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Chapter 4 

Response Spectrum Method 
 

4.1 Introduction 

In order to perform the seismic analysis and design of a structure to be built at a particular 

location, the actual time history record is required. However, it is not possible to have such 

records at each and every location. Further, the seismic analysis of structures cannot be 

carried out simply based on the peak value of the ground acceleration as the response of the 

structure depend upon the frequency content of ground motion and its own dynamic 

properties. To overcome the above difficulties, earthquake response spectrum is the most 

popular tool in the seismic analysis of structures. There are computational advantages in 

using the response spectrum method of seismic analysis for prediction of displacements and 

member forces in structural systems. The method involves the calculation of only the 

maximum values of the displacements and member forces in each mode of vibration using 

smooth design spectra that are the average of several earthquake motions. 

This chapter deals with response spectrum method and its application to various types 

of the structures. The codal provisions as per IS:1893 (Part 1)-2002 code for response 

spectrum analysis of multi-story building is also summarized.  

4.2 Response Spectra 

Response spectra are curves plotted between maximum response of SDOF system subjected 

to specified earthquake ground motion and its time period (or frequency). Response spectrum 

can be interpreted as the locus of maximum response of a SDOF system for given damping 

ratio. Response spectra thus helps in obtaining the peak structural responses under linear 

range, which can be used for obtaining lateral forces developed in structure due to earthquake 

thus facilitates in earthquake-resistant design of structures. 

Usually response of a SDOF system is determined by time domain or frequency 

domain analysis, and for a given time period of system, maximum response is picked. This 

process is continued for all range of possible time periods of SDOF system. Final plot with 

system time period on x-axis and response quantity on y-axis is the required response spectra 
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pertaining to specified damping ratio and input ground motion. Same process is carried out 

with different damping ratios to obtain overall response spectra. 

Consider a SDOF system subjected to earthquake acceleration, ( )gx t the equation of motion 

is given by   

( )  ( )  ( )  -  ( )gmx t cx t kx t mx t+ + =              (4.1) 

Substitute   0 =  /k mω  and  
0

  
2

c
m

ξ =
ω

  and   2
0 1dω = ω − ξ  

The equation (4.1) can be re-written as 

2
0 0( )  2 ( )    ( )  -  ( )gx t x t x t x t+ ξω + ω =              (4.2) 

Using Duhamel’s integral, the solution of SDOF system initially at rest is given by (Agrawal 

and Shrikhande, 2006) 
-  (   -  )0

0

( )  -  ( )  s ( - )  
tt

g d
d

ex t x in t d
ξω τ

= τ ω τ τ
ω∫ 

           (4.3) 

The maximum displacement of the SDOF system having parameters of ξ and ω0 and 

subjected to specified earthquake motion, ( )gx t  is expressed by 

-  (   -  )0

max
0 max

( )   ( )  s ( - )  
tt

g d
d

ex t x in t d
ξω τ

= τ ω τ τ
ω∫ 

               (4.4) 

The relative displacement spectrum is defined as, 

d 0 max
S ( , )= ( )x tξ ω

              (4.5)
 

where 0( , )dS ξ ω is the relative displacement spectra of the earthquake ground motion for the 

parameters of ξ and ω0.

 
Similarly, the relative velocity spectrum, Sv and absolute acceleration response spectrum, Sa 

are expressed as, 

v 0 max
S ( , )= ( )x tξ ω                (4.6) 

a 0 max max
S ( ,  )= ( ) ( ) ( )a gx t x t x tξ ω = +              (4.7) 

The pseudo velocity response spectrum, Spv for the system is defined as
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pv 0 0 d 0S ( , ) =  S ( , )ξ ω ω ξ ω
      

       (4.8) 

Similarly, the pseudo acceleration response, Spa is obtained by multiplying the Sd to ω0
2

 , thus 
2

pa 0 0 d 0S ( , ) =  S ( , )ξ ω ω ξ ω
                        (4.9) 

Consider a case where 2
0  0   . .  ( )  ( )  -  ( )gi e x t x t x tξ = + ω = 

 

      max| ( ) ( ) |a gS x t x t= + 

                    
 

2
0  max|  ( ) |x t= − ω

 
2
0 max| |x= ω   

2
0 dS= ω

 

paS=
         (4.10)  

The above equation implies that for an undamped system, Sa = Spa. 

The quantity Spv is used to calculate the maximum strain energy stored in the structure 

expressed as 

2 2 2 2
max max 0

1 1 1             
2 2 2d pvE k x m S m S= = ω =

        (4.11)
 

The quantity Spa is related to the maximum value of base shear as 

 2
max max 0 pa            SdV k x m S m= = ω =           (4.12) 

The relations between different response spectrum quantities is shown in the Table 4.1. 

As limiting case consider a rigid system i.e. 0ω →∞ or 0 0T → , the values of various 

response spectra are  

0

lim 0dS
ω →∞

→
         (4.13) 

0

lim 0vS
ω →∞

→
         (4.14) 

0 max
lim ( )a gS x t

ω →∞
→ 

        (4.15) 

The three spectra i.e. displacement, pseudo velocity and pseudo acceleration provide the 

same information on the structural response. However, each one of them provides a 

physically meaningful quantity (refer equations (4.11) and (4.12)) and therefore, 

all three spectra are useful in understanding the nature of an earthquake and its 

influence on the design. A combined p lo t  showing a ll t hree o f t he spectra l 



105 
 

quant it ies is  possible because of the relationship that exists between these three 

quantities. Taking the log of equations (4.8) and (4.9) 

0log log logpv dS S= + ω       (4.16) 

0log log logpv paS S= − ω       (4.17) 

From the Equations (4.16) and (4.17), it is clear that a plot on logarithmic scale with logSpv as 

ordinate and logω0 as abscissa, the two equations are straight lines with slopes +45º and -45º 

for constant values of logSd and logSpa, respectively. This implies that the combined spectra 

of displacement, pseudo velocity and pseudo acceleration can be plotted in a single graph 

(refer Figure 2.5 for combined Displacement, Velocity and Acceleration Spectrum taken 

from Datta, 2010).  

 

Table 4.1 Response Spectrum Relationship. 

Relative displacement, 
max

( )x t  = Sd 
0

vS
ω

  *
2
0

aS
ω

  
0

 pvS
=

ω
 2

0

 paS
=

ω
 

Relative velocity, 
max

( )x t  0 dSω  vS=  
0

aS
ω

  pvS  
0

paS
ω

  

Absolute acceleration, 
max

( )ax t  2 *
0  dSω  0 vSω  aS=  0 pvSω  *

paS  

(* If 0ξ =  these relations are exact and the sign   is valid up to  0 <  < 0.2ξ  ) 

 

4.2.1 Factor Influencing Response Spectra  

The response spectral values depends upon the following parameters, 

I) Energy release mechanism 

II) Epicentral distance 

III) Focal depth 

IV) Soil condition 

V) Richter magnitude 

VI) Damping in the system 

VII) Time period of the system 
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4.2.2 Errors in Evaluation of Response Spectrum 

The following errors are introduced in evaluation of response spectra (Nigam and Jennings, 
1969), 

1. Straight line Approximation: - In the digital computation of spectra, the actual 
earthquake record is replaced by linear segments between the points of digitization. 
This is a minor approximation provided that the length of the time intervals is much 
shorter than the periods of interest. 

2.  Truncation Error: - In general, a truncation error exists in numerical methods for 
integrating differential equations. For example, in third-order Runge-Kutta methods 
the error is proportional to (Δti)4.  

3. Error Due to Rounding the Time Record: - For earthquake records digitized at 
irregular time intervals, the integration technique proposed in this report requires 
rounding of the time record and the attendant error depends on the way the rounding 
is done. For round-off to 0.005 sec, the average error in spectrum values is expected 
to be less than 2 percent. 

