Chapter 3

Dynamics of Earthquake Analysis

3.1 Introduction

Earthquake or seismic analysis is a subset oftsiralcanalysis which involves the calculation of
the response of a structure subjected to earthgeedigation. This is required for carrying out
the structural design, structural assessment arafitiéng of the structures in the regions where
earthquakes are prevalent. Various seismic dataeuessary to carry out the seismic analysis of
the structures. These data are accessible intoways viz. in deterministic form or in
probabilistic form. Data in deterministic form arsed for design of structures etc whereas data
in probabilistic form are used for seismic risk lgses, study of structure subjected to random
vibration and damage assessment of structures padgcular earthquake ground motion. Major
seismic input includes ground acceleration/velddisplacement data, magnitude of earthquake,
peak ground parameters, duration etc.

In this chapter, the seismic response of the strastis investigated under earthquake excitation
expressed in the form of time history of acceleratiThe response is investigated for the
structures modeled as Single Degree of Freedom E3@R@d discrete Multi Degree of Freedom
(MDOF) System.

3.2 Equation of Motion for SDOF System

Consider a SDOF system (shown in Figure 3.1), stijeto an earthquake acceleratisp(t) .

Let m, k and c represent the mass, stiffness and damping, regelgcbf the SDOF system
undergoing relative displacement, velocity and Bregion of x(t), x(t) and x(t), respectively.
The various forces acting on the system will betiakforce, stiffness force and damping force.
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(@) (b)
Figure 3.1 (a) SDOF system (b) Free body diagram.
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Consider the equilibrium of the various forces ragton the mass, as shown in Figure 3.1(b), we

get,

m(X()+ % (9)+cX)+ kk} =0 (3.1)
or

mx()+ e )+ k) = — nmix(x (3.2)
where,

x(t) = relative displacement of mass with respect taigdo
x(t) = relative velocity of mass with respect to ground
X(t) = relative acceleration of mass with respect taigeb

%,(t) = earthquake ground acceleration

The equation of motion is expressed in the norradlibrm as
o . 2 - _=

where,§ andwg denotes the damping ratio and natural frequenc§DF system, respectively

expressed as

0 ef
m (3.4)
C

E:

2o, (3.5)
The damped natural frequency of SDOF system isgdye

W, = Wyy/1-&° (3.6)

The equation of motion for a linear, viscously daeh®BDOF system is second order differential
equation with constant coefficients. The solutidrties equation for the specified earthquake

acceleration, (t) will provide the response of the SDOF system.

61



3.3 Response Analysis of SDOF System

For a given time history (acceleration versus tidata) of earthquake ground motion, the
response of viscously damped SDOF system can laelteither by Time Domain Analysis or
Frequency Domain Analysis.

3.3.1 Time Domain Analysis

This method helps in obtaining response of SDOResysn both linear and non linear range.
Duhamel integration and Numerical schemes such esnhirk integration, Runge-Kutta

methods are invariably accompanied for obtainingi@ical solution of differential equation.

Duhamel Integral is used to obtain the respons®DDF system subjected to earthquake ground
motion. Equation of motion for a SDOF system suigi@do ground motion acceleration is given
by equation (3.2). The solution of which can betspto homogeneous and particular part as

X(1) = % )+ %, (0 3.7

where,
Xn(t) = homogeneous solution, arg(t) = particular solution.
Homogeneous or complimentary solution (as depi¢teth Figure 3.2) is the damped free-

vibration response given by equation (3.8)

% (1) = g(t) % + h(t) % (3.8)

where, x,and x,are initial displacement and velocity of the SD@Btem, respectively.

%=1 R

; SDOF >g(t)
% =0
% =0

; SDOF > h(t)
% =1

Figure 3.2 Response of SDOF system to initial disiplacement and velocity.
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Putting the boundary conditions (as shown in Figu#} in the solution of the homogeneous
part,g(t) andh(t) can be obtained as

g(t) = €' | cosw, t + £, sinw, t}

“ (3.9)

_E%t

h(t) = sin w, t

% (3.10)
For obtaining particular solution part of equati@?), it is assumed that the irregular ground
acceleration is made up of very brief impulsestasvs in Figure 3.3. The vibration caused by

all the impulse are added together to obtain tted tesponse.
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dt
Figure 3.3 Impulse from earthquake acceleration.

