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Chapter 6 

Seismic Soil-Structure Interaction 

6.1 Introduction 

The scales of socio–economic damages caused by an earthquake depend to a great extent on the 

characteristics of the strong ground motion. It has been well known that earthquake ground 

motions results primarily from the three factors, namely, source characteristics, propagation 

path of waves, and local site conditions. Also, the Soil-Structure Interaction (SSI) problem has 

become an important feature of Structural Engineering with the advent of massive 

constructions on soft soils such as nuclear power plants, concrete and earth dams. Buildings, 

bridges, tunnels and underground structures may also require particular attention to be given to 

the problems of SSI. If a lightweight flexible structure is built on a very stiff rock foundation, a 

valid assumption is that the input motion at the base of the structure is the same as the free-field 

earthquake motion. If the structure is very massive and stiff, and the foundation is relatively 

soft, the motion at the base of the structure may be significantly different than the free-field 

surface motion. For code design buildings it is important to consider the effect of the SSI. The 

objective of this chapter is to understand the basic concept of the Soil-Structure Interaction, 

following the different methods of analysis with some solved examples.  

6.2 Free Field Motion and Fixed Base Structures 

Ground motions that are not influenced by the presence of structure are referred as free field 

motions. 
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Structures founded on rock are considered as fixed base structures. When a structure founded on 

solid rock is subjected to an earthquake, the extremely high stiffness of the rock constrains the 

rock motion to be very close to the free field motion. 

6.3 Soil-Structure Interaction  

If the structure is supported on soft soil deposit, the inability of the foundation to conform to the 

deformations of the free field motion would cause the motion of the base of the structure to 

deviate from the free field motion. Also the dynamic response of the structure itself would 

induce deformation of the supporting soil. This process, in which the response of the soil 

influences the motion of the structure and the response of the structure influences the motion of 

the soil, is referred as SSI as shown in Figure. 6.1.  

These effects are more significant for stiff and/ or heavy structures supported on relatively soft 

soils. For soft and /or light structures founded on stiff soil these effects are generally small. It is 

also significant for closely spaced structure that may subject to pounding, when the relative 

displacement is large. 

In order to understand the SSI problem properly, it is necessary to have some information of the 

earthquake wave propagation through the soil medium for two main reasons. Firstly, when the 

seismic waves propagates through the soil as an input ground motion, their dynamic 

characteristics depends on the modification of the bedrock motion. Secondly, the knowledge of 

the vibration characteristics of the soil medium is very helpful in determining the soil impedance 

functions and fixing the boundaries for a semi-infinite soil medium, when the wave propagation 

analysis is performed by using numerical techniques. To understand the influence of local soil 

conditions in modifying the nature of free field ground motion it is very essential to understand 

the terminology of local site effect. Therefore, in this chapter, the terminology of local site effect 

is discussed first and then, seismic SSI problems are presented. 

The first significant structure where the dynamic effect of soil was considered in the analysis in 

industry in India was the 500MW turbine foundation for Singrauli (Chowdhary, 2009). 
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6.4 Terminology of Local Site Effects 

6.4.1 Basin /soil effect on the ground motion characteristics 

6.4.1.1 Impedance contrast 

Seismic waves travels faster in hard rocks in compare to softer rocks and sediments. As the 

waves passes from harder to softer rocks they become slow and must get bigger in amplitude to 

carry the same amount of energy. Thus, shaking tends to be stronger at sites with softer surface 

layers, where seismic waves move more slowly. Impedance contrast defined as the product of 

velocity and density of the material (Pisal, 2006). 

Figure 6.1: Seismic Soil-Structure Interaction.  

Structure 

Ground Level 

Foundation 

Soft Soil 

Earthquake Waves 

Pile 



184 

 

6.4.1.2 Resonance 

When the signal frequency matches with the fundamental frequency or higher harmonics of the 

soil layer, we say that they are in resonance with one another. This results in to tremendous 

increase in ground motion amplification. Various spectral peaks characterize resonance 

patterns. The frequencies of these peaks are related to the surface layer’s thickness and 

velocities. Further, the amplitudes of spectral peaks are related mainly to  

• The impedance contrast between the surficial layer and the underlying bedrock. 

• To sediment damping. 

• To a somewhat lesser extent, to the characteristics of the incident wave-field. 

 

6.4.1.3 Damping in Soil 

Absorption of energy occurs due to imperfect elastic properties of medium in which the particle 

of a medium do not react perfectly elastically with their neighbor and a part of the energy in the 

waves is lost instead of being transferred through medium, after each cycle. This type of 

attenuation of the seismic wave is described by a parameter called as quality factor (Q). It is 

defined as the fractional loss of energy per cycle 

 E

E

Q

∆=π

       
  (6.1) 

where E∆ is the energy lost in one cycle and E is the total elastic energy stored in the wave. If 

we consider the damping of a seismic wave as a function of the distance and the amplitude of 

seismic wave, we have  
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where α  is called the absorption coefficient and is inversely proportional to quality factorQ . 

Damping of soil mainly affects the amplitude of surface waves (Narayan, 2005). 
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6.4.1.4 Basin Edge Effect     

When the seismic waves incident near the basin edge, it enter the basin from its edge and travel 

in the direction in which the basin is thickening. Figure 6.2 shows that when the wave can 

become trapped within the basin, if post critical incident angles develop. Interference of 

trapped waves generates surface waves, which propagate across the basin. The generation of 

surface waves near the basin is known as basin-edge effect (Bard and Bouchon 1980 a & b, 

Bakir et al. 2002, Graves et al., 1998, Hatyama et al.1995, Pitarka et al., 1998, Narayan, 2005) . 

Waves that become trapped in deep sedimentary basins can produce stronger amplitudes at 

intermediate and low frequencies than those recorded on comparable surface material outside 

basins, and their durations can be twice as long. This basin edge effect can amplify long period 

components of ground motion and significantly increases the duration of strong shaking. Basin 

induced surface waves cause intense damage which is confined in a narrow strip parallel to the 

edge. 

 
 

 

Figure 6.2: Schematic diagram showing that seismic waves entering a sedimentary layer from 

below will resonate within the layer but escape if the layer is flat (left) but become trapped in the 

layer if it has varying thickness and the wave enters the layer through its edge (right) (After 

Grave, 1998). 
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6.4.1.5 Basement Topography 

Irregular basement topography when subjects to body wave incidence below, results in focusing 

and defocusing effects. This effects are strongly depends on the azimuth and angle of incident 

waves. 

 

 

 

 

 

 

 

Figure 6.3, Shows seismic waves traveling in the upward direction from depth may be redirected 

by subtle irregularities at geological interfaces. As wave pass from the deeper unit across the 

curved interface, their velocity and direction changes, and once again changes at the unit nearest 

to the surface.  Sometimes they meet at certain points on the surface. At these points, the 

amplification and de-amplification caused due to focusing and defocusing phenomenon (After 

USGS, http://pubs.usgs.gov/of/1996/ofr-96-0263/localeff.htm ). 