4. Error Due to Discretization: - In any numerical method of computing the spectra, the 
response is obtained at a set of discrete points. Since spectral values represent 
maximum values of response parameters which may not occur at these discrete points, 
discretization introduces an error which gives spectrum values lower than the true 
values. The error will be a maximum if the maximum response occurs exactly 
midway between two discrete points as shown in Figure 4.1. An estimate for the 
upper bound of this error is shown in Table 4.2 by noting that at the time of maximum 
displacement or velocity, the response of the oscillator is nearly sinusoidal at a 
frequency equal to its natural frequency. Under this assumption the error can be 
related to the maximum interval of integration, Δti and the period of the oscillator as 
shown in Figure 4.1. 

 

  

      

 

  

 

 

   

    Figure 4.1 Error in response spectra due discretization. 

Actual Maximum Value 

t∆ Time, t 

T 

Response  
quantity 

           

2
t∆  

Recorded Maximum Value 
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Table 4.2 Variation of Percentage error in response quantity with time step chosen. 

 
 

 

 

  

it∆  Maximum Error (%) 

≤ T/10 ≤ 4.9 

≤ T/20 ≤ 1.2 

≤ T/40 ≤ 0.3 
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4.2.3 Response Spectra of El-Centro-1940 Earthquake Ground Motion 

The response spectra of the El-Centro, 1940 earthquake ground motion are computed using 
the exact method described in the earlier Chapter (refer Appendix-I, for digitized values of 
the earthquake). The spectra are plotted for the three damping ratios i.e. ξ=0.02, 0.05 and 0.1. 
The displacement, velocity and acceleration spectra are shown in the Figures 4.2, 4.3 and 4.4, 
respectively. 

Further, comparison of the real and pseudo spectra for velocity and acceleration response is 
shown in the Figure 4.5. As expected, there is no difference between real and pseudo absolute 
acceleration response spectra. However, the velocity response spectra may have some 
difference. 

The digitized values of the response spectra Sd, Sv and Sa of the El-Centro, 1940 earthquake is 
given in the Appendix – II at an interval of 0.01 sec time period for damping ratio of 2% and 
5%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 Displacement response spectra of El-Centro, 1940 earthquake 

ground motion. 
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Figure 4.3 Velocity response spectra of El-Centro, 1940 earthquake 

ground motion. 

 

Figure 4.4 Acceleration response spectra of El-Centro, 1940 earthquake 

ground motion. 
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Figure 4.5 Comparison of real and pseudo velocity and acceleration response 

spectra of El-Centro, 1940 earthquake ground motion (damping ratio=0.02). 



111 
 

4.3 Numerical Examples  

Example 4.1 

Consider a SDOF system with mass, m = 2 × 103 kg, stiffness, k = 60 kN/m and damping, c = 

0.44 kN.sec/m. Using the response spectra of El-Centro, 1940 earthquake, compute (a) 

Maximum relative displacement, (b) Maximum base shear and (c) Maximum strain energy. 

Solution: The natural frequency, time period and damping ratio of the SDOF system are 
3

0 3

  60  10       5.48 / sec
 2  10

×
ω = = =

×
k rad
m

 

0
0

2T  =  = 1.15 sec
ω
π   

3

3
0

c 0.44 10ξ =  =  = 0.02
2mω 2 2 10 5.48

×
× × ×  

From the response spectrum curve of El-Centro, 1940 earthquake ground motion for the time 

period of 1.15 sec and damping ratio of 0.02 (refer Figures 4.2 and 4.4 or Appendix-II) 

 Sd = 0.11147m           and  Sa = 3.321 m/sec2 

(a)  The maximum displacement  

 max d = 111.47=x S  mm
 

Alternatively, a
max 2 2

0

3.321   =  = 0.11055 m = 110.55 mm
ω 5.48



Sx   

(b) The maximum base shear 

 
3

max aV  = mS  = 2 10   3.321 = 6.64 kN× ×  

Alternatively, 3
max maxV =  = 60 10  0.11147 = 6.688 kN× ×k x  

(c) The maximum strain energy  

 
2

max max
1E = 
2

k x  ( )231=   60 10   0.11147  = 372.76 N.m
2

× × ×  
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Example 4.2 

Plot the pseudo acceleration response spectra for the earthquake acceleration expressed as 

( ) ( ) ( )0 sin 0.5  sin 10gx t x t g t= ω =   

Solution: Using time domain analysis (Duhamel’s integral)  

( ) ( ) ( )
0

 
t

gx t h t x d= − − τ τ τ∫   

where,  

( )
( )

( )
0

sin
−ξω −τ

− τ = ω
ω

t

d
d

eh t t  

( )0( ) singx t x t= ω   

On integrating, 

( )
( ) ( )

( )0
2 2 220

1 sin
1 2

= − ω − θ
ω −β + ξβ

xx t t  

where 
0

 
ω
ω

β =  and 1
2

2tan  
1 -

−  ξβ
θ =  β 

 

The displacement spectra is given by 

max
( )dS x t=

 

     
( ) ( )

0
2 220

1

1 2

x
=

ω −β + ξβ



 

Pseudo acceleration spectra is given by 
2
0pa dS S= ω ×  

      ( ) ( )
0

2 221 2

x
=

−β + ξβ



 

The required response spectra is plotted in Figure 4.6 for damping ratios of 2%, 5% and 10%. 
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Figure 4.6 Pseudo acceleration response spectra for different damping ratios of Example 4.2. 
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Example 4.3 

Plot the pseudo acceleration response spectra of the ground motion given by 

( )0( ) 2gx t c t= δ −  
where ‘δ’ is Dirac delta function. Take duration of acceleration as 30 sec. 

Solution: Using Duhamel’s integral the displacement of the system is (i.e. equation 4.3) 

( )
( )

( ) ( )
0

00
 sin 2

−ξω −τ

= − ω − τ δ − τ
ω∫

tt

d
d

ex t t c t d
 

        

( )

( )
0

0

 2

sin
−ξω −τ

τ=

 
= − ω − τ ω 

t

d
d

ec t
 

        
( )0 ( 2)0  sin 2t

d
d

c e t−ξω −= − ω −
ω                     

For the maximum displacement 

( )dx t
dt

= 0, 

( ) ( )0 0( 2) ( 2)0
0

 0  sin 2 cos 2−ξω − −ξω − = − −ξω ω − + ω ω − ω
t t

d d d
d

c e t e t  

( ) ( )0 ( 2)
0 00  sin 2 cos 2t

d d dc e t t−ξω −= − −ξω ω − + ω ω −    

( ) ( )0 sin 2 cos 2 0−ξω − + ω ω − =d dt t  

( )
2

0

1tan 2 − ξω
ω − = =

ξω ξ
d

d t  

Thus, the time tm at which the maximum displacement occurs is   

( )
2

1 12 tand mt
−

 − ξ
ω − =   ξ   

and implying from the Figure 4.7 that,  

( )( ) 2sin 2 1d mtω − = − ξ  
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      Figure 4.7
 

The maximum displacement will be given by  

    

0 ( 2)0
max sin ( 2)mt

d m
d

cx e t−ξω −= − ω −
ω

 

2
1 20

0
11exp tan 1

d d

c −
  − ξ

= − −ξω  × − ξ  ω ω ξ       

Substituting for 2
0  1  dω = ω − ξ   and simplifying        

2
10

max 2
0

1exp tan
1

cx −
  − ξξ

= − −   ω ξ− ξ   
                         

The displacement spectra is given by  

max

2
10

2
0

1exp tan
1

dS x

c −

=

  − ξξ
= −   ω ξ− ξ   

 

The pseudo acceleration spectra is expressed by  
2

pa 0 dS  =  Sω  

2
1

0 0 2

1exp tan
1

paS c −
  − ξξ

= ω −   ξ− ξ     

  

( )2d mtω −

 

 

 

1 

1 

1  
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4.4 Response Spectra Method for MDOF System 

4.4.1 Response Analysis of MDOF System 

Multi degree of freedom (MDOF) systems are usually analyzed using Modal Analysis. A 

typical MDOF system with ‘n’ degree of freedom is shown in Figure (4.8). This system when 

subjected to ground motion undergoes deformations in number of possible ways. These 

deformed shapes are known as modes of vibration or mode shapes. Each shape is vibrating 

with a particular natural frequency. Total unique modes for each MDOF system are equal to 

the possible degree of freedom of system. The equations of motion for MDOF system is 

given by 

[ ]{ ( )} [ ]{ ( )}  [ ]{ ( )}  -  [ ]{ } (t) gm x t c x t k x t m r x+ + =                      (4.18) 

where, [m] = Mass matrix (n × n); [k]  = Stiffness matix (n × n); [c] = Damping matrix (n × 

n); {r} = Influence coefficient vector (n×1); { ( )}x t = relative displacement vector; { ( )}x t = 

relative velocity vector, { ( )}x t = relative acceleration vector, and ( )gx t = earthquake ground 

acceleration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 MDOF system with ‘n’ degrees-of-freedom. 