Consider the vibration caused by a single impulsawyton’s second law states that the rate of

change of moment of a mass is equal to the apfdred i.e.

d, . N
—(mx(f)) = -mx ()
dt (3.11)
Thus, the change in momentum over a brief intergtalprought by the instantaneous force
—m %, (1) is given by

d(mx(9) = - my() d 61

63



It should be noted that the small changes in vBland displacement occurring during the time
interval & will make a negligible contribution to the chanmemomentum. The change in

velocity during the interval is

dx(t) = - % (1) dr (3.13)

Thus, the change in displacement at tiigused by the impulseats given by

dx (1) = — % (1) dt. h(t-1) (3.14)

Each impulse in Figure (3.3) will produce a viboatiof this form. Because the system is linear,
the effect of each impulse is independent of ewher impulse and the total resulting motion

can be obtained by the principle of super position.
t
(1) = - jo %, (1) h(t-1) dt (3.15)

This integral is known asonvolution or Duhamel integral Explicit solution may be obtained

for simple forms of forcing function such as redalar and triangular.

From equations (3.8), (3.9), (3.10) and (3.15), tittal response (given in equation (3.7)) of

system can be given by

X(1) = %0()+ %Y= [[%(0)] k &7) o (3.16)

For the system with at rest condition (ix=0 andx,=0)the response is given by

x(t) = - j;'xg(r) h(t-T) dr (3.17)

This is known as time domain solution because #sponse is calculated using time as a

variable.

In order to obtain recurrence formulas for time damanalysis, consider a SDOF system with
displacement and velocity defined at initial timieand the response is required tat, (refer

Figure 3.4). Supposex and x are the initial displacement and velocity of thestsyn,

respectively,
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Time

Figure 3.4 Linear variation of ground accelera@noss chosen time stdp .

The response of the system (reproducing equatid®)38is expressed as

X0 =g-Dx+hEnDX- [0 hET)d (3.18)
g(t—n)=e*%“'“{% sin @, (t- ) + cosa, c—t}

-Eay (1) .d
h(t-t) = sinoy, t-t)

o (3.19)

. G Xg _Xg _
%,(1) = % + A (t-1)

—&uy (t-T)
h(t—-1) = sinw, ¢—1)

Back substituting in equation (3.18),

¢ |+l i E0, (t-T)
x(t) = g(t-t)x+ f(t—F)X—L |:§+ L t):He - sin @), (t—r)} d

(3.20)

x®)=gt-Dx+HE=px+ (=% + ()% (3.21)
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Similarly, the velocity of the system at tinteés given by

X = git-t)x+ (=t x + f(t=t) % + §( 1) % (3.22)

At t=t, , x(t)=x,, and X ¢ F X,,, the displacement and velocity of the system are

expressed as

X = 9@ x+HAD X + f(At) % + F(Aat) K (3.23)
X, = 9@ x+HAD X + f(At) % + (A K (3.24)

In the matrix form, the above equations can be nigem

{mHg(At) h(At)} {x} . P(M) };(Ait)} {x} (3.25)
%) [ O(AY) hAD][X f(at) H(at)]|%? '
or

%u| _[an ap|[X% b, byl %
{)'ﬁﬂ}_{azl azzHX} ' L’m sz{%ﬂ} (3.26)
or

{XtAN FFIB ¥ (3.27)
where,

T = X ::Xig :all a, d {bu b12:|
o {x} 0 {&} . L\ﬂ azj’ nd BF b,

The elements of matriced][and [B] from Nigam and Jennings (1969) are given by aequoat
(3.28) and (3.29)
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a,

&,

&

8

ngti W, w3 O, 0 WA
b, = %" ng—; +%](cos W, A, — smoodAtJ
_( 325 _Zj(wd sin w,At, +Ew, cosw,At,) }
o At : o At,
b, e [%(cosde - 1§EZ sinu)dAﬁJ
‘wgz—ii(“’d sin W At +Ew, cosoodAti)}—wélA,[i

e—E%Ali (

~ €A,

0y

1-¢&°

e EupAg

|

§ sin w,At + COS(DdMJ
1-¢&

sin w,At;

€™ sinw,At

g .
At - —== sinA
cosw,At o Sin; ?}

- :
28 1+ijsm Wy A, +( Z3 +_12jcoswdAti
t W

W, x

W, At,

(L)
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Finally, the acceleration response of the SDOFesystan be obtained by reproducing the

equation of motion as

— (_CX+1 - k)|(+1 - mgl)

m

(3.30)