The damage pattern caused by the Northridge earthquake, Sherman Oaks and Santa Monica 

reveals effect of basement topography very well. 

 

6.4.1.6 Trapping of Waves 

Due to the large impedance contrast between the soft sediments and underlying bedrock, seismic 

waves trapped over soft sediments. This results in increase in the duration of ground motion. 
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When layers are horizontal this trapping affects only body waves. While in  case of lateral 

heterogeneities this trapping also affect the surface waves. Interference of these waves also leads 

to resonance pattern. As discussed earlier, the basin edge effect causes the total reflection of the 

wave at the base of the layer, making them potentially very damaging. As reported by Kawase 

(1996) this type of effect was also observed in the 17 January 1995 Hyogo-ken Nabu earthquake, 

which was the most destructive earthquake in  Japan even though of moderate magnitude (M=6). 

 

6.4.2 Effect of Surface Topography 

Surface topography considerably affects the amplitude, the frequency content and duration of 

ground motion (Celebi, 1987 and Geli et al., 1988). 

6.4.2.1 Effect of Ridge 

The ridge causes strong generation of surface wave near the top of the ridge and their 

propagation towards the base of the ridge, Narayan and Rao (2003). Amplification of the ground 

motion depends on the slope and the elevation of the ridge. 

In India it had observed when it had damaged very badly the village of Kutri and at Sajan Garh 

fort, constructed on a hill near the city of Udaipur. 

6.4.2.2 Effect of Valley 

It has been predicted numerically that in the valley, due to defocusing effect de-amplification of 

the amplitude of motion takes place. The intensity in a valley may be 1-2 scales lesser as 

compared with the surrounding, if it is free from the soil deposits. 

 The effect of valley was observed in the Mandal valley and Pingala Pani, Unali and Chandrapuri 

villages. The damage in the Mandal Proper village and the Khalla village was lesser as compared 
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to the other villages of the Mandal valley, since these villages are situated at the base of the 

valley. The houses of the other villages (Siroli, Makroli and Gondi), which were situated at some 

elevation suffered much more damage. 

6.4.2.3 Slope Effect 

Hills with variable slope revels complicated damage patterns. The houses situated on or near the 

bank of a steeply sloping hills suffers much more damages as compare to the houses which were 

at some distance away from the steep portion or are on the gentle sloping part of the same hill. 

 

6.4.3 Strong Lateral Discontinuity Effect 

Lateral discontinuities are nothing but the areas where a softer material lies besides a more rigid 

one (for instance, ancient faults, anomalous contacts, debris zones, etc.) 

The best example of damage caused by strong lateral discontinuity (softer rock sandwiched 

between hard rocks) was observed in the Bhatwari- Sonar village during Chamoli earthquake of 

1999. The village situated on a sloping hill at the left bank of river Mandakini received greater 

damage. The hill mass is composed of rounded pebbles and young soil and is surrounded by hard 

older quartzite rocks. Amplitude amplification, generation of local surface waves in the softer 

medium and larger differential motion caused by shorter wavelength of the surface waves may 

be reason behind the greater structural damage. 

 

6.5 Degree of Influence of SSI 

The degree of Influence of SSI on response of structure depends on the following factors 

• Stiffness of soil. 
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• Dynamic Characteristics of structure itself i.e. Natural Period and damping factor. 

• Stiffness and mass of structure. 

 

6.6 Interaction between Ground and Structure during Earthquake 

When the seismic wave E0 generated by an earthquake fault reaches the bottom of the 

foundation, they are divided into two types as shown in Figure 6.4: 

 

 

 

 

 

 

 

 

 

Transmission Waves which are entering in the building shown as E1 and   Reflection Waves 

which are reflected back in to the ground shown as F0.     

When the transmission wave enters in to the building they travels in upward direction due to 

which the structure subjects to vibration. And then they are reflected at the top and travel back 

down to the foundation of the structure shown as F1. At this stage Soil-Structure Interaction 

phenomenon takes place.  Again a part of wave are transmitted into the ground, while the rest is 

reflected back again and starts to move upwards through the sructure shown as F2. The wave 

Figure 6.4: Wave propagation during SSI (Miura, 2011) 
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which are transmitted to the ground known as Radiation Waves shown as R1. When the radiated 

waves are in small amount, the seismic waves once transmitted into the structure continue to 

trapped in the building, and the sructure starts to vibrate continuously for a long time, similar to 

the lightly damped structure. 

The damping caused by radiation waves is popularly known as Radiation Damping of the soil. 

The radiation damping results in increase of total damping of the soil-structure system in 

compare to the structure itself. Also, under the influence of SSI the natural frequency of a soil-

structure system shall be lower than the natural frequency of the soil. 

These interactions results not only in reducing the demands on the structure but also increasing 

the overall displacement of the structure as due to these interactions foundation can translate and 

rotate. Basically the dynamic soil-structure interaction consists of two interactions, namely, 

kinematic interaction and inertial interaction. 

6.7 Kinematic Interaction 

The SSI effect which is associated with the stiffness of the structure is termed as kinematic 

interaction. It is explained with the help of Figure 6.5 (a–d). In Figure 6.5 (a), the massless mat 

foundation restricts the vertical movement of the ground motion because of its flexural stiffness. 

Due to this, instead of free field ground motion the mat foundation moves differently (that is, the 

ground motion is away from the foundation) along with the change in nature of ground motion in 

the close vicinity and below the foundation. Similar examples of kinematic interaction are shown 

in Figure 6.5 (b and c). In Figure 6.5 (b), a vertically propagating shear wave is confined by the 

embedded foundation. In Figure 6.5 (c), the axial stiffness of the foundation slab prevents the 

incoherent ground motion produced below the foundation. For vertically propagating purely S-

waves, the rotational movement induced in foundation due to kinematic interaction is shown in 

Figure 6.5 (d). 
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Figure 6.5: Kinematic interaction: (a) vertical motion modified; (b) horizontal motion modified; 

(c) incoherent ground motion prevented; and (d) rocking motion introduced (Datta, 2010). 

The tau (τ ) effect, derived by Clough and Penzien (1993), explains the kinematic interaction due 

to translational excitation with reference to the rigid slab. In Figure 6.6, the shear wave moving 

in the y-direction produces ground motion in the x-direction which varies with y. At the site of 

slab where the free field earthquake motion varies significantly, due to the rigidity of slab these 

motions are constrained to some extent.  

