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2.1 Introduction 
Civil Engineering systems deal with variable quantities, which are described in terms of random 

variables and random processes. Once the system design such as a design of building is 

identified in terms of providing a safe and economical building, variable resistances for different 

members such as columns, beams and foundations which can sustain variable loads can be 

analyzed within the framework of probability theory. The probabilistic description of variable 

phenomena needs the use of appropriate measures.  In this module, various measures of 

description of variability are presented. 

 

2. HISTOGRAM AND FREQUENCY DIAGRAM 

Five graphical methods for analyzing variability are: 

1. Histograms,  

2. Frequency plots,  

3. Frequency density plots,  

4. Cumulative frequency plots and  

5. Scatter plots. 

 

2.1. Histograms 

A histogram is obtained by dividing the data range into bins, and then counting the number of 

values in each bin. The unit weight data are divided into 4- kg/m3 wide intervals from to 2082 in 

Table 1. For example, there are zero values between 1441.66 and 1505 Kg / m3 (Table 1), two 

values between 1505.74 kg/m3 and 1569.81 kg /m3 etc. A bar-chart plot of the number of 

occurrences in each interval is called a histogram. The histogram for unit weight is shown on 

fig.1. 

Table 1 Total Unit Weight Data from Offshore Boring 

Number 
Depth 

(m) 

Total unit 
weight  

(Kg / m3) 
(x-βx)2 

(Kg / m3)2
(x-βx)3 

(Kg / m3)3
Depth 

(m)

Total unit 
weight 

(Kg / m3)
1 0.15 1681.94 115.33 -310.76 52.43 1521.75 
2 0.30 1906.20 2050.36 23189.92 2.29 1537.77 
3 0.46 1874.16 1388.80 12936.51 1.52 1585.83 
4 1.52 1585.83 1209.39 -10503.30 6.71 1585.83 
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5 1.98 1617.86 716.03 -4791.12 13.72 1585.83 
6 2.29 1537.77 2188.12 -25573.47 31.09 1585.83 
7 5.03 1826.10 637.53 4028.64 5.79 1601.85 
8 5.79 1601.85 946.69 -7277.19 8.38 1601.85 
9 6.71 1585.83 1209.39 -10503.30 11.43 1601.85 
10 7.62 1633.88 517.40 -2947.40 15.24 1601.85 
11 8.38 1601.85 946.69 -7277.19 24.84 1601.85 
12 9.45 1617.86 716.03 -4791.12 37.03 1601.85 
13 10.52 1617.86 716.03 -4791.12 1.98 1617.86 
14 11.43 1601.85 946.69 -7277.19 9.45 1617.86 
15 12.19 1617.86 716.03 -4791.12 10.52 1617.86 
16 13.72 1585.83 1209.39 -10503.30 12.19 1617.86 
17 15.24 1601.85 946.69 -7277.19 18.90 1617.86 
18 18.44 1649.90 352.41 -1649.90 37.19 1617.86 
19 18.90 1617.86 716.03 -4791.12 40.23 1617.86 
20 21.79 1697.96 44.85 -76.89 7.62 1633.88 
21 21.95 1746.01 27.23 36.84 27.89 1633.88 
22 24.84 1601.85 946.69 -7277.19 34.14 1633.88 
23 24.99 1665.92 217.85 -802.52 46.48 1633.88 
24 27.89 1633.88 517.40 -2947.40 18.44 1649.90 
25 30.94 1697.96 44.85 -76.89 24.99 1665.92 
26 31.09 1585.83 1209.39 -10503.30 43.43 1665.92 
27 37.03 1633.88 517.40 -2947.40 98.15 1665.92 
28 37.19 1601.85 946.69 -7277.19 0.15 1681.94 
29 40.23 1617.86 716.03 -4791.12 49.38 1681.94 
30 43.43 1617.86 716.03 -4791.12 21.79 1697.96 
31 46.48 1665.92 217.85 -802.52 30.94 1697.96 
32 49.38 1633.88 517.40 -2947.40 82.91 1697.96 
33 52.43 1681.94 115.33 -310.76 61.42 1713.98 
34 58.37 1521.75 2578.97 -32714.50 85.80 1729.99 
35 61.42 1858.14 1106.88 9201.00 21.95 1746.01 
36 64.47 1713.98 8.01 -4.81 76.66 1746.01 
37 73.61 1794.07 297.94 1284.68 82.75 1746.01 
38 76.66 1826.10 637.53 4028.64 79.71 1762.03 
39 79.80 1746.01 27.23 36.84 89.00 1778.05 
40 82.75 1762.03 84.90 198.63 64.47 1794.07 
41 82.91 1746.01 27.23 36.84 94.95 1794.07 
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42 85.80 1697.96 44.85 -76.89 104.09 1794.07 
43 89.00 1729.99 1.60 0.00 125.43 1794.07 
44 91.90 1778.05 176.20 581.47 131.67 1794.07 
45 94.95 2002.31 4800.73 83118.19 101.04 1810.09 
46 98.15 1794.07 297.94 1284.68 104.24 1810.09 
47 101.04 1665.92 217.85 -802.52 5.03 1826.10 
48 104.09 1810.09 451.72 2401.17 73.61 1826.10 
49 104.24 1794.07 297.94 1284.68 113.23 1826.10 
50 107.29 1810.09 451.72 2401.17 119.33 1826.10 
51 110.19 1858.14 1106.88 9201.00 122.53 1826.10 
52 110.34 1986.29 4262.51 69531.33 116.28 1842.12 
53 113.23 1874.16 1388.80 12936.51 119.48 1842.12 
54 116.28 1826.10 637.53 4028.64 125.58 1842.12 
55 119.33 1842.12 856.99 6263.22 128.47 1842.12 
56 119.48 1826.10 637.53 4028.64 134.72 1842.12 
57 122.53 1842.12 856.99 6263.22 58.37 1858.14 
58 125.43 1826.10 637.53 4028.64 107.59 1858.14 
59 125.58 1794.07 297.94 1284.68 0.46 1874.16 
60 128.47 1842.12 856.99 6263.22 110.34 1874.16 
61 131.67 1842.12 856.99 6263.22 0.30 1906.20 
62 131.67 1794.07 297.94 1284.68 137.62 1906.20 
63 134.72 1842.12 856.99 6263.22 110.19 1986.29 
64 137.62 1906.20 2050.36 23189.92 91.90 2002.31 
 

The histogram conveys important information about variability in the data set. It shows the range 

of the data, the most frequently occurring values, and the amount of scatter about the middle 

values in the set. 