X1

Hence, if the displacement and velocity of the eaysare known at some timiethe state of the
system at all subsequent timés, can be computed exactly by a step-by-step apjaicaif
equation (3.27) to (3.30). The computational adegatof this approach lies in the fact that the

elements of A] and B] matrix depend only o, w, andAt;. The valuef and w, are constant
and if Atj is also constantg , X and 'k can be evaluated by the execution of multiplicagmd

summation operations for each step of integrafidre matrices4] and [B], defined by rather
complicated expressions, equations (3.28) and Y328d to be evaluated only at the beginning
of each response evaluation. If varying time iradsvare used, it is necessary, in general, to
compute A] and [B] at each step of integration. However, by roundimg time coordinates of
the record, the number of these matrices neededgdtire calculation can be reduced to only a
few. These, too can be computed at the beginninth@fcalculation and called upon when

needed, thereby saving the computational time.
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3.3.1.1 Numerical Methods for Seismic Analysis ofCZBOF System

There are number of numerical methods availablesédwving initial boundary value problems.
Most commonly used methods are Newmark’s Beta ndethimear acceleration method) and
Runge-Kutta method which are described here.

3.3.1.1.1 Newmark's Beta Method

In this method, acceleration, velocity and disphaest at timef = ti;; iS obtained as a function
of acceleration, velocity and displacement at t; (which is always known), assuming linear

acceleration during small time step (Figure 3.53séme a SDOF system subjected to earthquake
ground motion, the equation of motion is given by

mx(f)+ X+ kX = — mix(x (3.31)

(@) (b)

Figure 3.5 (a) Linear ground acceleration, (b) Bineslative acceleration of SDOF system over
time step,At, .

In the incremental form, equation (3.31) can beritten as

MAX + AAX + KA x = - Mk (3.32)
where,

A = X, — X

A% = X, - X

DX = X, = X (3.33)
Ati = ti+1 _';

ng = X% - %
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Assuming linear variation of acceleration (see Fegdi5(b))

() = % + % t (3.34)

On integrating,

Oy 2

() = % + % t+ —Xizt_ X % (3.35)
2 Y 3

X({t) = % + % t+ X % ¢ Rald .% (3.36)

In equation (3.36) put =At, and express in terms & i.e.

 ax - O x - 3 (3.37)

AX = —
. At? At

Similarly, from equation (3.35) put=At, and solve forAx
At

. 3 .
Ax = EAX - 3% - 7),( (3.38)

SubstitutingAx% , A% in equation (3.32) and solve fd i.e.

peff
Ax = (3.39)
Kot
where,
i 6 At
= -mM\X + | — m+3c X+ | 3m— ¢ 3.40
pef'f )% (Atl Cj X ( 2 } i ( )
6 3
SO (341)

Knowing the Ax, determineAx from equation (3.38). At= t;,1, displacement and velocity can

be determined as

X = X% +0X }

X = % +0K (542
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The acceleration at timg; is calculated by considering equilibrium of equat{8.31) to avoid

the accumulation of the unbalanced forces i.e.

R = [ —mgt - oxy - kg (3.43)

In this way, using this step-by-step numerical gnéion scheme, the response of SDOF system
can be obtained for given time history. Repeatstae steps to obtain response=tt., and so

on. The accuracy of output response depends upom#gnitude of time-stepAt,’ chosen.
Optimum values of At,’ should be chosen to obtain fastest converginglt®svith required

precision. Time stepping methods has got limitattbat error goes on accumulating with
calculation proceeds. In order to keep Newmark'saBeethod stable, the time step should be
taken such that (Chopra, 2007)

% < 0.551 (3.44)

0

where, T, =211/ w,,is the time period of the SDOF system.

This method is conditionally stable if above indgyasatisfies, otherwise method will “blow-

up” giving illogical results.

3.3.1.1.2 Runge-Kutta Method

Knowing the initial conditions, response of SDOFteyn with time can be determined using
Runge-Kutta method. Let the equation of motionhef 8DOF system be

mx(t) + cx() + k() = - mx(} (3.45)

Define a vector,

B X
X = {X} (3.463)

On differentiating the above equation
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(3.46Db)
Using Equation (3.45) and (3.46a), above equatanbe reproduced as,
X X 0
+
[ 212
or, (3.47)
where . F= 0
) __C ] - —Xg
m
i+l
o Xg
Xg r/'/}
| |
| | |
| | |
ti t tis1
e a, —f
Figure 3.6: Time step for Runge-Kutta method
Determine the following constant vectors,
k =t Ex + R] (3.48)
— k — AF
k - + Fi 4+ 3.49
o[ {305) (73] o4
= = k — 2AF
= +—2| +| R+ 3.50
Ks X+ ] { 3 ﬂ (3.50)