 

 

 

 

 

 

 

Figure 6.6: Horizontally propagating shear wave in the y-direction below the rigid slab of 

a large structure. (Clough and Penzien, 1993) 
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If τ  is defined as the ratio of amplitude of harmonic component of translational motion to the 

amplitude of harmonic component of respective free field motion, then it is shown that    

)cos1(2
1 α
α

τ −=
       

  (6.3)  

)(

2

ωλ
πωα D

V

D

a

==
       

  (6.4)  

where, 

ω
πωλ aV2

)( = is the wavelength. 

D = Dimension of the base in the y-Direction. 

Va = Apparent wave velocity. 

 

Also the values of τ decrease from unity at 0=α  and ∞→λ  to zero at πα 2=  and D=λ .  This 

means that if the base dimension of the foundation is very small compared with the wavelength 

of the ground motion, then the τ  effect is negligible (i.e. the slab will exert little constraint on 

the soil and the slab motions will be essentially the same as the free field motions at that 

location). On the other hand, if the base dimension of the foundation is fairly large in compared 

to the wavelength of the ground motion, then the τ  effect should be considered and the base 

motion could be much smaller than the free field ground motion. 

whenever the stiffness of the foundation system obstructs the development of the free-field 

motion, kinematic interaction takes place. When foundation subjects to vertically propagating S-

waves of  wavelength equal to the depth of embedment, the kinematic interaction induces 

rocking and torsion modes of vibration in the structure, which are not present in case of free field 

motion. The deformation caused by kinematic interaction alone can be computed by assuming 

that the structure and foundation has stiffness but no mass as shown in Figure 6.7. The equation 

of motion for this case is 

 

 [ ]{ } [ ]{ } [ ] ( )tuMuKuM bsoilKIKIsoil ɺɺɺɺ −=+ ∗
       

  (6.5)  
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where [ ]soilM  is the mass matrix assuming that the structure and foundation are massless and 

{ }KIu  is the foundation input motion, [ ]∗K
 
is the stiffness matrix and buɺɺ is the acceleration at the 

boundary (Kramer, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

6.8 Inertial Interaction 

The mass of structure and foundation causes them to respond dynamically. The SSI effect which 

is associated with the mass of the structure is termed as inertial interaction. It is purely caused by 

the inertia forces (seismic acceleration times mass of the structure) generated in the structure due 

to the movement of masses of the structure during vibration. The inertial loads applied to the 

structure lead to an overturning moment and a transverse shear. If the supporting soil is 

compliant, the inertial force transmits dynamic forces to the foundation causing its dynamic 

displacement that would not occur in case of a fixed-base structure. The deformations due to 

inertial interaction can be computed from the equation of motion (Kramer,1996). 

               
               
               
               
               
               
               
               
               
               

Figure 6.7: Kinematic interaction analysis (Kramer, 1996). 

Massless structure 
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where [ ]structureM  is the mass matrix assuming that the soil is massless  as shown in  Figure 6.8. 

Note that the right hand side of equation (6.6) shows the inertial loading on the structure 

foundation system which depends on base motion and foundation input motion including 

kinematic interaction effect. 

 

 

 

 

 

 

 

 

6.9 Illustration of Soil-Structure Interaction Effects 

The soil-structure interaction is illustrated by a simple analysis following the approach of Wolf 

(1985). Consider a Single degree of freedom system (SDOF) of massm , stiffnessk , and 

damping coefficientc , connected to a massless rigid, L-shaped foundation of height h  as shown 

in Figure 6.9 (a). The system is subjected to a horizontal excitation of amplitudegu . If the 

 
 [ ]{ } [ ]{ } [ ]{ })()( tutuMuKuM bkstructure ɺɺɺɺɺɺ +−=+ ΙΙΙ

∗
ΙΙ        

  (6.6)  
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Figure 6.8: Inertial interaction analysis 
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material supporting the foundation is rigid, the natural frequency 0ω  of the resulting fixed-base 

system will be 

 m

k=0ω
       

  (6.7) 

and the hysteretic damping ration ξ of the structure will be  

 k

c

2
0ωξ =

       
  (6.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

If  the supporting material is compliant, the foundation can translate and rotate. The stiffness and 

damping characteristic of the compliant soil-foundation system can be represented by hk and hc

in the horizontal (translational) direction and by rk and rc in the rotational (rocking) direction. 
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Figure 6.9: Model with compliant base material having one dynamic degree of freedom: 

(a) SDOF system on a compliant supporting material; (b) idealized discrete system in 

which the compliance of base is shown by translational and rotational springs and 

dashpots and (c) total displacements of base and mass. 
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The total displacement of the mass tu and the base of the structure tu0  can split into their 

individual components as  

 uhuuu g
t +++= θ0          (6.9) 

 00 uuu g
t +=          (6.10) 

where, 

gu  = Amplitude of horizontal excitation or free field motion. 

0u  = Amplitude of base relative to the free field motion. 

θh  = Rigid body component due to the base rotation (rocking) of the structure by an angleθ . 

u  = Amplitude of the relative displacement of the mass with respect to the moving frame 

attached to the rigid base. It is equal to the structural deformation. 

θ  = Angle of base rotation (rocking). 

For a soil without material damping ( )0=sξ , the horizontal force amplitude hp acting on it is 

written as  

 00 ucukp xxx ɺ+=
       

  (6.11) 

 

where the subscript x denotes the horizontal direction for a purely elastic soil ( )0=sξ .While for 

a soil with material damping, the corresponding equation is written as  

 00 ucukp hhh ɺ+=
       

  (6.12) 

For a frequency dependent harmonic excitation  

 00 uiu ω=ɺ
       

  (6.13) 
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applying in equation (6.11), leads to  

 ( ) 00 211 uikui
k
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
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  (6.14) 

 

where xξ  represents the ratio of the viscous radiation damping in the horizontal direction. 

The material damping can be introduced in an approximate manner by multiplying the spring 

coefficient xk (for frequencyω ) with the factor( )isξ21+ , where sξ is the hysteretic damping 

ratio, and substituting equation (6.13) in equation (6.12), gives  

 ( ) 0221 uiikp xsxh ξξ ++=
       

  (6.15) 

 

Comparing equation (6.12) and equation (6.15) and using equation (6.13), the obtained 

horizontal stiffness and damping coefficient are  

 

xsxh

xh

kcc

kk

ξ
ω
2+=

=

 (6.16) 

 

The first term on the right side of equation (6.16) corresponds to radiation damping and the 

second term to the material damping. If the structure is assumed to be rigid ( )∞=k and the 

foundation unable to rock or rotate( )∞=rk , the natural frequency for translational vibration 

would be  

 
m

kh
h =ω

       
  (6.17) 
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Similarly the moment amplitude rM acting on the soil, considering rotational (rocking) degree of 

freedom can be written as  

 θθ rrr ckM +=
       

  (6.18) 

Also 

 ( )θξξ θθ iikM sr 221 ++=
       

  (6.19) 

 