 

(t)gx
 

Xn 

. 

X1 

. 

X2 
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The undamped eigen values and eigen vectors of the MDOF system are found form the 

characteristic equation  

[ ] [ ]}{ 2   0          1,2,3, ,   i ik m i n− ω φ = = …

                  

(4.19)      

[ ] [ ]}{ 2det 0ik m− ω =

                                                                

(4.20)   

where,    

2
iω = eigen values of the ith mode 

iφ = eigen vector or mode shape of the ith mode 

ωi = natural frequency in the ith mode. 

Let the displacement response of the MDOF system is expressed as 

{ ( )}  [ ] { ( )}    x t y t= φ            (4.21) 

where {y(t)} represents the modal displacement vector, and [ ]φ  is the mode shape matrix 

given by 

[ ] 1 2= [ ,  ,.........  ]    nφ φ φ φ           (4.22) 

Substituting { } [ ]{ }x y= φ  in equation (4.18) and pre-multiply by  T[ ]φ  

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ]{ }    ( ) ( ) ( )   ( )φ φ + φ φ + φ φ = − φ  

T T T T
gm y t c y t k y t m r x t    (4.23) 

The above equation reduces to 

{ } { } { } [ ] [ ]{ } [ ] ( ) [ ] ( ) [ ] ( )  ( )T
m d d gM y t C y t K y t m r x t+ + = − φ       (4.24) 

where, 

[ ] [ ][ ] [ ] =T
mm Mφ φ  = generalized mass matrix 

[ ] [ ][ ] [ ] T
dc Cφ φ =   = generalized damping matrix    

[ ] [ ][ ] [ ] T
dk Kφ φ =   = generalized stiffness matrix 
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By virtue of the properties of the [φ], the matrices [Mm] and [Kd] are diagonal matrices. 

However, for the classically damped system (i.e. if the [Cd] is also a diagonal matrix), the 

equation (4.24) reduces to the following equation   

2( )  2 ( )  ( )  ( ) (   1,2,3, , )i i i i i i i gy t y t y t x t i n+ ξ ω + ω = −Γ = …  

 (4.25) 

where,  

( )iy t  = modal displacement response in the ith mode, 

iξ = modal damping ration in the ith mode, and  

iΓ = modal participation factor for ith mode expressed by 

{ } [ ]{ }
{ } [ ]{ }

T
i

i T
i i

m r
m

Γ =
φ
φ φ            

(4.26) 

Equation (4.25) is of the form of equation (4.1), representing vibration of SDOF system, the 

maximum modal displacement response is found from the response spectrum i.e. 

,max max| ( ) |   ( , )i i i d i iy y t S= = Γ ξ ω
        (4.27) 

The maximum displacement response of the structure in the ith mode is  

,max ,max          (   1,2, . , n)i i ix y i= φ = ……           (4.28) 

The maximum acceleration response of the structure in the ith mode is  

{ } { }  ,max
 ( , ) (   1, 2, . , n)= φ Γ ξ ω = ……a i i pa i ii
x S i      (4.29) 

The required response quantity of interest, ri i.e. (displacement, shear force, bending moment 

etc.) of the structure can be obtained in each mode of vibration using the maximum response 

obtained in equations (4.28) and (4.29). However, the final maximum response, rmax shall be 

obtained by combining the response in each mode of vibration using the modal combinations 

rules. Some of the modal combinations rules commonly used are described here. 
 

  



119 
 

max
1

n

i
i

r r
=

= ∑

2
max

1
   

n

i
i

r r
=

= ∑

max
1 1

    
n n

i i j j
i j

r r rα
= =

= ∑ ∑

( ) ( )
( ) ( ) ( )

1 32 2

22 2 2 2 2

8     

1-  + 4  1   4   
i j i j

ij

i j i j

ξ ξ ξ + βξ β
α =

β ξ ξ β + β + ξ + ξ β

                                        ( )i
j i

j

ω
β = ω > ω

ω

4.4.2 Modal Combination Rules
  

The commonly used methods for obtaining the peak response quantity of interest for a 
MDOF system are as follows:  

• Absolute Sum (ABSSUM) Method, 

• Square root of sum of squares (SRSS) method, and 

• Complete quadratic combination (CQC) method 

In ABSSUM method, the peak responses of all the modes are added algebraically, 

assuming that all modal peaks occur at same time. The maximum response is given by 

             (4.30) 

 

The ABSSUM method provides a much conservative estimate of resulting response 

quantity and thus provides an upper bound to peak value of total response. (Chopra, 2007)  

In the SRSS method, the maximum response is obtained by square root of sum of square 

of response in each mode of vibration and is expressed by   

                 (4.31) 

 

The SRSS method of combining maximum modal responses is fundamentally sound where 

the modal frequencies are well separated. However, this method yield poor results where 

frequencies of major contributing modes are very close together.  

The alternative procedure is the Complete Quadratic Combination (CQC) method. 

The maximum response from all the modes is calculated as 

              (4.32) 

 

where ri and rj are maximum responses in the ith and jth modes, respectively and αij is 

correlation coefficient given by 

            (4.33) 

 

where iξ  and jξ  are damping ratio in ith and jth modes of vibration, respectively and   

             (4.34) 
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( )
( ) ( )

32 2

2 22 2

8 1   

1-   4  1
ij

ξ + β β
α =

β + ξ β + β

 

The range of coefficient, ijα  is 0 < ijα  < 1 and 1.ii jjα = α =

  
For the system having the same damping ratio in two modes i.e. ξi= ξj= ξ, then  

             (4.35)  
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4.4.3 Numerical Examples  

Example 4.4 

A two-story building is modeled as 2-DOF system and rigid floors as shown in the Figure 
4.9. Determine the top floor maximum displacement and base shear due to El-Centro, 1940 
earthquake ground motion using the response spectrum method. Take the inter-story 
stiffness, k =197.392 × 103 N/m and the floor mass, m = 2500 kg and damping ratio as 2%.  
 

 

 

 

 

 

 

Figure 4.9 

Solution: 

Mass of each floor, m = 2500 kg and stiffness, k = 197.392 kN/m 

thus, 

Stiffness matrix = [k] = 
3k k

k k
− 

 − 
 

and mass matrix = [m] = 
5000 0

0 2500
 
 
 

 

Using equation (4.19), eigen values and eigen vectors can be obtained as 

1ω = 6.283 rad/sec and 2ω =12.566 rad/sec 

1[ ]φ =
0.5

, and 
1

 
 
   

2[ ]φ =
1

1
− 

 
   

 

k 

2k 

x2 

x1 

m 

2m 
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Modal participation factors are given by 

{ } { }{ }
{ } { }{ }

T
i

i T
i i

m r
m

φ
Γ =

φ φ
 

{ } { }{ }
{ } { }{ }

[ ]

[ ]
1

1
1 1

5000 0 1
0.5 1

0 2500 1
=1.333

5000 0 0.5
0.5 1

0 2500 1

T

T

m r
m

φ

φ φ

   
  

   Γ = =
   
   
   

  
 

Similarly, 

{ } { }{ }
{ } { }{ }

[ ]

[ ]
2

2
2 2

5000 0 1
1 1

0 2500 1
0.333

5000 0 1
1 1

0 2500 1

T

T

m r
m

φ

φ φ

   
−   

   Γ = = = −
−   

−    
   

       
 