There are several issues to consider in determining the number of intervals for a histogram.  

1. The number of intervals should depend on the number of data points. As the number of 

data points increases, the number of intervals should also increase. 

2. The number of intervals can affect how the data are perceived. If too few or too many 

intervals are used, then the distribution of scatter in the data will not be clear. 

 Experimentation with different intervals is one approach in addition to the following equation 

provides an empirical guide 

)(log3.31 10 nk +=  
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Where k is the number of intervals and n is the number of data points. As an example k is equal 

to 7 for the unit weight data set with n equal to 64. 

Table 2 – Frequency Plot Data for Total Unit Weight 

Interval 

Lower bound 
(a) 

Upper bound 
(b) 

Number of 
occurrences 
(c) 

Frequency of 
occurrences 
(%) 
(d) 

Frequency 
density 
(% / Kg/m3) 
(e) 

Cumulative 
frequency 
(%) 
(f) 

1441.66 1505.74 0 0 0 0 

1505.74 1569.81 2 3 0.78 3 

1569.81 1633.88 21 33 8.20 36 

1633.88 1697.96 9 14 3.52 50 

1697.96 1762.03 6 9 2.34 59 

1762.03 1826.10 13 20 5.08 80 

1826.10 1890.18 9 14 3.52 94 

1890.18 1954.25 2 3 0.78 97 

1954.25 2018.33 2 3 0.78 100 

2018.33 2082.40 0 0 0 100 

Σ  64 100 25  

dColumnofTotalRunningfColumn
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Figure 1 : Histogram of total unit weight
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2.2. Frequency Plot 

The frequency of occurrence in each histogram interval is obtained by dividing the number of 

occurrences by the total number of data points. A bar-chart plot of the frequency of occurrence in 

each interval is called a frequency plot. The interval frequencies for the unit weight data are 

calculated in Table 2, and the resulting frequency plot is shown on Fig.2. 

 

Figure 2 : Frequency Plot
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Figure 1 

Note, that the histogram and frequency plot have the same shape and convey the same 

information. The frequency plot is simply a normalized version of the histogram. Because it is 

normalized, the frequency plot is useful in comparing different data sets. Example frequency 

plots are shown on Figs.2 through 2.5. Fig.2 which varies spatially shows the unit weight data. 

Fig.3 shows an example of data that vary with time. The data are monthly average pumping rate 

measurements versus time for the leak detection system in a hazardous waste landfill. The data 

vary from month to month due to varying rates of leachate generation and waste placement. 

Figure 3 : Frequency plot monthly average flow 
rate for leak detection system
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Fig.4 shows an example of data that vary between construction projects. The data are the ratios 

or actual to estimated cost for the remediation of superfund (environmentally contaminated) 

sites. The data vary between sites due to variations in site conditions, weather, contractors, 

technology and regulatory constraints, Note that the majority of projects have cost ratios greater 

than 1.0. 

 

Figure 4 - Frequency plot of cost-growth factor
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Fig.5 shows an example of data that vary between geotechnical testing laboratories. The data are 

the measured friction angles for specimens of loose Ottawa sand. Although Ottawa sand is a 

uniform material and there were only minor variations in the specimen densities, there is 

significant variability in the test results. Most of this variability is attributed to differences in test 

equipment and procedures between the various laboratories. 

Figure 5 :Frequency plot of friction angle

0

10

20

30

40

50

60

10 14 18 22 26 30 34 42 50

Friction angle

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce
 

%

 
 

2.2.1. Frequency Density Plot 

Another plot related to the histogram is the frequency density plot. The frequency density is 

obtained by dividing the interval frequencies by the interval widths. A bar-chart plot of the 

n = 102

n = 28
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frequency density is called the frequency density plot. The objective in dividing the frequency by 

the interval width is to normalize the histogram further the area below the frequency density plot 

(obtained by multiplying the bar heights by their widths) is equal to 100%. This normalization 

will be useful in fitting theoretical random variable models to the data.  

The frequency densities for the unit weight data are calculated in Table 2 the frequency density 

are % per the units for the data, which are % per Kg/m3 weight data. The resulting frequency 

density plot is shown on Fig. 6. 

Figure 6 : Frequeny density plot of total unit 
weight
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2.2.2. Cumulative Frequency Plot 

The cumulative frequency plot is the final graphical tool that we will present for variability 

analysis. Cumulative frequency is the frequency of data points that have values less than or equal 

to the upper bound of an interval in the frequency plot. The cumulative frequency is obtained by 

summing up (or accumulating) the interval frequencies for all intervals below the upper bound. 

A plot of cumulative frequency versus the upper bound is called the cumulative frequency plot. 

The cumulative frequencies for the unit weight data are calculated in Table 2. For example, the 

cumulative frequency for an upper bound of 1634 Kg/m3 is equal to 0% + 3% + 33% = 36%. The 

resulting cumulative frequency plot is shown on Fig.7. 