Comparing equation (6.18) and equation (6.19), the obtained rotational stiffness and damping 

coefficient are  

 θkkr =
       

  (6.20) 

 
θθ ξ

ω
kcc sr

2+=
       

   

 

If the structure is assumed to be rigid ( )∞=k and the foundation unable to translate( )∞=hk , the 

natural frequency for rotational vibration would be  

 2hm

kr
r =ω

       
  (6.21) 

 

To illustrate the soil-structure interaction, an equivalent SDOF system of same mass m is 

considered. Its properties like natural frequencyeω , ratio of hysteretic damping eξ  are selected 

such that when excited by the equivalent seismic input motion gU it will respond in essentially 

the same way as the system shown in Figure 6.9. The subscript e is used to describe the  
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properties of this equivalent system. For harmonic motion, the equation of motion for the 

equivalent system can be written as  

 ( ) gee Umukcim 22 ωωω =++−
       

  (6.22) 
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(6.23) 
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  (6.24) 

 

The response of the equivalent system goes to infinity at its natural frequency for an undamped 

system (i.e. 0=eξ ). This occurs when  

 222
0

2

1111

rhe ωωωω
++=

       
  (6.25) 

 

Substituting the value of0ω , hω and rω in above eq. and solving leads to 

 
0

e 2
h r1 k / k kh / k

ωω =
+ +

         
(6.26) 

 

It reveals that the fundamental frequency eω of the soil-structure (equivalent) system is always 

lesser than the frequency 0ω of the fixed base structure. It shows that the considering the soil-

structure interaction is important from the point of view to reduce the natural frequency of the 

soil-structure system to a value lower than that of the structure with a fixed base condition. For 

resonance condition (i.e. eωω =0 ) the hysteretic damping ratio can be formulated as  
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If no radiation damping occurs in the horizontal and translation direction, 0== θξξ x and if the 

damping of the structure is equal to the damping of the soil, sξξ =  than above equation results in

ξξ =e . As under normal conditions sξ will not be smaller thanξ , the equivalent damping eξ will 

be larger than the damping of the structure. It shows that the SSI increases the effective damping 

ratio to a value greater than that of the structure. 

For the fixed base structure, translation and rotation of the base is not possible. The base 

translation, base rotation and motion of the mass of the equivalent system with respect to the free 

field motion (which is given by sum of the base displacement 0u , the displacement of the top of 

the structure due to rotation of the baseθh , and the displacement due to the distortion of the 

structureu ) can be shown as  
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(6.30) 

 

Following dimensionless parameters are to be considered to see the effect of the soil-structure 

interaction: 

• Stiffness ratio defines as the ratio of the stiffness of the structure to that of the soil. 
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  (6.31) 

where sν  is the shear wave velocity of the soil. 
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• Slenderness ratio                           
a

h
h =  

where a is the characteristic length of the rigid foundation( e.g., the radius for a circular 

basement). 

• Mass ratio                                     3a

m
m

ρ
=  

 

where ρ is the mass density of the soil. 

• Poisson’s ratio ν of the soil. 

• Hysteretic damping ratios of the structure ξ and soil sξ . 

If the stiffness ratio is zero, it shows the fixed base condition. If the value of stiffness ratio is 

very large, it shows that a relatively stiff structure rests on a relatively soft soil. In actual 

conditions the stiffness and damping coefficient of the foundation are frequency dependent.  To 

illustrate the effect of SSI, the following frequency independent approximate expressions (for the 

undamped soil) can be used to estimate the stiffness and damping coefficient of a rigid circular 

footing of radius a (Wolf, 1989) 

 ν−
=

2

8 aG
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  (6.32) 
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(6.35) 

Expressing the frequencyeω  and damping coefficient eξ calculated in equation (6.26) and 

equation (6.27) of a rigid circular footing using the above mentioned dimensionless parameters 

leads to 
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The graphs in Figure 6.10 shows the effect of SSI on the natural frequency and damping ratio of 

equivalent SDOF system by comparing its response with the fixed base system. Figure 6.10 (a) 

reveals that when the stiffness ratio is high (i.e. the stiffness of the structure is larger than the 

stiffness of the soil), the natural frequency of the Equivalent SDOF system reduces. It means that 

the effect of soil-structure interaction on natural frequency is high at high stiffness ratios.  Thus 

the SSI consideration is important for stiff structures with a large mass supported on flexible soil.  

In a similar way when the stiffness ratio is low (i.e. stiffness of soil is larger than the stiffness of 

the structure), the natural frequency of equivalent system increases. It shows the effect of SSI on 

the natural frequency is small at low stiffness ratios and is important to consider for the flexible 

(tall) structures supported on stiff soil. Also when the stiffness ratio is zero (i.e. fixed base 

condition), the natural frequency of the equivalent SDOF is equal to the fixed base natural 

frequency. 

Figure 6.10 (b) reveals that at high stiffness ratio the damping of the equivalent SDOF system is 

high. It means at high stiffness ratio the effect of radiation damping and soil damping become 

more apparent and the structural damping represents a small part of the overall damping of the 

system. Also at the fixed base condition the damping of the equivalent SDOF system will be 

same as that of the damping of fixed base structure. 
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The graphs in Figure 6.11 show the effect of SSI on the structural distortion and displacement of 

mass with respect to the free field of an equivalent SDOF system by using an artificial input 

motion. The maximum responses are for the used artificial motion that produced an NRC 

response spectrum normalized to ga 0.1max = . Figure 6.11 (a) reveals that as the stiffness ratio is 

increases, the structural deformation decreases. It means that the considering effect of SSI results 

in reducing the distortion of the structure. On the other hand Figure 6.11 (b) shows that as the 

stiffness ratio increases, the overall displacement of the mass relative to the free field increases. 

It means that considering SSI effect results in increasing the overall displacement of the mass. 

Finally on one side the SSI tends to reduce the demand on the structure and on the other side as 

the foundation can rotate and translate, it increases the overall displacement.  

 

Figure 6.10: Effect of stiffness ratio and mass ratio on (a) natural 
frequency and (b) damping ratio of soil-structure system                

( 05.0,025.0,33.0,1 ==== sh ξξν ) (Wolf, 1985). 
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6.10 Direct Method 

In the direct method the soil, structure and foundation is modeled together using finite element 

method (FEM) and analyzed in single step. The ground motion is specified as free field motion 

and is applied at all boundaries. The soil domain with some material damping is limited by a 

fictitious exterior boundary, which is placed so far away from the structure that during the total 

earthquake excitation, the waves generated along the soil-structure interface does not reach it. 

The nodes along the soil-structure interface are denoted by subscript f (foundation). The nodes 

of the structure are denoted byst . The nodes along the interior foundation medium/soil are 

denoted bys .  