1st Mode Response 

1
1

2 2T 1 sec
6.283

π π
= = =

ω
 

0.02ξ =  

From the response spectra, (refer Figures 4.2 and 4.4 or Appendix-II) 
2

1 6.17=aS m s and 1 0.153=dS m  
 

Top floor displacement 1 21 1 1.333 1 0.153= Γ ×φ × = × ×dS  

     0.204= m  

Base shear     3
11 1 12 2 197.392 10 0.5 1.33 0.153= ×φ ×Γ × = × × × × ×dk S  

     40.16 = kN  

2nd Mode Response 

2
2

2 2T 0.5 sec
12.566

π π
= = =

ω
 

0.02ξ =  

From response spectra, (refer Figures 4.2 and 4.4 or Appendix-II) 
2

2 10.582aS m s= and 2 0.06445dS m=  
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Top floor displacement 2 22 2 0.333 1 0.06445= Γ ×φ × = − × ×dS  

     0.0214= − m  

Base shear     3
12 2 22 2 197.392 10 1 0.333 0.06445= ×φ ×Γ × = × × × × − ×dk S  

     8.652 = − kN  

 

Mode Top floor displacement (m) Base shear (kN) 

1 0.204 40.16 

2 -0.0214 -8.652 

SRSS 0.2052 41.08 

Exact Response        
(from Example 3.6) 0.202 40.72 
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Example 4.5 

An industrial structure is modeled as 2-DOF system as shown in the Figure 4.10. Determine 

the lateral displacement, base shear and base moment of the structure due to El-Centro, 1940 

earthquake ground motion using the response spectrum method. Take EI =80 × 103 Nm2, L= 

2 m, m1= 100 kg; m2= 200 kg. 

 

 

 

 

 

Figure 4.10 

Solution: Given, Mass, m1= 100 kg; m2= 200 kg; L= 2 m; EI= 80 × 103 Nm2 

Stiffness matrix (found by the inverse of flexibility matrix) and mass matrix of above MDOF 

system is given by, 

3

8 36[ ]
3 27

EIk
L

− 
=  − 

; 
300 0

[ ]
0 200

m  
=  

 
 

Finding eigen values and eigen vector using equation (4.19) 

[ ] [ ]{ }{ }2 0k m− ω φ =  

[ ] [ ]2det 0k m− ω =  

1ω = 5.4925 rad/sec; 2ω = 16.856 rad/sec 

1

2.7
{ }

6.25
 

=  
 

φ ; 2

5.103
{ }

3.307
 

=  − 
φ  

Modal participation factor, 

{ } { }{ }
{ } { }{ }

T
i

i T
i i

m r
m

φ
Γ =

φ φ
 

x1 

EI, L 

EI, L 

x2 

m1=100kg  m2=200kg 
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[ ]

[ ]
1

300 0 1
2.7 6.25

0 200 0
0.081

300 0 2.7
2.7 6.25

0 200 6.25

   
   
   Γ = =

   
   
   

;  

[ ]

[ ]
2

300 0 1
5.103 3.307

0 200 0
0.153

300 0 5.103
5.103 3.307

0 200 3.307

   
−    

   Γ = =
   

−    −   

 

1st Mode Response 

1
1

2T π
=

ω
=1.1439 sec; 1ξ = 2% 

From response spectra, (refer Figures 4.2 and 4.4 or Appendix-II) 

1aS = 3.203 m/s2; 
1dS = 0.1053 m 

Lateral displacement 

1,1 1 11 1dx S= Γ × × =φ 0.081×2.7×0.1053 

      = 0.023 m 

Force vector 

{ } 1 1 11

300 0 2.7
[ ]{ } 0.081 3.203

0 200 6.25af m S   
= × Γ × = × ×  

  
φ  

         

210.15
324.3

 
=  

 
 

Base shear= 210.15 N 

Base moment = 2 × (210.15+324.3) = 1068.9 N.m 
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2nd Mode Response 

2
2

2T π
=

ω
=0.375 sec; 2ξ = 2% 

From response spectra, (refer Figures 4.2 and 4.4 or Appendix-II) 

2aS = 9.7 m/s2 and
2dS = 0.034 m 

Lateral displacement 

1,2 2 12 2= Γ × × =dx Sφ 0.153×5.103×0.034 

      = 0.0269 m 

Force vector 

{ } 2 2 22

300 0 5.103
[ ]{ } 0.153 9.7

0 200 3.307af m S   
= × Γ × = × ×   −  

φ  

        

2272
981.6

 
=  − 

 

Base shear = 2272 N 

Base moment = 2 × (2272 - 981.6) = 2580.8 N.m 

The peak responses using the modal combination rules SRSS and CQC method are 

summarized below 

 

 Lateral Displacement (mm) Base Shear (N) Base Moment (Nm) 

Mode 1 23 210.15 1068.9 

Mode 2 26.9 2272 2580.8 

SRSS 35.4 2281.7 2793.4 

CQC 35.5 2290 2798 
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Example 4.6 

A 2-degree-of-freedom system is subjected to horizontal earthquake excitation (Figure 4.11) 

with its response spectra as given below. Take the flexural rigidity, EI = 106 Nm2 and length, 

L = 2m. Each lumped mass is 100 kg. Determine the maximum top mass floor displacement 

and base shear. Take 2% damping in each mode of vibration.     

 

 

 

 

 

 

Figure 4.11 

Solution: Given, EI = 106 N.m2, m = 100 kg and L = 2 m. 

The flexibility matrix of the structure is  

3 2 5
[ ]

5 166
Lf
EI

 
=  

 
 

Thus, the stiffness matrix, 

[ ] 1
3

16 56[ ]
5 27

EIk f
L

− − 
= =  − 

 

Eigen values and eigen vector using equation (4.19) are 

[ ] [ ]{ }{ }2 0k m− ω φ =  

[ ] [ ]2det 0k m− ω =  

2
3

16 56  0
5 2 07

m oEI
mL

−   
− ω =   −   

 

Let, 
3

27
6
mL
EI

λ = ω  

Thus, 

Sa/g 

Time Period, T (sec) 

/ (0.1 )= + T
aS g T e  

EI, L 

EI, L 

x1 

x2 

100 kg 

100 kg 
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16 5
  0

5 2
− λ −

=
− − λ

 

( )( )16 2 25 0− λ − λ − =  

2 18 7 0λ − λ + =  

9 74 9 8.6023λ = ± = ±   

 1 0.39767λ =  and  2 17.6023λ =  

On substituting λ, the natural frequency of the system will be 

1 120.64  sec   ;        0.3044secrad Tω = =  

2 2137.33  sec   ;        0.04575secrad Tω = =  

On substituting, ω2 in characteristic equation (4.19), eigen vectors are obtained as
 

1

1
{ }

3.1204
 

φ =  
 

 and  2

1
{ }

0.32
 

φ =  − 
 

Modal Participation factors  

{ } { }{ }
{ } { }{ }

T
i

i T
i i

m r
m

φ
Γ =

φ φ
  

[ ]

[ ]
1

100 0 1
1 3.1204

0 100 1 412.04 0.383
100 0 1 1073.68

1 3.1204
0 100 3.1204

   
  

   Γ = = =
   

  
   

 

[ ]

[ ]
2

100 0 1
1 0.32

0 100 1 68 .616
100 0 1 110.241 0.32

0 100 0.32

  
−   

  Γ = = =
  

−    −  

 

1st Mode Response 

1 0.3044secT =  

From the response spectra curve, 
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( )
1

0.3044

0.1 0.3044
0.298aS

g e
+

= =
   

and  1

1

3
2 2
1

0.298 9.81 6.86 10
20.64

a
d

S
S m−×

= = = ×
ω

 

Top mass displacement = 3
1 21 1 3.1204 .383 6.86 10−Γ ×φ × = × × ×dS  

      38.2 10 m−= ×  

1 1 1 1

100 0 1
[ ]{ }  0.383  0.298  9.81

0 100 3.1204s af m S   
= φ × Γ × = × ×  

  
 

         
100

 0.383  0.298  9.81
312.04

 
= × × 

 
 

