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 6. Simulation Methods  
 

It is well established that simulation techniques have proven their value especially for 

problems where the representation of the state function is associated with difficulties. 

Such cases are e.g. when the limit state function is not differentiable or when several 

design points contribute to the failure probability.  

 

The basis for simulation techniques is well illustrated by rewriting the probability integral 

in equation  
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 by means of an indicator function as shown in Equation  
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where the integration domain is changed from the part of the sample space of the vector 

X =(X1, X2, .. Xn)T for which g(x)≤0 to the entire sample space of X and where I[g(x)≤0] 

is an indicator function equal to 1 if g(x)≤0 and otherwise equal to zero. Above equation 

is in this way seen to yield the expected value of the indicator function I[g(x)≤0]. 

Therefore if now N realizations of the vector X, i.e.
Njx j ,.........2,1ˆ , =

 are sampled it 

follows from sample statistics that  
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 Is an unbiased estimator of the failure probability Pf.  

 

6.1.1. Crude Monte Carlo Simulation  

 
The principle of the crude Monte Carlo simulation technique rests directly on the 

application of above equation. A large number of realisations of the basic random 

variables X, i.e. 
Njx j ,.........2,1ˆ , =

 are generated (or simulated) and for each of the 



 2

outcomes jx̂
, it is checked whether or not the limit state function taken in jx̂

 is positive. 

All the simulations for which this is not the case are counted (nf) and after N simulations 

the failure probability pf may be estimated through  
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which then may be considered a sample expected value of the probability of failure, In 

fact for ∞→N , the estimate of the failure probability becomes exact. However, 

simulations are often costly in computation time and the uncertainty of estimate is thus of 

interest. It is easily realized that the coefficient of variation of the estimate is proportional 

to fn1
 meaning that if Monte Carlo simulation is pursued to estimate a probability in 

the order of 10-6 it must be expected that approximately 108 simulations are necessary to 

achieve an estimate with a coefficient of variance in the order of 10%. A large number of 

simulations are required using Monte Carlo simulation and all refinements of this crude 

techniques have the purpose of reducing the variance of the estimate. Such methods are 

for this reason often referred to as variance reduction methods.  

Simulation of the N outcomes of the joint density functions, in above equation principle 

simple and may be seen as consisting of two steps. Here we will illustrate the steps 

assuming that the n components of the random vector X are  

independent.  

In the first step a “pseudo random” number between 0 and 1 is generated for each of the 

components in jx̂
.

njx ji ,.....,1ˆ , =
The generation of such numbers may be facilitated by 

build-in functions of basically all programming languages and spreadsheet software  

In the second step the outcomes of the “pseudo random” numbers Zji are transformed to 

outcomes of jx̂
 by 
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where iXF
is the probability distribution function for the random variable Xi, principle is 

also illustrated in Figure. 

  

This process is continued until all components of the vector jx̂
 have been generated. 

 

6.1.2. Importance of Sampling Simulation Method  
 

As already mentioned the problem in using above equation is that the sampling function 

f(x) typically is located in a region far away from the region where the indicator function 

I[g(x)≤0] attains contributions. The success rate in the performed simulations are thus 

low. In practical reliability assessment problems where typical failure probabilities are in 

the order of 10-3 to 10-6 this in turn leads to the effect that the variance of the estimate of 

failure probability will be rather large unless a substantial amount of simulations are 

performed.  

To overcome this problem different variance reduction techniques have been proposed 

aiming at, with the same number of simulations to reduce the variance of the probability 

estimate.  

The importance sampling method takes basis in the utilization of prior information about 

the domain contribution to the probability integral, i.e. the region that contributes to the 

indicator function. Let us first assume that we know which point in the sample space x* 

contributes the most to the failure probability. Then by centering the simulations on this 

point, the important point, we would obtain a higher success rate in the simulations and 
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the variance of the estimated failure probability would be reduced. Sampling centered on 

an important point may be accomplished by rewriting above equation 1in the following 

way  
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which fs(x) is denoted the importance sampling density function. It is seen the integral in 

above equation represents the expected value of the term ( )[ ] ( )
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components of s are distributed according to fv(x).The question in regard to the choice of 

an appropriate importance sampling function fs(x), however, remains open  

One approach to the selection of an importance sampling density function fs(x) to select a 

n-dimensional joint Normal probability density function with uncorrelated components, 

mean values equal to the design point as obtained from FORM analysis, i.e. µs=x* and 

standard deviations standard deviation of the component of X i.e. σs= σX. In this case the 

above equation may written as  
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which may be assessed by sampling over realizations of s as described in the above.  