 

 

Figure 6.11: Response of equivalent SDOF system to artificial time history, 

considering SSI ( 050025033031 .,.,.,, ==================== smh ξξξξξξξξνννν ): (a) maximum        

 structural displacement; (b) maximum displacement of mass       
relative to free field (Wolf, 1985). 
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In the above figure the soil is modeled as an assemblage of rectangular plane strain elements 

having two translational degrees of freedom at each node, while the structure is modeled as an 

assemblage of beam elements. It is assumed that kinematic interaction is insignificant and the 

foundation block will move with free field ground motion. The inertia forces acting on the 

structure produces the vibration of structure, foundation and soil at the soil-structure interface 

and at the soil below it. The equation of motion for total system shown in Figure 6.12 in time 

domain can be written as  

 
 

 
gst uIMukuCuM ɺɺɺɺɺ −=++
       

  (6.38) 

                
                
                
                
                
                
                
                
                
                
                
                
                
                

Figure 6.12: Finite element model of soil-structure system for direct method of analysis. 
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where,  

M  = Mass matrix for the entire Structure, foundation and the soil 
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C  = Damping matrix (Material) of the structure and the soil 
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Note: Here, the damping matrix is generated by constructing the damping matrix of soil and 

structure separately from their modal damping ratio using Rayleigh damping. Then they 

are combined together to form final damping matrix shown above. It is assumed that the 

coupling term between the soil and structure is zero but at the interface of soil and 

structure they are non-zero. 

K = Stiffness matrix of total system, which can be generated using standard assembling 

procedure. 
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stM  = Mass matrix having non-zero masses for the structural degree of freedom 

          = 
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I   = Mass matrix having non-zero masses for the structural degree of freedom 
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guɺɺ = Free field ground acceleration (can be calculated by doing one simple one-dimensional 

analysis of site model, prior to the soil-structure analysis) 

u  = The vector of the relative displacement with respect to the base / foundation. 

The right hand side of equation (6.38) shows the inertia force, which tends to deform the soil at 

the soil-structure interface, when transferred to the base (foundation) in the form of shear force 

and moment. The material damping of soil contributes the response reduction of the structure-

soil on system is very insignificant and can be neglected. The deformation of soil due to inertia 

forces at the interface propagates in the form of radiation waves giving radiation damping which 

mostly affects the structure-soil foundation response. If the radiation damping will not die out or 

reflect back from the boundary, some error in the solution may introduce and also the problem 

may become very large. In order to reduce the size of the problem, the concept of absorbing 

boundaries has been introduced in the FEM. 

By using the direct method of analysis, like time domain method problem can also be solved in 

frequency domain method using Fourier transform function for a specific free field ground 

motion. If the time histories of the ground motion are different at different supports, then 

problem can be solved by modifying the influence coefficient vector }{ I  used in equation (6.38). 

The direct method is well suited for non-linear material laws of the soil to be taken into account. 

To solve the dynamic SSI problem by direct method, computer programs can be used. There are 

few shortcomings of the direct method of analysis; some of them are listed below. 

- The good representation of damping matrix is difficult. 

- If the superstructure is modeled as 3D system, the problem size becomes very large and 

the modeling of soil/foundation – structure interface becomes complex. 
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6.11 Sub-Structure Method 

Sub-structure method is computationally more efficient than the direct method as most of the 

disadvantages of the direct method can be removed, if the substructure method is employed. In 

this method the effective input motion is expressed in terms of free-field motions of the soil layer 

initially. In continuation to this step, the soil/foundation medium and the structure are 

represented as two independent mathematical models or substructures as shown in Figure 6.13. 

The connection between them is provided by interaction forces of equal amplitude, acting in 

opposite directions of the two sub-structures. The total motions developed at the interface are the 

sum of the free-field motions at the interface of the soil without the added structure and the 

additional motions resulting from the interaction. As it is explained in this paragraph, the 

substructure method is advantageous as  it allows to break down the complicated soil-structure 

system into more manageable parts which can be more easily solved and checked. As the 

stiffness and damping properties of the soil are frequency dependent, it is most convenient to 

carry out the earthquake response analysis in the frequency domain, then to obtain the response 

history and again transform it in the time domain.  

 

 

Note – In case of soil/foundation medium modeling of some structures, a portion of the soil may 

be included in the superstructure as shown in Figure 6.14(c).  

Figure 6.13: Seismic soil-structure interaction with substructure method. (Wolf, 1985) 
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For such structures two interfaces exists, one at the free ground surface and the other at the 

surface between the superstructure and the soil/foundation medium.  

The substructure method of analysis can be explained in detail with SDOF structure supported by 

a rigid foundation slab resting on an elastic half space.  

6.11.1 SDOF System Considering SSI 

Consider a SDOF system, supported on a rigid base of mass bm  and mass moment of inertiambI , 

resting on a half-space as shown in Figure 6.15 (a). To make the τ effect negligible, the 

horizontal dimensions of the base are assumed as sufficiently small.  

 

 

Figure 6.14: Seismic soil-structure interaction with substructure method: (a) SDOF system 

resting on a half space; (b) modeling superstructure and soil medium separately; (c) some 

portion of the soil is included in the superstructure model. 

(a) (b) (c)
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The uniform free-field ground acceleration )(tugɺɺ at the half-space surface will introduce the 

foundation forces at the interface between the base of the structure and the half-space. Under the 

influence of these forces i.e. horizontal base shear forces and moment at the base of SDOF 

system will translate and rotate the system due the SSI phenomenon, as shown in Figure 6.15 (b). 

It is also assumed that a rigid massless plate is present on the surface of the half-space to ensure 

its displacement compatibility with the lower surface of the rigid base.  

The total base displacement of the SDOF system shown in Figure 6.15 )(tvt will be  

 )()()( tvtutv g
t +=

       
  (6.39) 

where,  

Figure 6.15: Seismic soil-structure interaction analysis using substructure method 
for SDOF system. 
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)(tug  = Free field ground displacement. 

)(tv   = Added displacement (or base displacement) caused by SSI. 

Also )(tθ  represents the base rotation caused by SSI. It is also noted that as the SSI results in 

translation and rotation of the base of SDOF system, it introduces the )(tv and )(tθ displacement 

of the system and thus the overall system has 3 DOF. The equation of motion for substructure 

no.1 (i.e. the top mass of the SDOF system) may be written as  

 02 0 =++++ tvmhmukumum ɺɺɺɺɺɺɺ θωξ
       

  (6.40) 

where, 

u  = Relative displacement of the top mass with respect to the base.  

m  = Lumped mass at the top. 

ξ  = Percentage critical damping. 

0ω  = Natural frequency of the SDOF system.  

k  = Total lateral stiffness of the mass with respect to the base.  

h  = Height of the column. 

θ  = Displacement due to rotation of base of SDOF system. 

tv  = Total displacement of the base. 