Base Shear ( )100 312.04  0.383  0.298  9.81 461.34N= + × × =  

2nd Mode Response 

2 0.04575secT =  

From response spectra, 0.138aS
g

=
 
and 1

3.072 10dS m−= ×  

Top mass displacement 3 3
2 22 2 0.32 0.616 0.072 10 0.014 10dS m− −= Γ × φ × = − × × × = − ×  

2 2 2

100 0 1
[ ]{ }  0.616  0.138  9.81

0 100 0.32s af m S   
= φ × Γ × = × ×   −  

 

Base Shear 100 .68 0.616 0.138 9.81 56.7N= × × × × =  

Final Response by SRSS Method 

Top mass displacement 38.2 10 m−= ×  

Base Shear = 464.8 N 
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Example 4.7 

A three-story building is modeled as 3-DOF system and rigid floors as shown in Figure 4.12. 
Determine the top floor maximum displacement and base shear due to El-Centro, 1940 
earthquake ground motion using the response spectrum method. Take the inter-story lateral 
stiffness of floors i.e. k1 = k2= k3=16357.5 x 103 N/m and the floor mass m1 = m2= 10000 kg 
and  m3=5000 kg.  
    

 

  

  

   

 
                                                                                                                                                          

 

 

 

 

      Figure 4.12 

 

Solution: The mass matrix of the structure  

[ ]
1

2

3

0 0 10000 0 0
0 0 0 10000 0
0 0 0 0 5000

m
m m

m

   
   = =   
      

 

and the stiffness matrix,  

[ ]
1 2 2

2 2 3 3

3 3

0 32715 16357.5 0
16357.5 32715 16357.5

0 0 16357.5 16357.5

k k k
k k k k k

k k

+ − −   
   = − + − = − −   
   − −   

 

Finding eigen values and eigen vectors using the equation (4.19) 

[ ] [ ]{ }{ }2 0k m− ω φ =  

[ ] [ ]2det 0k m− ω =  

k3 

k2 

k1 

x3 

x2 

x1 

m3 

m2 

m1 
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3 2

2 1 0 2 0 0
det 16357.5 10 2 2 2 0 5000 0 2 0 0

0 1 1 0 0 1

−   
   × − − λ − ω × =   
   − − λ   

 

2

3

5000
16357.5 10

ω ×
λ =

×
 

2 2 1 0
det 1 2 2 0 0

0 1 1

− λ −
− − λ =

− − λ
 

( ) ( )( ) [ ]2 2 2 2 1 1 1 0− λ − λ − λ − + − + λ =    

( ) 22 2 2 2 2 2 1 1 0 − λ − λ − λ + λ − − + λ =   

22 2 2 4 1 1 0 − λ λ − λ + + λ − =   

2 3 24 8 2 4 2 2 1 0λ − λ + − λ + λ − λ + λ − =  

3 24 12 9 1 0− λ + λ − λ + =  

1 2 30.134,      1 ,      1.866λ = λ = λ =   

Implying that  

1 20.937 secradω =  2 57.2 secradω =  3 78.13 secradω =  

On substituting ω2 in the characteristic equation,
 

For Mode 1 

11

21

31

2 2 0.134 1 0
1 2 2 0.134 1 0

0 1 1 0.134

− × − φ   
   − − × − φ =   
   − − φ   

 

Assuming Φ11 = 1, 

212 2 0.134− × = φ  

21 1.732φ =  and 31 2.0φ =  

1

1
{ } 1.732

2.0

 
 φ =  
  
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For Mode 2 

12

22

32

2 2 1 0
1 2 2 1 0

0 1 1 1

− − φ   
   − − − φ =   
   − − φ   

 

2

1
{ } 0

1

 
 φ =  
  

 

For Mode 3 

13

23

33

2 2 1.866 1 0
1 2 2 1.866 1 0

0 1 1 1.866

− × − φ   
   − − × − φ =   
   − − φ   

 

{ }3

1
1.733
2.0

 
 φ = − 
 
   

The influence coefficient vector is given by

 

1
{ } 1

1
r

 
 =  
  

 

Modal Participation Factors  

{ } { }{ }
{ } { }{ }

[ ]

[ ]

1
1

1

2 0 0 1
1 1.733 2 5000 0 2 0 1

0 0 1 1
2 0 0 1

1 1.733 2 5000 0 2 0 1.733
0 0 1 2

T

T

m r
m

   
   ×    
   φ    Γ = =

   φ φ
   ×    
      

 

1 0.622Γ =  

Similarly, 

{ } { }{ }
{ } { }{ }

2
2

2 2

0.333
T

T

m r
m

φ
Γ = =

φ φ
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{ } { }{ }
{ } { }{ }

2
3

3

0.045
T

T

m r
m

φ
Γ = =

φ φ
  

1st Mode Response 

1
1

2 2T 0.30 sec
20.937

π π
= = =

ω
 

1 0.02ξ =  

From the response spectra (refer Figures 4.2 and 4.4 or Appendix-II), 

1 0.01902dS m=  

Top floor displacement 1 31 1 2 0.622 0.01902dS= Γ ×φ × = × ×  

     0.0236m=  

Base shear     6
11 1 1 16.357 10 1 0.622 0.01902dk S= ×φ ×Γ × = × × × ×  

     193 kN=  

2nd Mode Response 

2
2T 0.11sec

57.2
π

= =  

2 0.02ξ =  

from response spectra (refer Figures 4.2 and 4.4 or Appendix-II), 

 2 0.00231dS m=  

Top floor displacement  32 2 2 1 0.333 0.00231= φ ×Γ × = − × ×dS  

      47.69 10−= − × m  

Base shear     3
12 2 2 16357 10 1 0.333 0.00231  12.58= ×φ ×Γ × = × × × × =dk S kN  

3rd Mode Response 

3
2T 0.08sec

78.13
π

= =   

3 0.02ξ =  
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from response spectra (refer Figures 4.2 and 4.4 or Appendix-II), 

4
3 9.77 10−= ×dS m  

Top floor displacement 33 3 3dS= φ ×Γ ×   

     42 0.045 9.77 10−= × × × m   

     58.793 10−= × m  

Base shear    13 3 3dk S= ×φ ×Γ ×  

     3 416357.5 10 1 0.045 9.77 10−= × × × × ×  

     0.719 = kN  

Peak responses using the SRSS modal combination rule are given below 

Mode Top floor displacement (mm) Base shear (kN) 

1 23.6 193 

2 -0.769 12.58 

3 0.0879 0.719 

SRSS 23.6 193.41 

Exact Response (from time 
history analysis) 23.4 196.4 
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4.5 Design of Earthquake Resistant Structure Based on Codal Provisions 

General principles and design philosophy for design of earthquake-resistant structure are as 

follows: 

a) The characteristics of seismic ground vibrations at any location depends upon the 

magnitude of earth quake, its depth of focus, distance from epicenter, characteristic of 

the path through which the waves travel, and the soil strata on which the structure 

stands. Ground motions are predominant in horizontal direction.  

b) Earthquake generated vertical forces, if significant, as in large spans where 

differential settlement is not allowed, must be considered. 

c) The response of a structure to the ground motions is a function of the nature of 

foundation soil, materials size and mode of construction of structures, and the 

duration and characteristic of ground motion. 

d) The design approach is to ensure that structures possess at least a minimum strength 

to withstand minor earthquake (DBE), which occur frequently, without damage; resist 

moderate earthquake without significant damage though some nonstructural damage 

may occur, and aims that structures withstand major earthquake (MCE) without 

collapse. Actual forces that appeared on structures are much greater then the design 

forces specified here, but ductility, arising due to inelastic material behavior and 

detailing, and over strength, arising from the additional reserve strength in structures 

over and above the design strength are relied upon to account for this difference in 

actual and design lateral forces. 

e) Reinforced and pre-stressed members shall be suitably designed to ensure that 

premature failure due to shear or bond does not occur, as per IS:456 and IS:1343. 

f) In steel structures, members and their connections should be so proportioned that high 

ductility is obtained. 

g) The soil structure interaction refers to the effect of the supporting foundation medium 

on the motion of structure. The structure interaction may not be considered in the 

seismic analysis for structures supporting on the rocks. 

h) The design lateral forces shall be considered in two orthogonal horizontal directions 

of the structures. For structures, which have lateral force resisting elements in two 

orthogonal directions only, design lateral force must be considered in one direction at 

a time. Structures having lateral resisting elements in two directions other than 
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orthogonal shall be analyzed according to clause 2.3.2 IS 1893 (part 1): 2002. Where 

both horizontal and vertical forces are taken into account, load combinations must be 

according to clause 2.3.3 IS 1893 (part 1): 2002. 

i) When a change in occupancy results in a structure being re-classified to a higher 

importance factor (I), the structure shall be confirm to the seismic requirements of the 

new structure with high importance factor. 