A percentile value for the data set corresponds to the corresponding value with that cumulative 

frequency. For example, the 50th percentile value for the unit weight data set is 1698 Kg/m3 (50 

percent of the values are less than or equal to 1698 Kg/m3), while the 90th percentile value is 

equal to 1874 Kg/m3 (Fig.7). 
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2.3. Data Transformations 

In some cases, it is useful to transform the data before plotting it. One example is a data set of 

measured hydraulic conductivity values for a compacted clay liner. The frequency plot for uses 

data is shown on Fig.8. It does not convey much about the data set because the hydraulic 

conductivity values range over several orders of magnitude. A more useful representation of the 

data is to develop a frequency plot for the logarithm of hydraulic conductivity, as shown on 

Fig.9. Now it can be seen that the most likely interval is between 10-8.4 and l0-8.2 cm/s. and that 

most of the data are less than or equal to 10-7 cm/s. 

Figure 8 : Frequency plot of hydraulic 
conductivity
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A second example of data for which a transformation is useful are undrained shear strength data 

for a normally consolidated clay. A frequency plot of these data from an offshore boring in the 

Figure 7 : Cumulative frequency plot of total unit 
weight
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Gulf of Mexico is shown in Fig10. The data exhibit substantial variability with depth, ranging 

from 2000 to 20,000 Kg/m2, however, and this frequency plot is misleading because much of the 

variability can be attributed to the shear strength increasing with depth. In order to demonstrate 

this trend, a scatter plot of the undrained  

 

Figure 11: Frequency plot log-hydraulic 
conductivity
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Shear strength versus depth is shown on Fig.10. A more useful measure of undrained strength is 

to normalize it by depth, as shown in Fig.11. This scatter plot shows that the trend with depth has 

now been removed from the data, and the variability in the shear strength to depth ratio is much 

smaller than that in the undrained shear strength alone. A frequency plot of the shear strength to 

depth ratio is shown on Fig.12. 

 

Figure 10 : frequency plot of undrained shear 
strength
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2.4. Description of random variable 

The probability characteristic of a variable could be described completely if the form 

distribution and the associated parameter are specified .However in practice the form of the 

distribution function may not be known, consequently approximate description is often necessary 

.The key description of the random variable are the central value or mean of the random variable 

and a measure of dispersion represented by variance. A measure is also important when the 

distribution is unsymmetrical. 

 

2.5. Mean or average value 

∫

∑
∞

∞−

=

=

dxxfxXE

iablerandomdiscreteforxxpXE ix

)()(

var)()(
 

this is essentially a weighted average .Other quantities that are used to denote the central 

tendency include Mode and Median. 

The mode x is the most probable value of a randomness variable, the value that has the 

maximum probability or the highest probable density. 

The median is the value of randomness variable at which values above and below are 

equally probable. 

In general, the mean, median and mode of random variable are different, if the density 

function is not symmetric .However if the Probability Density Function (PDF) is symmetric and 

unimodal, then quantities coincide. 

 

2.6. Variance and Standard deviation 

 Variance gives the measure of dispersion around the central value. 

For a discrete random variable, 

∑ −=
ixall

ixxi xpxXVar )()()( γµ  

For continuous random variables, 
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Dimensionally, a convenient measure is standard deviation SD= XXVar σ=  

define the measure of dispersion relative to central value, we define  

Coefficient of Variation (CoV) = 
X

X
X µ

σδ =  

Mode is the probable size which occurs most frequently .A sample may have more than 

one mode and it is said to be multimodal. A cumulative distribution may show point of inflexion. 

 

2.7. Moments 

Consider a system of discrete parallel forces f1,f2,…..fn acting  
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Suppose the discrete forces represent the probability of all possible occurrences, of N  
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i
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][  is called the expected value q, expectation of x of provides a measure of 

central tendency of the distribution .It is different from arithmetic mean (It may be equal in the 

case of normal distribution, where in the expected value is obtained from probability of a random 

variable) The following rules are the operation for expectation, since expectation is a linear 

operator 
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Again from static’s 
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2.8. Random variables and probability Distributions  

To use probability or a probabilistic model for formulating and solving a given problem, 

one accepts the view that the problem is concerned with a random phenomenon or phenomena. 

Significant parameters influencing the problem are random variables or are regarded as such. 

 A random variable is a function of the value(s) which identify an outcome or an event. A 

random variable may be discrete or continuous or a combination of the two.  Each 

numerical value of a random variable is associated with a probability measure. For example, if A 

is a discrete random variable with values 1,2 and 3 then a value of A = 1 may have a probability 

of 0.2 a value of A = 2 may have a probability of 0.3 and a value of A = 3 would have a 

probability 0.5. (Note that the sum of these probabilities is unity.)  

For a continuous random variable X, probabilities are associated with intervals on the real 

line (abscissa). At a specific value of X (say X = x) only the density of the probability is defined. 

The probability law or probability distribution is therefore defined in terms of a probability 

density function denoted by ‘PDF’. Let fx(X) be the PDF of X. then the probability X in the 

interval (a,b) is  

( ) ( )∫=≤<
b

a
x dxXfbXaP   

However, the probability distribution can also be defined by a cumulative distribution 

function denoted by CDF which is  
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( ) )( xXPxFx ≤=  

The CDF is extremely useful as we obtain a measure of probability directly, whereas to 

obtain the probability measure from the PDF the area under the PDF has to be calculated. For 

the continuous random variable we can write:  

∫
−

=
x

xx dyyfxF
α

)()(   

Assuming that Fx(x) has a first derivative  

dx
xdF

xf x
x

)(
)( =    

The probability that the values of X lie in the interval {x, (x + dx)} is given by fx(x) dx, that is,  

)()()( xdFdxxfdxxXxP xx ==+≤<   

Figure 11 shows an example of a continuous random variable with PDF and CDF.  

A function used to describe a probability distribution must be positive and the probabilities 

associated with all possible values of the random variable must add up to unity. Therefore  

0)(,0.1)(,0)( ≥=+=− xFFF xxx αα   

Note also that Fx(x) will never decrease with increasing x and that it is continuous with x. 

Obviously the CDF is a continuous curve, the magnitude of the ordinate at the end of the curve 

being unity. This represents the total area under PDF which is also unity, the total probability 

associated with a random variable. 