Considering the equilibrium of the substructure no. 1, we will get the base interaction forces bV

and bM developed between the super-structure and the half space. 

 b
t

b Vvmmhmum =+++ ɺɺɺɺɺɺ )(θ
       

  (6.41) 

 
 

b
t

mbm MvhmIIhmuhm =++++ ɺɺɺɺɺɺ θ)( 2

       
  (6.42) 
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where, 

bm = Mass of the base. 

bmI = Mass moment of inertia of the base. 

Equation (6.40), (6.41) and (6.42) can also be written in the frequency domain by using a fourier 

transform function as  

 0)()()()( 222 =−− ωωωθωωω tvmhmug
       

  (6.43) 

 
 
 

)()()()()( 222 ωωωωθωωω b
t

b Vvmmhmum =+−−−
       

  (6.44) 

 )()()()( 222 ωωωωθωωω b
t

m MvhmIuhm =−−−
       

  (6.45) 

where, 

.2hmIII mbmm ++=  

)(ωg = Inverse of complex frequency response functions of a SDOF system. 

The complex frequency response functions forms the dynamic stiffness (i.e. impedance function) 

for the rigid massless circular footing of radius r  resting on an isotropic homogeneous half 

space for translational and rotational degrees of freedom as shown below (Datta, 2010), 

 



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
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v

vvv
d )(

       
  (6.46) 

where, vvG , θvG , vGθ , θθG  are the complex frequency response functions. These functions have 

real and imaginary parts and can be written as   

 )()()( aiGaGiaG IR +=
       

  (6.47) 
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In the above expression R denotes the real part which represents the soil resistance (stiffness) 

and I denotes the imaginary part which represents the radiation damping of the soil. Also a

represents the non-dimensional frequency, which can be given as  

 
sv

r
a

ω=
       

  (6.48) 

 

Where, sv is the shear wave velocity for the material of the uniform half-space. Plots of the 

)(aG R

 
and )(aG I in the non dimensional form for the elements of the )(ωdG  matrix are 

available in many publications of various investigators, in the form of graphs. (Note: - for 

rectangular footings, approximate expressions for impedance functions may be derived from 

those expressions which are available for the equivalent area of circular footings.) The resulting 

displacements of the degrees of freedom of the plate are obtained as complex number and are 

arranged in a column to form a flexibility matrix. The inverse of flexibility matrix gives the 

impedance matrix as shown in equation (6.46). These impedance functions are the key 

parameters for the substructure method of analysis. 

Equation (6.43), (6.44), (6.45) can be rearrange as (Datta, 2010) 

 )()()( ωωω gg uMdK ɺɺ=
       

  (6.49) 

where, 

)(ωgK = Frequency dependent complex stiffness matrix of the soil-structure system. 

)(ωd = Complex frequency components of the displacement vector (i.e. degrees of freedom)

}{ Tvu θ . 

)(ωguɺɺ = Complex frequency components of the free field ground acceleration. 

{ }T
b hmmmmM )( +−=  
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Also )(ωbV and )(ωbM can be written in terms of the impedance matrix )(ωdG  as  
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And 

 )()()( 22 ωωωωω g
t uvv ɺɺ+=

       
  (6.51) 

 

The elements of matrix )(ωgK  are given as  
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Equation (6.49) can be solved for discrete value ofω , which gives the response vector )(ωd in 

the frequency domain. Fourier transform of ground acceleration gives )(ωguɺɺ . Also the inverse 

Fourier transform of )(ωd gives the response )(),(),( ttvtu θ in time domain in the form of time 

histories. 

6.11.2 MDOF System with Multi-Support Excitation Considering SSI 

The basic principles involved in the analysis of SDOF system are same and applicable for the 

MDOF system except that the formulation of the equation in case of MDOF system with multi-

support excitation is more complex. The situation of multi-support excitation can occur in case 



215 

 

of large structures such as bridges and arch dams etc, where the free-field motion at all points of 

contact of structure and foundation are not constant. The approach normally used to solve this 

kind of problem is to define a quasi-static component of the response in the total or absolute 

response of different degrees of freedom. The total displacement of the system can be given as 

combination of two quasi-static components of displacement and a dynamic displacement. 

 { } { } { } { }dr
t uuuu ++=

       
  (6.53) 

where, 

{ }tu = Total/absolute displacement of the system from a fixed reference. 

{ }u =The vector of the displacements produced at all non-supported degrees of freedom 

produced due to the ground displacements at the supports. 

{ }ru =The vector of the displacements at the supports for maintaining elastic compatibility 

between the foundation and the soil. 

{ }du =The vector of the relative dynamic displacements produced at all non-supported degrees of 

freedom due to the inertial actions. 

The quasi-static displacement involves the stiffness of the soil-structure system only. Initially the 

free field ground motion tends to move the supports with the same distance with which the soil 

supporting the support moves. The different supports have different ground motion (as it is not 

constant for large structures), due to this the relative motion between the supports takes place. 

This results in the development of the elastic forces in the structure. Due to these elastic forces a 

set of equal and opposite reactions develops at the interface between the substructure no.1 and 

substructure no.2. This equal and opposite reactions produces the deformations in the interface 

and induces compatible displacement in the structure and soil. Also the inertia forces developed 

at the masses related to each degree of freedom of the structure intoduces a pair of equal and 

opposite dynamic forces at the foundation and soil interface. This results in the development of 

the compatible dynamic displacements in the structure and the soil. The dynamic displacements 

caused in the soil, propagates in the form of a wave within the soil giving rise to radiation 
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damping in the soil-structure interaction. To formulate the governing equations of motion for the 

general soil-structure system, consider a MDOF system as shown in Figure 6.16. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: Seismic SSI with substructure method: (a) MDOF system with multi-support 

excitation; (b) modeling superstructure (substructure no. 1) and soil medium (i.e. 

substructure no. 2) separately; (c) some portion of the soil is included in the superstructure 

model referred as substructure no.1 and remaining soil as substructure no. 2. 
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The equation of motion of the system shown in Figure 6.16 (a), can be written as  
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Partitioning the equation of motion, will lead to the two sets of equation of motion of both 

substructures, shown in Figure 6.16(b) 

The equation of motion of the substructure no. 1 would take the form  
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In a similar way the equation of motion of substructure no. 2 is  
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where, 

st  : Represents the nodes of structure. 

f  : Represents the nodes of foundation or common interface between substructure 1 & 2. 

s  : Represents the nodes of soil i.e. substructure no. 2. 

For the model (c) shown in Figure 6.16, the equation of motion will be 
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(6.57) 

where, 
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st  : Represents the nodes of structure.  

f  : Represents the nodes (DOF) of base/foundation i.e. soil-structure interface but           

               Excluding st  and s. 

i  : Represents the nodes in the soil region excluding the nodes of f ands . 

s  : Represents the nodes at the interface of substructure no. 1 & 2 and also the nodes of        

              substructure no. 2. 