(Note: Subscript ‘I’ refers to the value at time t;, ‘4’ refers to difference in value gt and t,

and “ ' indicates a matrix)
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then,

=] k2o
IX _{M}_ 4 (3.51)
Xﬂ:{zﬂ} - % + A% (3.52)

From equations (3.52) and (3.45)

— (_CX+1 - k)|(+1 - mgl)
m

X (3.53)

Repeat same steps to obtain response at time.,, and so on. A Runge-Kutta method is
conditionally stable for linear second order diffetial equation like equation (3.45). But still the

time step,At, should be taken short enough to ensure requissgision in results.
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3.3.2 Frequency Domain Analysis

This method is used for obtaining response of lirg@tems subjected to irregular excitations
such as earthquake forces and it requires knowletigemplex frequency response function for
its proper application. If the stiffnesk’ ‘and damping ¢’ of the SDOF system are frequency

dependent, then this approach is much superidretdimne domain.

In frequency domain analysis, the response of afSB@tem is given by
1% .
X(t) = j X, (00) H(w) € o (3.54)

where, )(g(w) is the Fourier transform of ¥,(t)] and H (w) is the complex frequency
response function.

Consider a SDOF system (Figure 3.7), subjectechéoforcing function ofé®', producing
displacement response as

X(t) = H(w)e" (3.55)

et SDOF > x(t) = H(w)e"

Figure 3.7: Explanation of complex frequency reggofunction.
Consider equation of motion of SDOF system
X+ 28w X+ w2 x= (3.56)

Substituting equation (3.55) in equation (3.56)
H(w)(iw)*e' + 28w, H (w)ine" +w’H(w)e" = & (3.57)

or, H(w)[-u’ + 28w, + wl] = 1 (3.58)

Thus, the complex frequency response function sessed as
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1

H (w) = R (3.59)
The Fourier transform of £, (t) ] is expressed as
X, (w) = j [-%, (9] €™ dit

= (3.60)

The response of a SDOF system can be obtainedUsfitsiting equations (3.59) and (3.60) in
equation (3.54) and solving the integral.

Note: Properties of Fourier transform are as follows,

Consider a functionf (t) which is periodic and it is absolutely integrabée,

T|f(t)|dt<oo (3.61)

Then the Fourier transform of(t) exists and given by

00

F(w) = j f (t)e™ dt (3.62)

—00

From the inverse Fourier transform
15 it

f(t) === [ F(w)e“ dw (3.63)
21>,

The f (t) and F(w) makes the Fourier Pair.
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3.4 Numerical Examples on SDOF system
Example 3.1

A SDOF system is subjected to a harmonic groundamatf X (t) = % sinwt. Determine the
steady state response using time and frequencyidaomethod and considering that the system
starts from rest. The natural frequency and fractibcritical damping of SDOF system asg
andé, respectively.

Solution: Equation of motion is given by
X(t) + 280, X(1) + W X(t) = =% sin®t

A. Time Domain Analysis (Using Duhamel Integration)

Using equation (3.17) steady state response aésyst time domain is given by

t

X(t) :—jsg(r)h(t—r)dr

0

o e I (D)
where, X (T) = X,SIN®T and h(t-1) =

sin(w, (t—1))

Thus,
e—zwo (t-1)

X(0) == (% Sin@r)——— sing; (=T ))r

sin(t —0)

5
W \(1-B?)2 + (ZRY

and@ = tan‘l(lzzl3 ]

where, =

2

£le

B. Frequency Domain Analysis
The steady state response is given by equatiod)(Beb,

x(t) :%1 j X, (00) H(w) €* cto
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where,

1

H =
() Wl — W’ +i 28w,

and
X4(®) = FT[~%,sin@t)] = [[-% sin@t] €™ dt
Evaluating the integral,
X, (w) = FT[-x, sin@t)] = —T %, sinfot)e™ di
X% Gt _ i
= ‘if f (eiall - e_im) e di (Note: sin®t= é—ej
2 - 2
__xo T i (-w)t _°° \(—w-)t
= E_J;e( )dt:!;é( )dt
__X% - .
= —E[Zné(oo—oo) - 21 (~w-m) |
=ik, [ 8(00— &) — &(w+ &)

iTX,

Figure 3.8 Graphical RepresentationFolf [-X, sintt].
Recalling the properties of Fourier Transform,