  Consider now the corresponding terms with respect to a  
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Figure 2 – A continuous random variable X showing PDF and CDF 

Discrete random variable. The CDF has the same meaning as for a continuous variable and the 

same equation applies. However, instead of the PDF, the alternative to CDF is a probability 

mass function denoted by PMF. The PMF gives the probability of the random variable for all its 

discrete values (as stated for the variable A earlier in this section).  

Let X be a discrete random variable with PMF px(x1) = p(X=x1) in which x represents all the 

discrete values of X, that is x1, x2, x3 etc. Then its CDF Fx(x) is given by  
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It is easy to show that in the interval bXa ≤<  

 )()()( aFbFbXaP xx −=≤<   

The PMF is not a curve but a series of vertical lines as shown in figure below or ordinates 

with heights representing probability measures (not probability density as in the case of 

continuous case. i.e. PDF). The sum of the ordinates must be unity. A bona fide  
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Figure 3 – A discrete random variable X showing PMF and CDF 
 

Cumulative distribution function for the discrete case must satisfy the same conditions as in the 

case of the continuous random variable. Thus the CDF is a continuous curve and is none 

decreasing with increasing x.  

The simplest continuous distribution is a uniform distribution that is a line parallel to the 

horizontal or abscissa as shown in Figure above. Another relatively simple distribution is a 

triangular distribution; a modification of the triangular distribution is a trapezoidal distribution. It 

is useless consider some of these as examples before proceeding to ‘well known and widely used 

distributions such as the normal (or Gaussian) distribution, the lognormal distribution, the Beta 

distribution and others.  
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2.9. Moments of a random variable  

Before proceeding to more sophisticated distributions, it is necessary to consider 

important descriptors of a distribution. A random variable may be described in terms of its mean 

value called the ‘mean’ and its ‘variance’ (the ‘standard deviation’, which is the square root of 

the variance, is often used instead of the variance). The use of these parameters with a known or 

assumed distribution is very convenient. The mean and the standard deviation are generally the 

main descriptors of a random variable; however, other parameters may have to be used to 

describe a distribution properly. Reference is made later to another descriptor or parameter of a 

distribution called the “skewness” Often a distribution is not known but estimates of the mean 

and the standard deviation for the variance can be made is then possible to solve problems on the 

basis of an appropriate assumption concerning the distribution. In other words one tries to fit a 

distribution to the known values of these descriptors.  

The mean value is a central value which represents the weighted average of the values of 

the random variable where the weighs for each value is its probability density for a continuous 

distribution and its probability for a discrete distribution. The  

mean value is called an expected value and it is also referred to as the first moment of a random 

variable. The mean value of X is denoted by E(X) or x or xµ .For a continuous random variable 

with PDF fx(x) we have  

∫
−

==
x

x
x dxxxfxEx )()(

 
For a discrete random variable with  

∑==
iallx

ixi xpxXEx )()(
 

Other descriptors such as the ‘mode’ and the ‘median’ may also be used to designate the 

central value of a random variable. The mode is the most probable value of a random variable 

and the median is the value of the random variable at which the cumulative probability is 0.50 or 

50. For a symmetric PDF with a single ‘mode’ the mean, the median and the mode are identical. 

But, in general, the values of all three may be different from one another.  
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The variance of a random variable is a measure of its dispersion and is defined as follows for a 

continuous random variable  

∫
−

−=
α

α

dxxfxxxV x )()()( 2

  
Noting the form of the expression, the variance is also called the ‘second central moment’ 

of a random variable as it is the expectation of 
2)( xx −  or 

2)( xxE − . By expanding the right-

hand side of Equation it can be shown that  
22 )()( xXEXV −=   

In practice the standard deviation Sx (also denoted σx) of a random variable is used in preference 

to the variance primarily because it has the same units as the mean. We recall that:  

)(xVSx =   
An equation similar to the above may be written for a discrete random variable.  

A relative measure of dispersion of a random variable is its coefficient of variation Vx which is 

the ratio of the standard deviation to the mean that is:  

x
S

V x
x =

 
The coefficient of variation is a good parameter for comparing different random variable 

as their spread or dispersion .In other words it is useful for comparing the variability or 

uncertainty associated with different quantities. 

The ‘Third centre moment ’of a random variable is a measure of the asymmetry or skewness of 

its distribution; otherwise it may be negative or positive .For a continuous random variable, the 

expression is 

∫
−

−=−
x

x
x dxxfxxxxE )()()( 33

 
A similar expression may be written for a discrete variable. 

The skewness coefficient 0 is the ratio of skewness to the cube of the standard deviation. 
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2.10. The normal distribution  
Introduction 

Perhaps the best known and most used distribution is the normal distribution also knows as 

Gaussian distribution. The normal distribution has a probability density function given by 

( ) ∞<<∞−
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⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−= xxxf X

2

2
1exp

2
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πσ
 

 

where µ = mean and σ = standard deviation of the variate are the parameter of the distribution. 

 

The standard normal distribution: A Gaussian distribution with parameters µ= 0 and σ = 1.0 is 

known as standard normal distribution denoted by N (0,1) the function accordingly becomes 
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2
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2
1
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s
sf s π

  

 

Models from limiting cases 

Models arise as a result of relationships between the phenomenon of interest and its many 

causes. The uncertainty as a physical variable may be as a result of combined effects of many 

contributing causes. The small contributing factors are difficult to be quantified, at the same time 

its overall behavior can be studied. The ability of to result in this shape to approximate the 

distribution of sum of a number of uniformly distributed random variables is not coincidental. It 

is due to central limit theorem. 

Under very general conditions, as the number of variables in the sum becomes very large, the 

distribution of sum of random variables will approach the normal distribution. 
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Continuous distribution 
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Uniform distribution 
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Useful when all the chances are equally likely and no information’s are available 

 

Cumulative distribution 

Cumulative distribution is helpful in determining the probability that a random variable will take 

a value less then or equal to a particular numerical value or a range of values. 