4.6. Design Criteria 

For the purpose of determining the design seismic forces, the country (India) is classified into 

four seismic zones (II, III, IV, and V). Previously, there were five zones, of which Zone I and 

II are merged into Zone II in fifth revision of code. The design horizontal seismic forces 

coefficient Ah for a structure shall be determined by following expression 

        
Rg

ZIS
A a

h 2
=

           (4.36)
 

Z = zone factor for the maximum considerable earthquake (MCE) and service life of the 

structure in a zone. Factor 2 in denominator is to reduce the MCE to design basis earthquake 

(DBE).  

I = importance factor , depending on the functional purpose of the building, characterized by 

hazardous consequences of its failure , post earthquake  functional needs, historical value , or 

economic importance. 

R = response reduction factor, depending upon the perceived seismic damage performance of 

the structure, characterized by ductile or brittle deformations however the ratio I/R shall not 

be greater than 1. 

Sa /g = average response acceleration coefficient (Figure 4.13). 

For rocky, or hard soil sites; 

g
Sa      =            

1 15 (0.00 0.10)
2.50 (0.10 0.40)

1.00 / (0.4 4.00)

T T
T

T T

+ < <
 < <
 < <

       (4.37)

 

For medium soil sites 
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g
Sa      =        









<<
<<
<<+

)00.455.0(
)55.010.0(
)10.000.0(

/36.1
50.2
151

T
T
T

T

T

        (4.38)

 

For soft soil sites 

g
Sa        =        

1 15T (0.00 T 0.10)
2.50 (0.10 T 0.67)

1.67 / T (0.67 T 4.00)

+ < <
 < <
 < <        (4.39) 

 

Figure 4.13: Design response spectra curve as per IS:1893-2002 code. 
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4.7 Design Lateral Force 

The total design lateral force or design seismic base shear (Vb) along any principal direction 

of the building shall be determined by the following expression  

            Vb=AhW           (4.40) 

where Ah is the horizontal seismic forces coefficient (refer equation (4.36) and W is the 

seismic weight of building. 

4.7.1 Seismic Weight 

The seismic weight of each floor is its full dead load plus appropriate amount of imposed 

load as specified. While computing the seismic weight of each floor, the weight of columns 

and walls in any storey shall be equally distributed to the floors above and below the storey. 

The seismic weight of the whole building is the sum of the seismic weights of all the floors. 

Any weight supported in between the storey shall be distributed to the floors above                                

and below in inverse proportion to its distance from the floors. 

4.7.2 Fundamental Natural Period 

The fundamental natural time period as mentioned in clause 7.6 IS 1893 (part 1): 2002 for 

moment resisting RC frame building without brick infill walls and moment resisting steel 

frame building without brick infill walls, respectively is given by 

           Ta = 0.075h0.75           (4.41) 
  Ta = 0.085h0.75            (4.42) 

where, h = height of the building in ‘m’ excluding basement storey, if it is connected with   

the ground floor decks or fitted in between the building column. 

If there is brick filling, then the fundamental natural period of vibration, may be taken as  

          Ta =
d

h09.0

              (4.43)
 

where, h = height of the building in m, as defined above, and d = base dimension of the 

building at the plinth level, in meter, along the considered direction of the lateral force. 
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4.7.3 Distribution of Design Force 

The design base shear, Vb computed above shall be distributed along the height of the 

building as per the following expression, 

             
∑

=

= n

j
jj

ii
i

hW

hW
Q

1

2

2

          (4.44) 

where,

 

           Qi = design lateral force at ith floor 

           Wi = seismic weight of ith floor 

           hi = height of ith floor measured from base, and 

           n = numbers of storey in the building is the number of the levels at which the     

                   masses are located              

In case of buildings whose floors are capable of providing rigid horizontal diaphragm action, 

the total shear in any horizontal plane shall be distributed to the various vertical elements of 

lateral force resisting system, assuming the floors to be infinitely rigid in the horizontal plane.  

In case of building whose floor diaphragms cannot be treated infinitely rigid in their own 

plane , the lateral shear at each floor shall be distributed to the vertical elements resisting the 

lateral forces, considering the in plane flexibility of the diaphragms. 
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4.8 Response Spectrum Method (Dynamic Analysis) 

4.8.1 General Codal Provisions 

Dynamic analysis should be performed to obtain the design seismic force, and its distribution 

to different levels along the height of the building and to various lateral load resisting 

elements, for the following buildings: 

• Regular buildings- Those are greater than 40 m in height in zone IV, V and those 

are greater than 90 m height in zones II,III, and 

• Irregular buildings-All framed buildings higher than 12 m in zone IV and V, and 

those are greater than 40 m in height in zone II and III. 

 

Dynamic analysis may be performed either by time history method or by the response 

spectrum method. However in either method, the design base shear Vb shall be compared with 

a base shear bV  calculated using a fundamental period Ta. When Vb is less than  bV  all the 

response quantities shall be multiplied by bV /Vb  

The values of damping for a building may be taken as 2 and 5 percent of the critical, for the 

purpose of dynamic analysis of steel and reinforced concrete buildings, respectively. 

4.8.2 Modes to be Considered 

The number of modes to be considered in the analysis should be such that the sum of the total 

modal masses of all modes considered is at least 90% of the total seismic mass and the 

missing mass correction beyond 33%.If modes with natural frequency beyond 33 Hz are to be 

considered, modal combination shall be carried out only for modes up to 33 Hz. 

4.8.3 Computation of Dynamic Quantities 

Buildings with regular ,or nominally irregular plan configuration may be modeled as a system 

of masses lumped at the floor levels with each mass having one degree of freedom, that of 

lateral displacement in the direction of consideration. In such a case, the following 

expressions shall hold in computations of various quantities. 

a) Modal mass  
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where,  

g  = acceleration due to gravity 

=ikφ mode shape coefficient of floor, i in mode, k, and  

Wi = seismic weight of floor, i 

b)  Modal Participation Factor: The factor is given by  

1

2

1

( )

n

i ik
i

k n

i ik
i

W
P

W

=

=

ϕ
=

ϕ

∑

∑
          (4.46)

 

c) Design lateral force at each floor in each Mode: The  peak lateral force at floor i in kth 

mode is given by 

ikikkik WpAQ φ=              (4.47) 

where, Ak = Design horizontal acceleration spectrum values using the natural period 

of vibration  

d)  Storey shear force in each mode: The storey peak shear force at ith storey in mode k is 

given by 

∑
+=

=
n

ij
ikik QV

1               (4.48)
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4.9 Numerical on Seismic Design of Structures 

Example 4.7 

An eight-story residential RC building is to be constructed in an area of seismic Zone IV 

having hard soil. The plan dimension of the building is 15m x 20m with storey height of 

3.6m. Determine the base shear as per the IS:1893-2002 (Part 1) code. Use both seismic 

coefficient and response spectrum approach. Take the inter-story lateral stiffness of floors i.e. 

k1=k2=k3=k4=671.52×106 N/m and k5=k6=k7=k8=335.76×106 N/m. The loading on the floors 

shall be taken as: 

Location Self Wight + Dead Load (kN/m2) Live Load  (kN/m2) 

Roof 5 1.5 

Floors 10 4 
 

Solution:  

Zone factor, Z=0.24 (Table 2 IS 1893 (part 1): 2002) 

Importance factor, I=1.0 (Table 6 IS 1893 (part 1): 2002) 

Response reduction factor, R=3 (Table 7 IS 1893 (part 1): 2002) 

Seismic weight of building (Clause 7.3.1 IS 1893 (part 1): 2002) 

Seismic weight of roof = 15×20×5 = 1500 kN 

Seismic weight of each floor = dead load + a fraction of imposed load  

              = 15×20×10 + 0.5× (15×20×4) =3600kN  
  

Total seismic weight of building, W= 1500 + 7×3600 = 26700 kN 

(A) Analysis by Seismic Coefficient Method 

Fundamental natural time period, Ta = 0.075h0.75 = 0.075× (3.6×8)0.75 = 0.9324 sec 

Spectral acceleration, Sa/g = 1/Ta = 1/0.9324 = 1.0725 

Design horizontal seismic coefficient, 
2

a
h

ZISA
Rg

=
 

  
Ah = 0.0429 

Total base shear is given by 
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Vb=Ah×W 

Vb= 0.0429 × 26700 = 1145.42 kN 

 The lateral forces calculated using the equation (4.44) and are presented below. 