1= [3)e™dt and 6(t):%T [1e o
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Implying that,
j & doo = 213 (1Y)

Recalling the properties of Dirac Del&(t)’ function

5(kt) :ﬁa(t) and &(t-t)=0if t#t
[at-t,)dt=1

—00
00

[ 8t -t wnydt=w(t,)

ot —t,) =d(t, —t)
Using the above properties, the response of theFS&Gtem is expressed as
1, . N
X(t) ==— | € H(w) X, (w) cw
()=~ [ " H(o) X, ()

_ 1% 1
X(t)_ZTt_J;,é (oﬁ—w2+i25mo

j( i [3(w-5) -5+ @) ) do

:IX—° ]2 ¢ B(w—a))dw—T ¢ O(w+ ) dw
2| of - +i 2w, 2 W -+ Zow,

_i%, i e ~ g
2| -+ ZDw, -0 Zow,

- @ L 28B
Taking g =-2 and@ = tan™
) (1—52]
1% e a0 _ e g
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- IX, 1 (ei(ax—e) _ e—i(m—e))}

20| \J1-P%)% + (2R

iX 1

26 Ja-p?y + (22BY

J 2isin(t -9)

sin(t —0)

%
W \/(L-B2)2+ (2ZB)

Thus, the same expression for the steady statensspof the SDOF system subjected to the

harmonic earthquake acceleration is obtained usiegime and frequency domain approach.

Example 3.2

Show that the displacement response of an undar§EdF system subjected earthquake

acceleration, (t) = %, €®is given by

_ X a . _at
X{t)=————— —smo)ot—coswt+e
() a2+ 2 0

0

where, @y = natural frequency of the SDOF system; arel parameter having the same unit as

that of w, .

Solution: The displacement response of the SDOF system to eatlequacceleration,

. _ & cat
() =%¢€ IS expressed in time domain analysis as

X(t) == % (1) h(t-1) cr
x(t)= —wﬁ;ﬁ e sinwy, (t-1) dt

On integrating by parts,

79



t

x(t) = —%[— e: sinu)o(t—r)}0 +%ﬂ% e co, (t-1) dr
o T ar t
x(t) :—%ésmwot}ﬁ{— coswo(t—T)l+ )%aEOJ. e sy, (t-1) dr

X a . _
x(t)=- 2X° 2{—smwot—cosmot+eat}
a oy |

Alternate Solution by Direct Solution of Differential Equation

The differential equation of motion of an SDOF gystis expressed as

X(t) + o x() = =3 (D

Let the solution of the equation be

X(t) = %,(0) + x,(9

wherex(t) is the solution of homogeneous part of differ@intiquation ane,(t) is the particular
solution.

The homogeneous solution will take the followingnfio

X, (t) = Acoswyt + Bsinw,t

The particular solution of the given differentigjuation will be

x,(t) = ce™

. - _ sat
X,(t)=-ace
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3 — A2 ~A5at
X,(t)=a’ce

Substituting the above in the equatiof(t) + w; X(t) = - xe ™

aZce—at + (A)g Ce—at — _.X éat
cz-— 2o
a +wyj

Xp(t) == a2 ):-0(.03 e

The response of the system will be
x(1) = %, () + x, (1)

x(t) = Acosw,t+ B sinu, t-—2— &

The initial conditions for system with at rest aee at t = 0 arg(0) = 0andx(0) = 0.

x(0)=0> A-— _=0
a? +w

A=

a’+y}

Similarly,

X(0)=0 2 -w,Ax0+w,Bx1+ Zaxo g™ =0
a® +w,

__a_ X
B=-—7%_. >
w, a%+w;

Substitute the expression farandB, the response of SDOF system simplifies to

. a5 _ N )
x(t)=%coswot+— ZXO > singt - 2X° e
a’+oy} w, a°+w; a’+w;

—__ %

- isinwot - cognt+e™
a’ +uy| o
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Example 3.3

Using the frequency domain approach and time domwaahysis, show that the displacement of

an undamped SDOF system subjected to earthquaktesation, X, (t) = (1) is given by

x(t) = —%sin(wot)

where w, is the natural frequency of the SDOF system a(wlis the Dirac delta function.