 

2.10.1. The standard normal variate 

 The normal or Gaussian distribution is represented by a continuous, symmetric PDF given by 

the following equation:  
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Figure 4 – A normal distribution X with mean X and standard deviation S2 
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A short notation ),( xSxN is often used for a normal distribution (Figure 14) 

 A very useful form of the distribution is one with a zero mean and unit standard deviation and is 

referred to as the ‘standard’ normal distribution. Thus if S is the standard normal random 

variable (or simply variate), its PDF is (Figure 14) 

αα
π

<<−⎥⎦
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⎡−= sssf s ,

2
1exp

2
1)( 2  

 

This is also denoted by N (0, 1) and is symmetrical about zero. Its cumulative distribution 

function or CDF is often denoted by )(sφ  that is:  

)(sφ  =Fs(s)=p  

 

 

 

 

 

 

 

 

Figure 5 – A standard normal distribution 
 

Where p is the probability p=P(S ≤ s). This probability p represents the area under the standard 

normal distribution to the left of s, that is, from - o to a. This distribution is available in tables 

and often values are given only for positive values of the standard normal variate. Thus values 

will start from 0.5 for s =0 and approach unity for increasing positive values of s.  

For negative values of the probability is obtained by subtraction from unity (the total area under 

the distribution being unity). Hence, we have 

)(1)( ss φφ −=−   
This is obviously correct because the standard distribution is symmetrical about s=0.  

The reverse calculation, that is determination of the value of the variate s for a given cumulative 

probability p is often important and one may write  

Probability = p

N(0, 1]

Note Zero mean and 
unit standard deviation

fs(s)

0 s

s

Probability = p

N(0, 1]

Note Zero mean and 
unit standard deviation

fs(s)

0 s

s
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)(1 ps −= φ  
Returning to tabulated values, as noted earlier the tables usually contain the CDF for 

positive values of the variate, s. Because of symmetry the CDF for negative values of a can be 

simply obtained using equation )(1)( ss φφ −=− . Positive values of the variates are associated 

with CDF>O.5 or p>0.5. For values of p<0.5, the variates is given by 

 )1()( 11 pps −−== −− φφ  
[Note:   In some tables the values of cumulative probability start from zero even though only 

positive values of the variate are considered. In such cases the user should add 0.5 to the 

tabulated value for the left symmetrical half of the area]. 

 

2.10.2. Application of standard normal variate 

 The first step is to obtain the standard variables s from the given mean and standard deviation of 

the random variable x, The relationship between x and s is obvious from the corresponding 

expressions for PDF and we have  

xS
xxs −=  

The probability that the random variable A lies between two limits a and b is given by the 

probability that the standard normal variate lies between x and s. and we have;  
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2.10.3. Logarithmic normal distribution  

Consider a random variable X which does not follow a normal distribution but  

whose natural logarithm (In X) has a normal distribution. The variable X is then said to have a 

logarithmic normal or log-normal probability distribution and its density function is  
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XSXVar
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are respectively the mean and standard deviation of ln X and are the parameters of the 

distribution. Assumption of a lognormal distribution is often preferred to the assumption of a 

normal distribution for random variables which must have a positive value. For instance the 

factor of safety F is, by definition. a positive quantity. Therefore, it appears desirable to adopt F 

as a lognormal variate than at a normal variate. Figure 16 shows a typical lognormal distribution.  

It is easy to show that the tabulated values of the CDF of a standard normal distribution can be 

used for a lognormal distribution as well. The probability of X being in the interval (a,b) is  
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The probability of X being less than or equal to unity is 
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It can be shown that in terms of x  and Sx ,α and β are as   

 

 

 

 

 

 

 

 

 

 

 
Figure 6 : Lognormal distribution showing typical shape of PDF 
  

A random variable X has a logarithmic normal probability if lnX is normal; the density function 

similar to normal distribution is as written as 
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Where λ and G are the parameters of the distribution. Probability associated with a log-normal 

variate can be determined from standard normal probabilities. 

 

The probability that the variable X will assume values in an interval (a,b) is  
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since log-normal distribution can be evaluated using normal distribution itself and since the 

value of the random variable are always positive , the log-normal distribution may be useful 

where the value of the variates are strictly positive Ex: Intensity of rainfall 

 

If the log-normal is bounded between y(a) and y(b) it is such that  

( ) ( ) ( ) ( )∞+=∞−= expexp byanday  

 

If E(x) and V(y) are the mean and CoV of a log normal then 
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2.11. Beta distribution  

In geotechnical engineering one is often concerned with random variables whose  

Values are bounded between finite limits. For example, the angle of internal friction for given 

sand has specific limits to its value depending largely on the relative density (density index) of 

that sand. Similarly values of unit weight γ and un-drained shear strength cu, lie between finite 

limits. In such cases it is generally unrealistic to assume variation from - α to +α (as in normal 

distribution, or 0 to α as in lognormal distribution. Certainly it is true that all distributions lead to 

results of similar accuracy for values of the random variable in the central region of a 

distribution. Yet when one is concerned primarily with the tails of a distribution, significant 

differences in results are obtained depending on the choice of distribution. Putting it differently, 

if one is concerned with relatively high probabilities, the choice of a distribution may not be 

critical. However, if one is concerned with relatively low probabilities say <10-2) the choice of a 

distribution determines the accuracy and even the order of magnitude of the answer. In some 

civil engineering problems, instance, highway cuttings, high failure probabilities may be 

acceptable. In others, for example, earth dams and multi-storeyed buildings, low failure 

probabilities must be ensured. In special cases, for instance, foundations of nuclear power plants 

and other very sensitive structures, extremely low failure probabilities and low probabilities 

against settlement or differential settlement of a certain magnitude must be ensured. Therefore in 

some cases the choice of distribution is critical.  