Partitioning this equation as indicated gives the equation of similar form of equation (6.55). 

where, 

][ ststM  of equation (6.55) and 
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 of equation (6.57) shows the mass matrix for 

the nodes/DOF of the substructureno.1 excluding the nodes of the interface between the 

substructure no. 1 and 2. ][ fstM  and 


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

fiM

0

0

 of equation (6.55) and equation (6.57) respectively 

shows the mass of the DOF of the substructure no.1 and the interface of substructure no. 1. 

Similar is the case of ][ stfM  and [ ]ifM00 . 

][ ffM of equation (6.55) and ][ iiM of equation (6.57) represents the mass of the DOF at the 

interface of substructure no. 1 and 2, excluding the DOF inside the substructure no. 2. 

{ }t
fP  of equation (6.55) and { }t

sP  of equation (6.57) respectively shows the nodal forces 

developed at the interface of substructure 1 and substructure 2. In a similar way the damping and 

stiffness matrix are having same relation. So now onwards the solution of equation (6.55) and 
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(6.57) will follow the same steps as mention below though the steps are written, by keeping 

equation (6.55) in mind. 

In order to obtain the quasi-static components of the responses i.e. u and ru , only stiffness terms 

of the equation of motion are considered. Let the quasi-static response of non support degrees of 

freedom due to free field ground motion at the support be denoted by stu  and the free field 

ground motion at the support be denoted by g
f uu = . Also the quasi-static displacements at non 

support degrees of freedom produced due to the compatible displacements at the soil foundation 

interface be denoted by st
ru  and the compatible displacement at the supports be denoted by f

ru . 

Then the equilibrium of forces at the soil-structure interface written in the frequency domain is 

given as  

 ( ) ( ) 0=++++ f
rff

f
r

f
ff

st
r

st
stf uGuuKuuK  (6.58) 

 

In which ffG is the impedance matrix for the soil corresponding to the interface degrees of 

freedom. As this equation is written only for quasi-static motion, the imaginary part of the 

impedance matrix is not included in it. 

After simplifying this equation, we will get 

 ( ) f
f

ff
st

stf
f

rffff
st

rstf puKuKuGKuK −=−−=++  (6.59) 

 

If the displacement, due to the free-field ground motion of the non support degrees of freedom 

the supports and the ground motions at the support are only considered, then  

 0=+ f
fst

st
stst uKuK  (6.60) 
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Or 

gfststst

gfststst

f
fststst

st

uKK

uKK

uKKu

ɺɺ
1

2

1

1

1 −

−

−

=

−=

−=

ω

 (6.61) 

 

Substituting equation (6.61) in the R.H.S. equation (6.59), leads to 

 ( ) gfststststffff uKKKKp ɺɺ
1

2

1 −−−=
ω

 (6.62) 

 

If the displacements at the non support degrees of freedom produced due to the compatible 

displacements at the soil foundation interface and the compatible displacements at the supports 

are only considered then 

 0=+ f
rfst

st
rstst uKuK  (6.63) 

 

Adding equation (6.63) to the L.H.S. of equation (6.59) (as there is no external set of forces 

acting on the structure), the following expression for ru is obtained. 

 

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
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








+ f
f

r
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r

ffffstf

fststst

pu

u
GKK

KK 0
 (6.64) 

 

Equation (6.53) can also be written as 
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{ } { } { }

{ } { } { }

{ } { } { }
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ff
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st
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uuualso

uuuand

uuuwhere

uuu

+=

+=

+=

+=

,

       
  (6.65) 

 

Further substituting equation (6.65) in equation (6.55) and rearranging it, we will get the 

expression fordu . 
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 (6.66) 

In the above expression the damping terms of the R.H.S. makes little contribution to the effective 

load of a relatively low damped system, say 1.0≺ξ , and can be neglected. Using equation (6.58), 

equation (6.66) can be written in frequency domain by performing Fourier transform, as  
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where, f
rffrf uGp −= . Also rf

t
f pP −

 
represents the dynamic component of the loading at the 

foundation which is arise due to dynamic characteristic of displacement at the interface. It may 

be obtained in a similar way as that of quasi-static displacement (equation 6.58) i.e. 

 f
dff

d
frf

t
f uGppP −==−  (6.68) 

 



222 

 

In this equation ffG have both real and imaginary components. The imaginary component 

denotes the radiation damping due to which overall damping of the system increases. 

Substituting equation (6.68) in equation (6.67), gives 
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(6.69)  

st
du and f

du can be determine by solving equation (6.69) and inversing complex matrix for each 

value ofω . Using these results tu can be obtained. Inverse Fourier transform of tu gives the 

desire response in time domain. 
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6.12 Solution of SSI Problem Using ABAQUS Software 

The SSI problem can be solved using ABAQUS software by following the steps mentioned 

below 

1. Part Module: Forming the geometry of the structure and soil. 

2. Property Module: Generating the property of the structure and soil. 

3. Assembly Module: Assembly of the structure and soil into common platform. 

4. Step Module: Define the analysis type. 

5. Interaction Module: Define the interaction between the structure and soil medium. 

6. BC Module: Define the boundary condition in the structure. 

7. Mesh Module: Meshing of the structure and soil. 

8. Job Module: Submission of the Job for the analysis. 

9. Visualization Module: Viewing the result. 
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Figure 6.17: Frame to be analyzed by Seismic soil-structure interaction analysis. 

Example 6.1  

Analyze the frame shown in Figure 6.17 by performing soil-structure interaction analysis in 

ABAQUS by  

• Direct Method. 

• Sub-Structure Method. 

The frame is supported by two isolated footings having properties as mentioned below.  

1. Structural Configuration 

 

 

 

 

 

 

 

 

2. Properties of structure 

Size of Beams    = 400 mm x 400 mm 

Size of columns   = 400 mm x 400 mm 

Size of foundation   = 750 mm radius 

3. Material properties of structure 

Density stρ     = 2500.00 3mkg  

Modulus of Elasticity stE   = 2500.00 2mN  

Poisson’s ratio stµ    = 0.15 
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Damping stξ     = 5.00 0
0  

4. Properties of Soil 

Density sρ  = 1800.00 3mkg  

Shear Velocity sν    = 200.00 secm  

Poisson’s ratio sµ    = 0.3 

Damping sξ     = 20.000
0  

5. Input Time History   = El Centro Earthquake Time History  as shown in  

   figure 6.18 
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6. Problem requirement                              = Find the time histories of relative acceleration 

and  

                                                                Rotational acceleration at the top floor of the   

                                                                given frame. 

Soution: 

A. Procedure by Direct Method  

 

1. Modeling of structure geometry 

Figure 6.18: Input El-Centro Earthquake Time - history. 



226 

 

• Structure is modeled with beam elements and soil is modeled with plain strain 

elements. 