Floor/Roof hi (m) Wi (kN) Wi hi
2

 / ΣWi hi
2 Qi (kN) Base Shear 

(kN) 

Roof  28.8 1500 0.16 183.27 183.27 

7 25.2 3600 0.294 336.75 520.02 

6 21.6 3600 0.216 247.41 767.43 

5 18 3600 0.15 171.81 939.25 

4 14.4 3600 0.096 109.96 1049.21 

3 10.8 3600 0.054 61.85 1111.06 

2 7.2 3600 0.024 27.49 1138.55 

1 3.6 3600 0.006 6.87 1145.42 

 

(B) Analysis by Response Spectrum Method 

Stiffness Matrix of the building is, 

1343.04 -671.52 0 0 0 0 0 0
-671.52 1343.04 -671.52 0 0 0 0 0

0 -671.52 1343.04 -671.52 0 0 0 0
0 0 -671.52 1007.28 -335.76 0 0 0

[ ]
0 0 0 -335.76 671.52 -335.76 0 0
0 0 0 0 -335.76 671.52 -335.76 0
0 0 0 0 0 -335.76 671.52 -335.76
0 0 0 0 0 0 -335.76 335.76

k





=



610 /N m




 
 
  × 
 
 
 
 
 
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The mass matrix of the building is,  
 

3

3 6 00 0 0 0 0 0 0
0 3 6 00 0 0 0 0 0
0 0 3 6 00 0 0 0 0
0 0 0 3 6 00 0 0 0

[ ] 10
0 0 0 0 3 6 00 0 0
0 0 0 0 0 3 6 00 0
0 0 0 0 0 0 3 6 00
0 0 0 0 0 0 0 1 5 0

m Kg

 
 
 
 
 
 = × 
 
 
 
 
 

 

The mode-shapes and frequencies of the building are obtained using the equation (4.19) and 

are given below 

1 2 3 4 5 6 7 8                                                                                                                                                 
.927538E-03  .858964E-03  .998116E-

[ ]

φ φ φ φ φ φ φ φ

φ =

03  .855939E-03  .966417E-03  .154996E-02  .575802E-04  .223343E-05
.901977E-03  .698991E-03  .477048E-03  .433966E-04 -.287197E-03 -.107689E-02 -.630515E-04 -.441046E-05
.816761E-03  .226586E-03 -.641725E-03 -.868018E-03 -.646702E-03  .676496E-03  .133359E-03  .204813E-04
.677526E-03 -.347097E-03 -.956468E-03  .198184E-03  .100712E-02 -.321754E-03 -.340780E-03 -.100992E-03
.493480E-03 -.765637E-03 -.728334E-04  .812858E-03 -.474450E-03 -.112684E-04  .898599E-03  .499308E-03
.385138E-03 -.803796E-03  .414611E-03  .194222E-03 -.476702E-03  .166894E-03 -.740874E-03 -.984752E-03
.264060E-03 -.662318E-03  .642317E-03 -.645664E-03  .263085E-03  .563832E-05 -.517710E-03  .105008E-02
.134250E-03 -.372819E-03  .467637E-03 -.750037E-03  .593351E-03 -.167083E-03  .100703E-02 -.667407E-03 

 
 
 
 







 









 

1

2

3

4

5

6

7

8

7.85398
20.4176
34.1842
46.0967

rad/sec
53.8850
61.5923
68.4809
81.6427

ω   
   ω   
 ω  
   ω   =   ω
   
ω   

   ω
    ω    
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The corresponding time periods are given by 

1

2

3

4

5

6

7

8

0.8
0.3076
0.1837
0.1362

sec
0.1165
0.1020
0.0917
0.0769

T
T
T
T
T
T
T
T

   
   
   
   
   
   =   
   
   
   
        

 

The modal participation factors using the equation (4.46) are 

 1

2

3

4

5

6

7

8

1461.48
-600.55   
268.73  
-237.03   
137.22   
-29.57  
144.20   
-67.23

P
P
P
P
P
P
P
P

   
   
   
   
   
   =   
   
   
   
        

 

The horizontal seismic coefficient, Ak in the kth mode is calculated as 

1

2

3

4

5

6

7

8

0.5
1.0
1.0
1.0
1.0
1.0
0.95
0.86

A
A
A
A
A
A
A
A

   
   
   
   
   
   =   
   
   
   
        
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Design lateral load at ith floor in kth mode (i.e. ikikkik WpAQ φ= ) is given as 

1 2 3 4 5 6 7 8                                                                                         
 101.67     -77.38       40.23      -30.43     19.89      -6.88        1.18      

[ ]

i i i i i i i i

ik

Q Q Q Q Q Q Q Q

Q =

 -0.02
 237.28     -151.12     46.15      -3.70      -14.19       11.47     -3.11        0.09
 214.86     -48.99      -62.08      74.07     -31.95      -7.20        6.58       -0.43
 178.23      75.04      -92.53     -16.91      49.75        3.43      -16.82      2.11
 129.82      165.53    -7.05       -69.36     -23.44        0.12       44.34     -10.41
 101.32      173.78     40.11     -16.57     -23.55      -1.78       -36.56      20.54
 69.47        143.19     62.14      55.10      13.00       -0.06       -25.55     -21.90
 35.32        80.60       45.24      64.00      29.31        1.78        49.69       13.92

kN

 
 
 
 
 
 
 
 
 
 
  
 

 

 

The storey shear forces in each mode as per equation (4.48) are as follows: 

1 2 3 4 5 6 7 8                                                                                     
101.67    -77.38       40.23    -30.43      19.89     -6.88      1.18      -0.02
338.9

[ ]

i i i i i i i i

ik

V V V V V V V V

V =

5    -228.50     86.38    -34.14      5.70        4.59     -1.93       0.07
553.81    -277.48     24.30     39.93     -26.24     -2.61      4.65      -0.35
732.05    -202.44    -68.23     23.02      23.51      0.81    -12.16      1.75
861.86    -36.91      -75.27    -46.34      0.07        0.93     32.18     -8.66
963.18     136.86    -35.16    -62.91     -23.48     -0.84    -4.38       11.88
1032.65   280.06     26.97     -7.82      -10.48     -0.90    -29.93     -10.03
1067.96   360.66     72.22      56.18     18.83       0.87     19.77       3.90

kN

 
 
 
 
 
 
 
 
 
 
  
 

 

          

The modal combination rule (SRSS method) is applied to obtain storey shear given below, 

7

6

5

4

3

2

1

138.97 
419.26 
621.78 
763.39 
867.81 
975.89 
1070.83
1131.26

roofV
V
V
V

kN
V
V
V
V

   
   
   
   
   
   =   
   
   
   
        

 

Peak Lateral Forces on Each Storey, 
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Lateral forces are back calculated by storey shear. For example QRoof = VRoof and Q7 = V7 – 
VRoof  similarly Q6 = V6 - V7 and so on. 