 

A probability distribution is appropriate for a random variable who’s values are bounded 

between finite limit a and b in the bate distribution. The density function of such a distribution is 
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In which q and r are the parameters of the distribution and B(q,r) is the bets function 
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and is related to gamma function as follows 

( ) ( ) ( )
( )rqT

rTqTrqB
+

= *,
 

Depending on the parameters q and r the density functions of the bets distribution will have 

different shapes. 

If the values of the variate are limited between 0 an d 0.1 (i.e. a=0 and b= 1.0) , then the above 

equation for fx(x) becomes 
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The shape of the distribution becomes important when one is concerned with very low 

probability of failure. For example when one is concerned with high probabilities of safety or 

high reliability > 0.99, then choice of distribution plays a dominating role 

 

 

 

 

 

 

 

 

 

 

 

It also depends as the type of problem foe example for highway shallow cutting and mine works. 

A reliability of 0.90 to 0.95 is also acceptable where as for earth dams and multi storeyed 

buildings, the reliability should be in the range of 0.999 to 0.9999. 

 

 

∞− ∞∞− ∞
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The mean and the variance of the bets distribution are given by 
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The beta distribution (Figure 17) is appropriate for random variables which have a finite range. 

The uniform distribution, already considered earlier, is the simplest example of a beta 

distribution. Considering the limits a and b for a random variable X. the PDF of a beta 

distribution may be written in the form  
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in which q and rare the two parameters which determine the shape of the distribution and B(q,r) 

is the beta function 
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Figure 7 – Beta distribution 
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The mean and variance of the beta distribution are: 
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The standard beta distribution may be defined as one which has a=0 and b=1. The 

standard PDF is symmetrical for q=r=3 and it is uniform with a density of unity for q=r=1.0 

(Figure 18) 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Various shapes of standard beta distribution 
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Probability calculation are facilitated by the incomplete beta function which is defined as 
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The probability of X being between limits c and d is given by 
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2.12. Binomial and geometric distributions  

Assume that repeated trials of an event are made, the probability p of occurrence in each 

trial is constant and the trials are statistically independent. Then considering that each trial has 

only two outcomes either occurrence or non-occurrence, the problem may be modeled as a 

Bernoulli sequence. One may apply this to rainfall, flooding, earthquakes etc. Which affect the 

performance of geotechnical structures?  

The probability of exactly a occurrences among n trials in a Bernoulli sequence is given by the 

binomial distribution: the equation for the PMF being:  
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is the binomial coefficient and a and p are parameters.  

The probability of realizing one particular sequence of exactly x occurrences of the event among 

n trials is px(l —p)n-x. However, the sequence of trials can be permuted n times; therefore, the 

number of sequences with exactly x occurrences is  

x
n
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The number of trials until an event occurs for the first time is governed by the geometric 

distribution, Let T be the random variable concerning the number of trials for first occurrence 

and Let this occur at T=t. Then we have  

,)( 1−== tpqtTP   t=1,2,… 

Where (q=p—1) 

This is known as the geometric distribution obtained by substituting x=1 and n= t in Equation.  

The first occurrence time is considered equal to the recurrence time and the latter also has a 

geometric distribution; the mean recurrence time also known as the return period is: 
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Since q< 1.0 series summation gives pT /1= or average return period is the reciprocal of the 

probability of the event within one time unit. 

  

So far we have considered either the number of trials or time units until the first  

occurrence. The time until the next occurrence is governed by the negative binomial distribution. 

The probability of (Tk = t) where Tk is the number of trials until the kth occurrence is  
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  for t=k,k+1,…=0 from t < k 

 

Models for simple discrete random trials 

 

A basic situation at certain times is that if outcomes of experiments can be separated into two 

exclusive categories good or bad, failure or success etc. We are interested in the simplest kind of 

experiments, the out comes of which can be either failure or success. The two events are 

mutually exclusive, collectively exhaustive possible outcomes. This is called Bernoulli trial  

 The binomial distribution is given by 
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The binomial distribution models the outcomes of experiments for which the following 

properties hold are 

1. An experiment is repeated N tims with the outcome of each trial being 

independent of others 

2. Only two mutually exclusive outcomes are possible called success ot failure , x is 

the no of successes 

3. The probability of success in each trial denoted by R  remains the same for all 

trials , p is the probability of non-occurrence 

R + p =1 

4. The experiment is performed under the same conditions for all N trials  

5. The interest is the number of success x in the N trials and not in the order they 

occur. 

 

Geometric distribution 

Assuming independence of trials and a constants values of P, the distribution of N , the number 

of trials for the first success can be found. The first success will occur only on the nth trial and if 

only (n-1) are failures 
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This is called geometric distribution 

 

FIGURE 

 

The probability that there is at least one occurrence in n trials 

 

= 1-P[no. of occurrence in n trials] 

= ( )nP−− 11  

moments of geometric distribution 
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E(N)=1 / P 
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Design values and return periods , civil engineering systems must withstand the effect of rare 

events such as large floods or high winds . it is necessary to consider the risks involved in the 

choice of design capacity 

In a design, one can estimate the maximum magnitude of rare events which the structure can 

withstand (maximum wind velocity) 

Average return periods 

The expected value o geometric distribution is  
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The probability that there will be no events greater than 50years m-flood in 0years is B[m,1 / m] 
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The probability that one or more events will occur in m years is (1-e-1)=0.632 thus a system can 

set affected by a rare event within its return period is 0.632 
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2.13. Poisson, exponential and gamma distributions  

Many physical process occurrences of fatigue crakes, earthquakes occurring at any tie in an 

earthquake prone region, occurrence of accidents on a highway may be modeled using 

Bernaoulli sequence, dividing the time interval r space into smaller intervals and considering 

whether the event will occur or not occur. If the vent can occur at any instance and again can 

occur the event may be modeled as a poissons process. 

 

Assumptions: 

1. An event can occur at random at any time or any point in space. 

2. The occurrence of an event in a given time (space) is independent of any other in other 

interval. 

3. The probability o occurrence of an event in a small interval t∆ is proportional to t∆ and 

can be given by r t∆ .where r is the mean rate of occurrence. 