Solution:
A. Frequency Domain Analysis

The displacement of SDOF system to earthquakeatiwitis given by

1 00 .o .
x(t) =l X, (w) H(w) €* dw
where,
H(w)=— ! (For undamped system)
W - W

And Fourier transform o¥ (t) is

Xy (@)= [ ~%,(1) e di

X, (w)= —I_Z ¢d(t) € dt

Xy (w)=-6e™ |

Xy (w) =g

Therefore, the response of the SDOF system is diyen

x(Q)= o[ )=

e dw
o} — o’

c, = €
=-2= > dw

2 W —w
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The integral have two poles at=+ w, Applying Cauchy residual theorem for solving the

integral
. Che . e
X(O*%{Zw Im g @7 @) 2 fim wg_wz(w%)}
| e g™
t)=—ic,| -
Gy

(1) :Z‘%O[é%t -]

x(t) = 2'2‘; [2i sinoogt]
0

12

ic, .
X(t) =—2sinwt
(="

x(t) = —;—‘;sin(wot)

B. Time Domain Approach

x(t) == h(t-1) % (1) or

where,
h(t-1)= sinw, (t-1)
% (1) = (1)

Therefore, the response of the SDOF system is diyen

. __[t sinoy(t-1) .
(=, 22 gy e

() =| -l |

W,
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Example 3.4

Show that the maximum displacement response ofrgped SDOF system subjected earthquake

accelerationx (t) = x,,0(t)is

X :—@exp[— & tan‘l(“l_zzﬂ

max W, \/1_52 E

where w,and ¢ are natural frequency and damping ratio of the SB@ftem, respectivelys , is

the increment in velocity or the magnitude of aecaion impulse and(t) is the Dirac delta

function.

Solution: The general solution of SDOF system will be gitagn

X(t) :—jxg(x) h(t-T) ot

t
=~[%,8(1) 1 gtal sin(c, (t-1)) dr
0 wd
— _& S0t o t
o e ¥ sin(w,t)

For the maximum displacement of the syste(mn) = 0

X50

e,  ——22e ¥ [-Ewy, sinw,t+w, cogwyt] = C
W,

i.e.

tan(,t )= W _ 0\1-¢’ :\/1_52
§ Ewy §

From above equation, the time at which maximumldisgment occurs will be

g2
tm:itan'1 1°¢
W, 3

If Wy, :tanl[ “1;£2

J , it implies that thesinw,t, =/1-&> (refer Figure 3.9)

84



Figure 3.9

The maximum displacement will be given by

Xq0 - _
Xmax = _wi e Cthn Sm(wd 1;n)
d

XgO 1 <1 1_52
=———exp - —tan’| ——

Substituting forw, = w,/1-&*> and simplifying

Xmax = Xgoexp[ N taﬁl( 1;EZJ]

x\ FE&2

85

i



Example 3.5

Find the response of SDOF system having time pea®mdl. sec and damping ratio as 0.02
subjected to the EIl-Centro, 1940 earthquake mofi@ier Appendix-l for the digitized
acceleration values). Plot the displacement regpohthe SDOF system using (a) Exact method

of time domain analysis, (b) Newmark’s Beta methad] (c) Runge-Kutta method.

Solution:

Based on the computer program written in the FORTAMNuage, the response of the SDOF
system with time period as 1 sec and damping &di®.02 subjected to the El-Centro, 1940
earthquake motion were obtained and is plotted igurEé 3.10. The calculated maximum

displacement of the system is found to be 0.1516Bt5166m and 0.15158m for exact method
of time domain analysis, Newmark’s Beta method BRushge-Kutta method, respectively. As

expected all the methods predict the same respadribe system. Further, time interval taken for
numerical integration of equation of motion of thestem is 0.002 sec for Newmark’s Beta and

Runge-Kutta methods.
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Figure 3.10 Response of SDOF system of ExampleyJarious methods.
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3.5 Response Analysis of MDOF System

Multi degree of freedom (MDOF) systems are usualhalyzed using modal superposition
analysis. A typical MDOF system with degrees of freedom is shown in Figure (3.11). This
system when subjected to ground motion undergofgmdations in number of possible ways.
These deformed shapes are known as modes of vib@timode shapes. Each shape is vibrating
with a particular natural frequency. Total uniquedes for each MDOF system are equal to the

possible degrees of freedom of system. The equatbmotion for MDOF system is given by

[(m{X} 4 B Q) £ k(Bt =1 Hh (O (3.64)

where, ] = Mass matrix if x n); [K] = Stiffness matixr{ x n); [c] = Damping matrix 1§ x n);
{r} = Influence coefficient vectornikl); {x 9} = relative displacement vectofx 9} = relative

velocity vector{X 9} = relative acceleration vector, axg(t) = earthquake ground acceleration.

v
X
E]

v

v

X;

v

v
x
iy

T
<> X,(1)

Figure 3.11 MDOF system.
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The undamped eigen values and eigen vectors ofMMBBOF system are found form the
characteristic equation

{[K]-w?[m}e =0 i= 123.n (3.65)
detf[k] - w2 [m]}|= 0 (3.66)
where,

w?= eigen values of thd'imode
@ = eigen vector or mode shape of tHeriode

;i = natural frequency in th& mode.

