=  
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Joint surveys and many other types of civil engineering sampling may be based on cluster 

plans because the cost of sampling many individual joints on one outcrop (i.e. a cluster) 

is less than the cost of traveling between outcrops. 

The variance of geological populations is often a function of spatial extent. Indeed, this is 

the principal argument in the geo-statistical literature for favoring variograms over auto 

covariance functions. If we consider the strength of soil specimens taken dose together, 

the variance among specimens is usually smaller than the variance among specimens 

taken from many locations in one area of the site, which, in turn, is smaller than the 

variance among specimens taken from all across the site. Cluster techniques allow us to 

evaluate variance as a function of the “extent’’ of the distribution in space by nesting the 

variances.  
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