The number of occurrence of an event in t is given by Poisson distribution i.e. if Xt is the 

number of occurrences in time (or space) then, 
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Poissions distribution (derivation from binomial distribution) 
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when the time distribution are reduced smaller and smaller the number of trials (n) increases and 

the probability Pof success decreases. But the expected number of events is np. 

 

Say np = γ as n ∞ , P  0, np ∞  

 



 34

Substituting in the above equation 
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For large values of n this term is nearly 1 and γγ −=⎟
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this is known as poisson distribution 
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This is called pisson process 

 

To be a poisson process  

1. The probability of incident in a short interval of time t to t+h is approximately hλ  for any 

t 

2. The probability of two or more events in a short interval of time is negligible 

3. The number of incidents in any interval of time is independent of the number in any non-

overlapping interval 

 

Property of Poisson distribution 
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The Poisson process is useful where an event may occur anywhere in a space and  

time framework and is based on the following assumptions 

 (1) The occurrence of an event in a given interval is independent of its occurrence in other 

intervals.  

(2) The probability of occurrence of an event in a small interval is proportional to that interval 

and the proportionality constant v, describes the mean rate of occurrence.  

(3) The mean rate of occurrence v is assumed constant,  
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(4) The probability of two or more occurrences in the chosen small time interval ∆t is negligible.  

 

If X, is the number of occurrences in time (or space) interval t. 

,
!
)()( vt

x

t e
x

vtxXP −==
  x=0,1,2….. 

It is obvious that 

vtXXE tt ==)(  
It can be shown that the variance is the same as exception, i.e. 

vtS x =2
 

The occurrences of an event between intervals are statistically independent as are  

the occurrence of an event between trials in the case of the Bernoulli sequence.  

An extension of the Poisson process is the important case where the occurrence of an event is 

influenced by the occurrence in the previous time interval. Thus the probability of occurrence is 

a conditional one and the model used for determining it is called the Markov process or Markov 

chain.  

If the Poisson process governs the occurrence of an event then the time T to first occurrence has 

an exponential distribution also referred to as the negative exponential. We have for the 

probability that no event occurs in time t:  
vt

t eXPtTP ===> )0()( 1  
The PDF is  

vt
T vetf −=)(

1   0≥t  
The CDF is  

vt
T etTPtF −−=≤= 1)()( 11  

If v is independent of t and hence constant the mean of T1 is  

v
TTE 1)( 11 ==

 
This is the mean recurrence time or return period and may be compared to 1/p for the Bernoulli 

sequence. For small time interval the two are nearly equal. 

  

If it is desired that the PDF for an exponential distribution should start at a value of greater than 
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zero (i.e. not pass through the origin), we may use the shifted exponential distribution.  

 

The time until the kth occurrence is described by the gamma distribution. If Tk denotes the time 

until the kth event 
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The exponential and gamma distributions are related to the Poisson process in the same way 

that the geometric and negative binomial distributions are related to Bernoulli sequence.  

 

Exponential distribution 

 

The exponential distribution is related to the poisson distribution as follows. If the events occur 

as per poisson process, then the time T1 till the first occurrence of the event is an exponential 

distribution. This means that in the interval (T1>t) no evens occurs 

 

( ) ( ) t
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this is the first occurrence time in a poisson process 

 

Distribution function of T1 
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if γ is a constant then mean value of T 

MT1=1 / γ 

 

Mean recurrence time = γ
1
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Gamma Distribution 

 

If the occurrence of an event constitutes a poisson process, then the time until th kth occurrence 

of the event is described by gamma distribution. Let Tk denote the time till the kth event , then 

( )tTk ≤  means that Kor more events occur in time t. 

 

corresponding density function is  
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mean time till the occurrence of kth event  
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2.14. Hyper geometric distribution  

In quality control, the use of a distribution for sampling acceptable from  

unacceptable items is desirable. Let m elements be defective among N elements then if a sample 

of items is taken randomly, the probability of x defective items in the sample is given by the 

hypergeometric distribution. This is written as follows:  
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The number of samples of size n in the finite population N is n
N

 

The number of samples with x defective elements is 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
xn
mN

x
m

 



 39

Assuming that all samples of size n are equally to be chosen the above equation is obtained. 

The hyper geometric distribution arises when samples from a finite population (for example, 

consisting two types of element like good or bad.) are examined.  

Consider a lot of N items, m of which are defective and the (N-m)  are good. If a sample of n 

items is taken (at random) from this lot, the probability of x defective items in the sample is 

given by the hyper geometric distribution. 
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in the lot the number of sample of size n is ( )
n
N   

Number of ways in which x defective samples can be shown = ( ) ⎟⎟
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2.15. Joint distribution, covariance and correlation  

If X and Y are two random variables then probabilities associated with any pair of  

values x and y may be described by a joint distribution function. e.g.  

 

),(),(, yYxXPyxF YX ≤≤=  
 

For discrete random variables the joint PMF (Figure above) may be used  

),(),(, yYxXPyxp YX ===  
 

 

 

 

 

 

 

 

Figure 9 – (a) Joint PMF of X and Y  (b) Joint PDF of X and Y 
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For a continuous random variable the joint PDF ( Figure 19) may be defined by:  

).(),(, dyyYydxxXxPdxdyyxf YX +≤<+≤<=  
The marginal density functions of this joint distribution are  
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The CDF is given by the volume under the surface f(x,y) and is given by  
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=
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Description of a joint distribution of two random variables requires five statistical 

parameters namely, the mean and standard deviation of each variable and the correlation 

coefficient between them. This coefficient is denoted by p and is the ratio of the covariance 

denoted by cov(x,y) and the product of the standard deviations  

yx
YX SS

yx ),cov(
, =ρ

 
The covariance itself is defined as the joint central second moment, that is, the expectation of the 

product ))(( yYxX −−  and hence  

 

)()()(
)])([(),cov(

YEXEXYE
yYxXEYX

−=
−−=

 
If X and Y are statistically independent then 

E(XY)=E(X)E(Y)  and cov(X,Y)=0 

If two variables are statistically independent then the variables are uncorrelated, however, the 

reverse is not true, if the variables are uncorrelated, they may not be statistically independent.  