Let the displacement response of the MDOF systearpsessed as

{0} =[{ ¢4 (3.67)
where {y(t)} represents the modal displacement vector, hp]dis the mode shape matrix given
by

[(p]: [q’).l.’(p2 prasmnrrn '(pn ] (368)

Substituting{x =[ ¢ y in equation (3.64) and pre-multiply g

[o] " [m][@l{ v} +[a] " [dlel{ 38} +[a] "[Kll{ O} =~[o] "[ K } %O (3.69)
The above equation reduces to

MLV} +ICI{A I+ KI{wx}=-[o] [m{ F %(x (3.70)
where,

[¢] " [m][¢]=[M,,] = generalized mass matrix
[¢] "[c][¢] =[C,] = generalized damping matrix

[¢] " [K][¢] =[K,] = generalized stiffness matrix
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By virtue of the properties of the][ the matricesM,] and [Kq] are diagonal matrices. However,
for the classically damped system (i.e. if t&g][is also a diagonal matrix), the equation (3.70)

reduces to the following equation
V(1) + 28wy (1) + @y (t)=-T % (1) (i=1,2,3,.. n. (3.71)

where,
y;(t) = modal displacement response in {henbde,

¢, = modal damping ratio in th& mode, and

I", = modal participation factor folimode expressed by

S UALSS (3.72)
{1 &

The equation (3.71) represenmtssecond order differential equations (i.e. simtiarthat of a
SDOF system) and the solution of which will provitie modal displacement response in the i
mode, y,(t) for i=1 ton. The displacement response of the MDOF systembeaobtained by
equation (3.67) using theyf)}. The other response quantities of the structae be obtained

from the displacement response of the system.
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3.6 Numerical Examples on MDOF System

Example 3.6

A two-story building is modeled as 2-DOF system agd floors as shown in the Figure 3.12.
Determine the top floor maximum displacement andebshear due to EI-Centro, 1940
earthquake ground motion. Take the inter-storyretifs, k =197.392 x 19N/m, the floor mass,
m = 2500 kg and damping ratio as 2%.

m
——>X>
k
2m
—> X1
2k
T 77
Figure 3.12

Solution:

Mass of each floomn = 2500 kg and stiffness, k = 197.392 kN/m

3k -k
Stiffness matrix =] = [ }

-k k
. 5000 O
Mass matrix =1n] =
0 2500

Using the equations (3.65) and (3.66), the freqsnand mode-shapes of the structures are
w), =6.283 rad/sec and,=12.566 rad/sec
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Wit ]

The modal column matrix is given by

1 1

[ =[] {0'5 _1}

The modal participation factors are given by

{@} [mi{7}
{@} [m{q}

oo 05 ]]5000 0
" {{2}}T [[m]]{{cq}} i 05 J]{[5030 Zgoj)}[{oj% =133

0 2500] 1

Similarly,

- [_1 1] 5000 O
S o ﬂ{[so%o Zioi}% =03

0 2500

The response in the each mode of vibration is caéetphy solving the Equation (3.71) for the
system. The displacement and base shear resporsgeous in the Figures 3.13 and 3.14,
respectively. The maximum top floor displacemerd hase shear are found to be 0.202 m and

40.72 kN, respectively.
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Figure 3.13 Top floor displacement response of D@AF system of Example 3.6.
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Figure 3.14 Base shear response of two DOF systé&mwample 3.6.
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Example 3.7

An industrial structure is modeled as 2-DOF syssganshown in the Figure 3.15. Determine the
horizontal and vertical displacement of the freel ef the structure due to El-Centro, 1940
earthquake ground motion. Tak =80 x 16 N.n?, L= 2m, my= 100kg andm= 200kg. The

damping shall be considered as 2 percent.

m;=100kg m,=200kg
El, L
X2
El, L
P
Figure 3.15

Solution: Given,

Mass, m= 100kg, m= 200kg, Length, L= 2 m and flexural rigidity, E89 x 16 Nm?