7

6

5

4

3

2

1

138.97
280.39 
202.52
141.6
104.4
108.1 
94.9 
60.4 

RoofQ
Q
Q
Q

kN
Q
Q
Q
Q

   
   
   
   
   
   =   
   
   
   
        

 

The total base shear obtained is  

= 138.97+280.39+202.52+141.6+104.4+108.1+94.9+60.4 

= 1131.26 kN 

Since the above calculated base shear is less than that obtained using seismic coefficient 

method (i.e. 1145.42 kN), therefore, according to Clause 7.8.2 IS 1893 (part 1): 2002, the 

calculated base shear shall multiplied by the factor, 

1145.42 =1.0125
1131.26  

The corrected final lateral forces and storey shears are 

7

6

5

4

3

2

1

140.70
283.89 
205.05
143.37
105.705
109.45 
96.086 
61.16 

roofQ
Q
Q
Q

kN
Q
Q
Q
Q

   
   
   
   
   
   =   
   
   
   
             

7

6

5

4

3

2

1

140.70
424.50
629.55
772.93
878.65
988.08
1084.21
1145.40

   
   
   
   
   
   =   
   
   
   
        

roofV
V
V
V

kN
V
V
V
V                                                        
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The values of lateral forces and base shear thus obtained by seismic coefficient method and 
response spectra method are summarized below 

Floor/Roof Seismic Coefficient Method Response Spectrum Method 

Qi (kN) Vi (kN) Qi (kN) Vi (kN) 

Roof  183.27 183.27 140.70 140.71 

7 336.75 520.02 283.89 424.50 

6 247.41 767.43 205.05 629.55 

5 171.81 939.25 143.37 772.93 

4 109.96 1049.21 105.70 878.66 

3 61.85 1111.06 109.45 988.09 

2 27.49 1138.55 96.08 1084.22 

1 6.87 1145.42 61.16 1145.40 
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4.10 Tutorial Problems 

Q1. Determine the displacement response spectra of SDOF system subjected to earthquake 

acceleration, 00.3 cos(12 ) cos( )= = ω gx g t x t .  

Q2. A two-story building is modeled as 2-DOF system and rigid floors shown in Figure 4.14. 

The inter-story lateral stiffness of first and second floor is k1 and k2, respectively. Take 

mass value, m=10000 kg. Determine the k1 and k2 so that the time periods in first and 

second mode of vibration of building are 0.2 sec and 0.1 sec, respectively. Take 2% 

damping in each mode of vibration. Determine maximum base shear and top floor 

displacement due to earthquake excitation whose response spectra for 2% damping are 

given below. 

Period (sec) aS ( m/s2) dS ( m) 
0.1 6.45 1.65×10-3 
0.2 10.29 10.42 ×10-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 

 

 

 

 

 

k2 

k1 

x2 

x1 

m 

2m 
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Q3. A uniform bridge deck is simply supported as shown in Figure 4.15. The mass of each 

lumped mass is m and flexural rigidity of deck is EI. The bridge is modeled as a two-

degrees-of-freedom discrete system as indicated in the figure. Assuming same 

earthquake acts simultaneously on both the supports in the vertical direction. Determine 

the maximum displacement of each mass. Take L = 8m, m = 1000 kg/m and EI = 8 × 108 

kN.m2. Use SRSS method for combining the response in two modes. The spectrum of 

the ground motion is given in the Figure 4.15(b). 

 

 

 

 

 
 

(a) Model of Bridge    (b) Response Spectrum 

Figure 4.15 

Q4. A 5-story building is to be constructed in the area of seismic zone III having medium 

soil. The dimension of the building is 15m × 20m. The height of each story is 3.5m. The 

live and dead load on each floor is 2.5 kN/m2 and 10 kN/m2, respectively. The live and 

dead load on the roof is 1.5 kN/m2 and 5 kN /m2, respectively. Take importance factor as 

1 and response reduction factor as 5. Determine the seismic shear force in each story and 

overturning moment at the base as per IS: 1893 (Part 1)-2002.  Take the value of Z=0.16 

for Zone III and spectral acceleration for medium soil from IS: 1893 (Part 1)-2002 as  

 
1 15 0 0.1

2.5 0.1 0.55
1.36 / 0.55 4

a

T for T
S T
g

T T

+ ≤ ≤
= ≤ ≤
 ≤ ≤

 

  

L L L 

x1 x2 
Sa/g 

Time Period, T (sec) 

/ (0.1 ) T
aS g T e−= +  
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Q5.An 9-story RCC residential building, shown in Figure 

4.16 is to be constructed in an area of seismic Zone III 

having medium soil. The plan dimension of the 

building is 20m x 30m with storey height of 3.65m. 

Determine the base shear and lateral forces on each 

floor as per the IS: 1893-2002 code. Use both seismic 

coefficient and response spectrum approach. Take inter-

story lateral stiffness of floors i.e. k1=k2=k3=1326×106 

N/m, k4=k5=k6= 994.5×106 and k7=k8=k9=663×106 N/m. 

The loading on the floors shall be taken as 

 
Location Floors Roof 

Self Wt + Dead load (kN/m2) 10 4  

Live load (kN/m2) 5 1.5 

Figure 4.16 
Natural Frequencies (rad/sec) 

6.98      18.78   30.40      41.96      50.91      59.79      62.21      69.64      79.60 

 
Mode-shapes                           

1.91 2.01 1.79 2.21 1.91 3.07 2.11 0.17 0.00 

1.87 1.69 1.04 0.45 -0.33 -1.90 -1.59 -0.20 -0.01 

1.73 0.72 -0.75 -2.17 -1.64 0.50 1.38 0.48 0.03 

1.50 -.52 -1.79 -.64 1.67 0.95 -1.46 -1.38 -0.14 

1.29 -1.22 -1.29 1.20 0.75 -1.21 0.74 2.22 0.39 

1.04 -1.60 0.08 1.51 -1.58 -0.24 0.87 -1.98 -0.88 

.75 -1.58 1.39 -0.10 -0.94 1.35 -1.43 0.76 1.88 

.51 -1.25 1.68 -1.21 0.86 -.08 -0.15 0.81 -2.52 

.26 -.69 1.12 -1.16 1.45 -1.36 1.45 -1.28 1.75 

 

  

k1 

k3 

k7 

k2 

k4 

k5 

k6 

k8 

k9 
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4.11Answers to Tutorial Problems 

Q1. The displacement spectra is given by 

( ) ( )
0
2 220

1

1 2
=

ω −β + ξβ



d
xS

 

where,
0 0

12ω
β = =

ω ω
and 0 0.3=x g

 
Q2.  For first set of values of stiffness (i.e. k1=59157600 N/m and k2= 13146133.33 N/m) 

Mode Top floor displacement (mm) Base shear(kN) 

1 13.7544 203.919 

2 -0.5445 65 

SRSS 13.765 214.03 

 
For second set of values of stiffness (i.e. k1=39438400 N/m and k2= 19719200 N/m) 

Mode Top floor displacement (mm) Base shear(kN) 

1 13.7544 271.225 

2 -0.5445 21.474 

SRSS 13.765 272.073 

 

Q3.  The maximum displacement of each mass = 36.37mm 

Q4.  

Qi (kN) Vi (kN) 

4014.1 4014.1 

5459.2 9473.2 

3070.8 12544.0 

1364.8 13908.8 

341.2 14250.0 
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Q5.  

Floor/Roof Seismic Coefficient Method Response Spectrum Method 

Qi (kN) Vi (kN) Qi (kN) Vi (kN) 

Roof 222.8 222.8 160.7 160.7 

8 422.5 645.3 217.4 378.1 

7 323.5 968.8 236.0 614.1 

6 237.7 1206.5 218.8 832.9 

5 165.0 1371.5 194.7 1027.7 

4 105.6 1477.1 175.3 1203.0 

3 59.4 1536.5 137.0 1340.0 

2 26.4 1562.9 148.1 1488.1 

1 6.6 1569.5 81.4 1569.4 

 


	L
	L
	L
	x1
	x2