The correlation coefficient p may vary from -1 to +1 and may be regarded as a normalized 

covariance. It is a measure of the linear relationship between the two random variables (Figure 

20).  

 



 41

If X and Y (cohesion and friction) are two random variables, then the probability associated with 

any pair of values x and y may be described by a joint distribution function. 

Eg : ( ) ( ) ( )yYxXPyxF YX ≤≤= ,,,  

For discrete random variables the joint PDF is defined as  

( ) ( )yYxXPyxP YX === ,,,  

For a continuous random variable the joint PDF  is defined as 

( ) ( )dyyYydxxXxPdxdyyxf YX +≤≤+≤≤= ,,,  

Marginal density functions of the joint distribution 
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CDF of x and y is the total volume and are dependent on each other, another variable linking the 

two variables comes into picture. This is given by 
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This is similar to parallel axis theorem 

Given Constraints Assigned probability distribution 

( )∫ =
b

a
dxxf 1 Uniform 

( )∫ =
b

a
dxxf 1 expected value Exponential 

( )∫ =
b

a
dxxf 1 expected value, SD Normal 

( )∫ =
b

a
dxxf 1 expected value, SD, min, 

max 

Beta 

( )∫ =
b

a
dxxf 1 mean rate of occurrence 

between two independent events 

Poissons 
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Pearson’s system 

In binomial model, it is assumed that all the outcomes are equally likely which means that 

sampling is done with replacement from a finite population of N 
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Suppose sampling is done without replacement from a collection N and the lot N contains K 

number of samples which have a particular characteristic and (N-k) which do not have it. If a 

sample in selected from this collection, either it is from K or (N-k). Suppose r random samples 

are drawn without replacement from N items. 

The probability that x of the r samples are of the type k is given by 
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This is called hyper geometric distribution 

Binomial distribution yields Normal distribution. The limit of the hyper geometric distribution 

must produce a more flexible continuous probability distribution capable of better representing 

skewed variation. 

For symmetrical distributions all moments of odd order about the mean are zero, which means 

that any odd-ordered moment may be used as a measure of the degree of skew ness. 

 

Moments 
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fiM
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Consider a system of discrete parallel forces f1, f2, ………..fN actually on a rigid beam at the 

respective distances x1, x2,………xN 

From statistics  
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and its point of application x is given by 

M

fx
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ii∑
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we can consider that f1, f2, ………..fN represent the probability of all possible occurrences of the 

N outcomes x1, x2,………xN 

Since the distribution is exhaustive M=1 
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where E[x] is the expected value of x. In general, it denote the central tendency of the 

distribution 

The expected value of the distribution can be considered as first moment of the distribution and 

the concept can be generalized to Kth moment as follows 
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we know from the statistics that the moment of inertia (MI) 
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we can have similar concepts and  
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1. if x is a random variable a and b are constant 

[ ] [ ] bxaEbaxE +=+  

2. if x = x1+ x2 + x3…….+ xN then [ ] [ ] [ ] [ ] [ ]NxExExExExE ......321 +++=  
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3. If f1(x) and f2(x) are two rvs, 

( ) ( )[ ] [ ]ExfxfE =+ 21  

4. It is seen that the variance has dimensions of square of the RV  

[ ] [ ]ii xVx =σ  

5. If xi is a random variable, a and b are constants 

[ ] [ ] [ ]( )22
1 iii xaxVabaxV σγγ ==+  

 

For symmetrical distribution all moments of odd order about the mean must be zero. 

Consequently an odd ordered moment may be used as a measure of degree of skew ness . The 

third moment ( )[ ]3
21 xxE −  of a probability distribution can be considered to represent the skew 

ness. Since the units of that central moment are cube of the units of the variable. To provide an 

absolute measure of skew ness , Pearson designed an absolute term called coefficient of skew 

ness. 
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if β(1) is positive the corresponding distribution is negative. 
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Poisson also proposed a dimensionless coefficient of Kurtosis 
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This is a measure of peaked ness. A distribution is said to be flat if β(2)<3  
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The standard normal density function 
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Reduction of data to standard Normal variate form 

Suppose we have a normal variate X with distribution N(µ,σ)  
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The values of S correspondingly to probability of P<0.5 may be obtained as 

( ) ( )PPS −−== −− 111 φφ  

Standard normal function: the density function is given by 
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Because of its wide usage a special notation φ(s) is commonly used to designate the distribution 

function of the standard normal variate 
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The tables give the probability of only positive values of the variate .However the probability of 

negative values of the variate can be obtained as 
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2.16. Moments of functions of random variables  

2.16.1. Sum of variates x1,x2 etc 

Consider a function Y which is dependent on two random variables X1 and X2. thus (a1 

and a2 are constants)  
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Then it can be shown that  
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Figure 10 – Coefficient of correlation ρ 
 

In general, if  
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Suppose Z is another function of random variable X, i.e.  
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Product of independent variates x1,x2,x3 etc 
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First order approximation for general functions 

Let Y=g(X)  
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Then by expanding g(X) in a Taylor series about the mean value x  the following first-order 

approximation can be made  
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Good approximation of exact moments is obtained if g(X) is approximately linear for the entire 

range of values of X (even if the second term in the expression for the mean is neglected; this is 

generally done)  

Now if Y is a function of several variables X1, X2, X3 etc.  
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the corresponding first-order approximations are  
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where ci, and cj are the partial derivatives (dg/dxi) and (dg/dxj)  

evaluated at nxxxx ,.......,, 321 .  

 

The second term of the first equation is generally omitted. The second term of the second 

equation is not omitted but will vanish if x1,x2…..xn are uncorrelated or statistically independent.  

 