• Mesh size for beam elements is 1m and mesh size for plain strain elements is    

3m x 3m. 

• To avoid reflecting effect of wave sufficient amount of soil beyond the structure 

i.e. 30m is modeled.  

• Abaqus Model of structure along with soil is shown in the Figure 6.19 below 
 

 

 

 

 

 

 

 

 

 

 

 

2. Soil Structure interaction and support conditions 

• Appropriate boundaries for the soil medium are assumed - Support conditions at 

bed rock level are assumed to be fixed. 

• Interaction between structure / footing with soil is modeled with tie elements. 

• Contact surface between footing and soil is defined as 

� Hard contact in vertical direction. 

� Friction contact in tangential direction. 

� There is no separation in vertical direction. 
 

Figure 6.19: ABAQUS model of structure with soil. 
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3. Analysis of structure and results 

• Structure is analyzed in ABAQUS and following results are presented. 

 
� Relative acceleration time history at top floor 
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� Rotational acceleration time history at top floor 
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Figure 6.20: Relative acceleration time - history at top floor of frame. 

Figure 6.21: Rotational acceleration time - history at top floor of frame. 
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B. Procedure by Sub-Structure Method  

 

Basically there are 3 steps for soil structure interaction analysis by sub-structure method 

using ABAQUS. 

1. Input time history is at bedrock level and we need the time history at foundation level. 

• In first step time history at the bedrock level is converted to time history at foundation 

level by kinematic interaction analysis. 

• Procedure - Massless structure (i.e. structure with stiffness only) is modeled along 

with soil and time history analysis is carried out by applying the time history at the 

bed rock level. 

• The modified time history at the foundation level is shown in Figure 6.22. By 

comparing time history at bed rock level shown in Figure 6.18 and time history at 

foundation level shown in Figure 6.22, one can notice that the foundation level time 

history is having some more peaks but small value of  acceleration amplitude. 
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2. Estimation of spring constants for soil-spring constants are estimated for foundation by 

considering properties of soil. 

Shear wave velocity   Ss G ρν /=  

Figure 6.22: Time -history (modified) after performing kinematic interaction analysis. 
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Shear modulus    2
ssG νρ ×=   

      22001800×=   

      27 /102.7 mN×=   

Spring constants are given by 

                       )87(/)1(32 ssx RGK µµ −−=
 

              )3.087(/75.0102.7)3.01(32 7 ×−×××−=
 

            
mN /1063.2 8×=

 

            
)1(/4 sz RGK µ−=
 

            
)3.01(/75.0102.74 7 −×××=
 

                
mN /1008.3 8×=

 

                       
])1(3[/8 3

sr RGK µ−=
 

            
])3.01(3[/75.0102.78 37 −××××=
 

                       
mN /1016.1 8×=

 

3. Modeling of structure 

• Superstructure is modeled as per the requirement of the problem. 

• Support conditions are modeled by spring constants and values of spring constants are 

considered as estimated in step 2. 

• Time history analysis is carried out for the structure, using modified time history 

obtained in step 1(i.e. after performing kinematic interaction analysis). This 

procedure is called as inertial interaction analysis. 

• Model of the structure along with spring supports is shown in Figure 6.23. 
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Figure 6.24: Relative acceleration time - history at top floor of frame. 

 

 

4. Analysis of structure and results 

 

• Structure is analyzed in ABAQUS and the following results are presented. 

 

 

� Relative acceleration time history at top floor. 
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Figure 6.23 : Model of structure only, 
with spring supports. 
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Figure 6.25: Rotational acceleration time - history at top floor of frame. 

 
 
 

� Rotational acceleration time history at top floor. 
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Discussion 

By comparing the obtained results of the acceleration response of the system, we can see 

there is difference in the acceleration response time history of the two analysis. The 

reason for the difference between the results of the two analysis is that in direct method 

we are applying original time history (with higher amplitude) directly at the foundation 

level of the structure. While in case of substructure method firstly we are applying time 

history at the bed rock level and then modifying it to the foundation level. Due to which 

the modified time history is having somewhat small  acceleration amplitude in compare 

to the original time history. Further in this method we are modeling soil also, due to 

which the two results are differing. 
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Figure 6.26: Frame to be analyzed by Seismic soil-structure interaction analysis. 

 

6.13 Tutorial Problems 

Q1. Analyze the frame shown in Figure 6.26 by performing soil-structure interaction analysis 

 in ABAQUS by  

• Direct Method. 

• Sub-Structure Method. 

 The frame is supported by two isolated footings having properties as mentioned below.  

1. Structural Configuration 
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2. Properties of structure 

 Size of Beams    = 450 mm x 450 mm 

 Size of columns   = 450 mm x 450 mm 

 Size of foundation   = 900 mm radius 

 Material properties of structure and soil are same as taken in solved example 6.12. 

 Find the time histories of relative acceleration and Rotational acceleration at the 

 top floor of the given frame when it is subjected to El-Centro Earthquake time 

 history. 

 

Q2. Analyze the frame shown in Figure 6.26 by performing soil-structure interaction analysis 

 in ABAQUS by  

• Direct Method. 

• Sub-Structure Method. 

 The frame is supported by two isolated footings having properties as mentioned below. 

 Structural configuration, Properties of structure and material properties of structure are 

 same as mentioned in the previous problem. The properties of soil are as mentioned 

 below 

 Density sρ     = 2000.00 3mkg  

 Shear Velocity sν    = 600.00 secm  

 Poisson’s ratio sµ    = 0.3 

 Damping sξ     = 20.000
0  

 Find the time histories of relative acceleration and Rotational acceleration at the top floor 

 of the given frame when it is subjected to El-Centro Earthquake time history. 
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Figure 6.27: Relative acceleration time - history at top floor of frame. 

Figure 6.28: Rotational acceleration time - history at top floor of frame. 

6.14 Answer to Tutorial Problems 

Q1 

• Direct Method 
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Figure 6.29: Relative acceleration time - history at top floor of frame. 

Figure 6.30: Rotational acceleration time - history at top floor of frame. 

• Sub-Structure Method 
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Figure 6.31: Relative acceleration time - history at top floor of frame. 

Figure 6.32: Rotational acceleration time - history at top floor of frame. 

Q2. 

• Direct Method 
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Figure 6.33: Relative acceleration time - history at top floor of frame. 

Figure 6.34: Rotational acceleration time - history at top floor of frame. 

• Sub-Structure Method 

 

 

0 5 10 15 20 25 30
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

R
e

la
tiv

e
 A

cc
e

lra
tio

n 
(g

)

Time (Sec)  

  

 

 

0 5 10 15 20 25 30
-0.08

-0.04

0.00

0.04

0.08

 

R
ot

a
tio

na
l A

cc
e

le
ra

tio
n 

(g
)

Time (Sec)  

 

 

  