8 -3
Stiffness matrix k] = 3EI { }

-3 2
. 300 O
Mass matrix 9m| =
0 200

Using equation (3.65), eigen values and eigen vecian be obtained as

w, = 5.4925 rad/sec; w,= 16.856 rad/sec
2.7 5.103
4 = {6.25}’ o = {—3.307}
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Modal participation can be obtained by

_{a} (mi{1}
- {e} Im{q}

M, =0.081andr,=0.153

The displacement response in the each mode oftabres computed by solving the Equation
(3.71) for the system. The horizontal and vertaiaplacement of the free end of the structure is
shown in the Figures 3.16 and 3.17, respectivelye Thaximum horizontal and vertical

displacement of the free end of the structure imébto be 0.039 m and 0.0699 m, respectively.

96



T Y T d T ' ' ’ J
First Mode Response -

o

o
B
1

=
o
()
!
1

e
o
1)

O
o
(N
1

1

0.023

Horizontal disp (m)

1 i 1 " 1 i 1 " 1

Second Mode Response

Horizontal disp (m)

Total Response

e
o
N
T
1

Horizontal disp (m)
S
3

o
o
N
T
1

o)

o
=
T

0.039 7
1

0 5 10 15 20 25 30
Time (sec)

Figure 3.16 Horizontal displacement response ofritiastrial Structure of Example 3.7.
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Figure 3.17 Vertical displacement response of tigkustrial Structure of Example 3.7.
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3.8 Tutorial Problems

Q1.

Q2.

Q3.

Q4.

Develop general computer programs (preferably gudtatlab or Scilab) to obtain the

response of a SDOF system under earthquake emnitasing (a) Newmark’s Beta method,
(b) Runge-Kutta method, and (c) Exact method ofetidomain analysis. Compare the
results from above three methods by plotting trepoase of a SDOF system having time

period as 0.5 sec and damping ratio as 0.05 uhddtltCentro, 1940 motion.

Derive the expressions for the elements of matr[é¢ and [B] (i.e. equations (3.28) and
(3.29)) used in exact method for evaluation of thsponse of a SDOF system under
earthquake excitation.

Derive the expression for displacement responsa aindamped SDOF system subjected to

earthquake ground motion of (t) = x,(e* - ). Take, a= natural frequency of the

SDOF system; and = parameter having the same unit as thag,of

A rigid-jointed plane frame is fixed at A and eallsupport at C as shown in Figure 3.18.
The members AB and BC are rigidly connected at Bingaa right angle and are
supporting a mass of 200 kg. Neglect the massaofid; determine the maximum horizontal
displacement and base shear due to El-Centro, 48dRquake. Take the flexural rigidity,
El = 294772.2 Nrhand lengthL. = 4m for both members. Consider the damping as 2%.

_ . C
.Y
L I
L
A
— T
Figure 3.18

99



Q5. A 2-degrees-of-freedom system (Figure 3.19) isjesbd to horizontal earthquake
excitation of El-Centro, 1940 earthquake. Take flegural rigidity, EI = 1 Nm? and

length, L = 2m. The each lumped mass is 100 kgefehe the maximum displacement of

the two masses. Take 2% damping in each mode cHtiob.

100 kg
El, L
100 kg
El, L
4
Figure 3.19

Q6. A three-story building is modeled as 3-DOF systerd &gid floors as shown in Figure
3.20. Determine the maximum top floor maximum dispiment and base shear due to El-
Centro, 1940 earthquake ground motion. Take trex-stbry lateral stiffness of floors ile.
= ko= ks=16357.5 kN/m, the floor mass;= m,=10000 kg andnz;=5000 kg and damping

ratio as 2%.

ms
—> X3
ks
m;
—> X2
ka
my
—> X1
ky
wr 77
Figure 3.20
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3.8 Answers to Tutorial Problems

Q1. Maximum Displacement = 0.057 m

Q3.

X(t) = ~——2—| L sincyt - comat+ e |+ b siny,t— cogy,t+ €™
a”+wy| w, b+ 0wy | w,

Q4. Horizontal displacement = 0.0684 m

Base shear = 2160.2 N

Q5. Displacement of lower mass = 7.76518
Displacement of top mass = 24.02%h0
Q6. Top floor displacement = 0.0234 m

Base shear = 196.4 x*>10
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