  

Application of these equations greatly enhances effiency of the simulations. If the limit 

state function is not too non-linear around the design point x* the success rate of the 

simulations will be close to 50%. If the design point is known in advance in a reliability 

problem where the probability of failure is in the order of 10-6 the number of simulations 

required to achieve a coefficient of variance in the order of 10% is thus around 200. This 

number stands in strong contrast to the 108 required using the crude Monte Method 

discussed before, but of course also requires knowledge about the design point.  
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6.2. GENERATION OF RANDOM NUMBERS 
6.2.1. Random Outcomes from Standard Uniform Variates 

 

The probability integral transform indicates that generation of uniform (0, 1) random 

numbers is the basic generation process used to derive the outcomes from a variate with 

known probability distribution. Current methods of generating standard uniform variates 

are deterministic, in the sense that systematic procedures are used after one or more 

initial values are randomly selected. For example, system-supplied random number 

generators in most digital computers are almost always linear congruent generators. This 

algorithm is based on recursive calculation of sequence of integers k1, k2, k3,.., each 

between 0 and m-1 (a large number) from a linear transformation: 

( )( )mulocakk ii mod1 +=−  

Here a and c are positive integers called the multiplier and the increment respectively, 

and the notation (modulo m) signifies that k, is the remainder obtained after dividing  

( ) mbycaki +  where m denotes a (large) positive integer, hence denoting 

( )[ ]mcakInt ii +=η  the corresponding residual is defined as 

iii mcakk η−+=+1  

Hence, 

( )[ ]mcakIntmcmakmku iiii +=+== ++ xx11  

where the ui are uniform(0,1 ). Because these numbers are repeated with a given period, 

they are usually called pseudo-random numbers. The quality at the results depends on the 

magnitudes of the constants a,c and m and their relationships ,but the particular computer 

used will impose constraints. Because the period of the cycle is not greater than m and it 

increases with m, the main criterion is that the periods alter which the original numbers 

are unavoidably repeated should be as long as possible .In practice, in is set equal to the 

word length that is, the number of bits retained as a unit in the computer. Moreover, the 

constants c and m should not have any common factors, and the value of a should be 

sufficiently high. Because all possible integers between 0 and in m-1 occur after sonic 

interval of time, regardless of the generator used, any initial choice of the seed k0 is as 

good as any other. 
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Linear congruential algorithm  

Suppose we assume low values for the constants in equation, a = 5 , c =1 and m = 8. Let 

k0 = 1 be the seed for generating a sequence of random integers ki i=1,2,3……. For i=1. 

One has  
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125.0,0,375.0,25.0,625.0
,5.0,875.0,75.0,125.0,0,375.0,25.0,625.0,5.0,875.0,75.0,125.0

0,375.0,25.0,625.0,5.0,875.0,75.0,125.0,0,375.0,25.0,625.0,5.0
sequencefollowingtheyeilditerationssubsequentThe

 

which is seen to be cyclic with a period of 8, because the underlined sequence of 8 values 

is repeated indefinitely. This is clearly shown by plotting ui+1 against u, in  

  
Trajectory of 100 sequentially generated standard uniform random numbers with   

a = 5, c = 1, and m = 8 (soild line) and with a = 2+1, c = 1 and m = 235 (dotted line) 

 

Also shown in figure are results from the generator 1,127 =+= ca  and 352=m , which 

yields a much larger period of cyclicity. This choice gives satisfactory results for binary 

computers: and a 101,c = 1, and m = 2b for a decimal computer with a word length b. 
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The advantage of the linear congruencies method when applied through a digital 

computer is the speed of implementation. Because only a few operations are required 

each time, its use has become widespread. A disadvantage is that once the seed is 

specified, the entire series is predictable. 

The pseudorandom numbers generated by these procedures can be tested for uniform 

distribution and for statistical independence. Goodness-of-fit tests, such as the chi-

squared and the Kolmogorov-Smiruov tests can be used to verify that these numbers are 

uniformly distributed. Both parametric and nonparametric methods, such as the runs test, 

can be used to check for randomness between successive numbers in a sequence in spite 

of the fact that these procedures are essentially deterministic. Pseudo-random numbers 

generated with large m and accurate choices of a and c generally appear to be uniformly 

distributed, and stochastically independent, so that they can be properly used to perform 

Monte Carlo simulations. Algorithms to generate pseudo-random numbers which closely 

approximate mutually independent standard uniform variates are a standard feature in 

statistical software. Standard uniform random numbers are available as a system-supplied 

function in digital computers, as well as in most customary computational and data 

management facilities such as spreadsheets and data bases. Now a days, software tools 

MATLAB, MS Excel and Mathcad have built in options to generate random numbers and 

evaluation of probability of failure.  Problems solved using Hasofer –Lind approach and 

FORM methods earlier can be reworked using simulation procedures. 

 


