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Chapter 3 

Dynamics of Earthquake Analysis 
 

3.1 Introduction  

Earthquake or seismic analysis is a subset of structural analysis which involves the calculation of 
the response of a structure subjected to earthquake excitation. This is required for carrying out 
the structural design, structural assessment and retrofitting of the structures in the regions where 
earthquakes are prevalent. Various seismic data are necessary to carry out the seismic analysis of 
the structures. These data are accessible into two ways viz. in deterministic form or in 
probabilistic form. Data in deterministic form are used for design of structures etc whereas data 
in probabilistic form are used for seismic risk analysis, study of structure subjected to random 
vibration and damage assessment of structures under particular earthquake ground motion. Major 
seismic input includes ground acceleration/velocity/displacement data, magnitude of earthquake, 
peak ground parameters, duration etc. 

In this chapter, the seismic response of the structures is investigated under earthquake excitation 
expressed in the form of time history of acceleration. The response is investigated for the 
structures modeled as Single Degree of Freedom (SDOF) and discrete Multi Degree of Freedom 
(MDOF) System.  

3.2 Equation of Motion for SDOF System  
 
Consider a SDOF system (shown in Figure 3.1), subjected to an earthquake acceleration, ( )gx tɺɺ . 

Let m, k and c represent the mass, stiffness and damping, respectively of the SDOF system 
undergoing relative displacement, velocity and acceleration of ( )x t , ( )x tɺ  

and ( )x tɺɺ , respectively. 
The various forces acting on the system will be inertial force, stiffness force and damping force. 

 

 

 

 
 
 
 
 
 

(a)           (b) 

Figure 3.1 (a) SDOF system (b) Free body diagram. 
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Consider the equilibrium of the various forces acting on the mass, as shown in Figure 3.1(b), we 

get, 

( ( ) ( )) ( ) ( )  0gm x t x t cx t kx t+ + + =ɺɺ ɺɺ ɺ
          (3.1)  

or
 

( ) ( ) ( )  ( )gmx t cx t kx t mx t+ + = −ɺɺ ɺ ɺɺ
           (3.2)

 

where, 

( )x t = relative displacement of mass with respect to ground 

( )x tɺ = relative velocity of mass with respect to ground 

( )x tɺɺ = relative acceleration of mass with respect to ground 

( )gx tɺɺ = earthquake ground acceleration 

The equation of motion is expressed in the normalized form as  

 2 
0 0( )  2 ( )  ( )  ( )gx t x t x t x t+ ξω + ω = −ɺɺ ɺ ɺɺ

           (3.3)
 

where, ξ and ω0 denotes the damping ratio and natural frequency of SDOF system, respectively 

expressed as 

0   
k

m
ω =

                                          (3.4) 

0

  
2

c

m
ξ =

ω
 

                (3.5)
 

The damped natural frequency of SDOF system is given by 

2
0  1  dω = ω − ξ                  (3.6) 

The equation of motion for a linear, viscously damped SDOF system is second order differential 

equation with constant coefficients. The solution of this equation for the specified earthquake 

acceleration, ( )gx tɺɺ
 
will provide the response of the SDOF system.    
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3.3 Response Analysis of SDOF System 

For a given time history (acceleration versus time data) of earthquake ground motion, the 
response of viscously damped SDOF system can be obtained either by Time Domain Analysis or 
Frequency Domain Analysis. 

3.3.1 Time Domain Analysis 

This method helps in obtaining response of SDOF system in both linear and non linear range. 

Duhamel integration and Numerical schemes such as Newmark integration, Runge-Kutta 

methods are invariably accompanied for obtaining numerical solution of differential equation. 

  

Duhamel Integral is used to obtain the response of SDOF system subjected to earthquake ground 

motion. Equation of motion for a SDOF system subjected to ground motion acceleration is given 

by equation (3.2). The solution of which can be split into homogeneous and particular part as 

( )  ( ) ( )h px t x t x t= +
               (3.7) 

where, 

xh(t) = homogeneous solution, and xp(t) = particular solution. 

Homogeneous or complimentary solution (as depicted from Figure 3.2) is the damped free-

vibration response given by equation (3.8) 

0 0( )  ( )   ( ) hx t g t x h t x= + ɺ          (3.8) 

where, 0x and 0xɺ are initial displacement and velocity of the SDOF system, respectively. 

 

 

 

 

 

 

 

 

Figure 3.2 Response of SDOF system to initial unit displacement and velocity. 

g(t) 

0 1x =  

0 0x =ɺ
          SDOF 
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0 0x =

0 1x =ɺ
          SDOF 
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Putting the boundary conditions (as shown in Figure 3.2) in the solution of the homogeneous 
part, g(t) and h(t) can be obtained as 

0  0 
  

 

( )   cos    sin  t
d d

d

g t e t t−ξω  ξω= ω + ω ω                       (3.9) 

0  

 
 

( )  sin  
t

d
d

e
h t t

−ξω

= ω
ω            (3.10)

 

For obtaining particular solution part of equation (3.7), it is assumed that the irregular ground 

acceleration is made up of very brief impulses as shown in Figure 3.3. The vibration caused by 

all the impulse are added together to obtain the total response.  

 

 

 

 

 

 

Figure 3.3 Impulse from earthquake acceleration. 

 

Consider the vibration caused by a single impulse. Newton’s second law states that the rate of 

change of moment of a mass is equal to the applied force i.e.        

( ( ))   ( ) g

d
mx t m x t

dt
= −ɺ ɺɺ

       (3.11) 

Thus, the change in momentum over a brief interval, dτ brought by the instantaneous force 

 ( ) gm x− τɺɺ is given by 

( ( ))   ( )  gd mx t m x d= − τ τɺ ɺɺ
       (3.12)

 
 

dτ 
 τ 

( )gx tɺɺ

( )gx τɺɺ

 

t-τ 

t 
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It should be noted that the small changes in velocity and displacement occurring during the time 

interval dτ will make a negligible contribution to the change in momentum. The change in 

velocity during the interval is              

( )   ( ) gdx t x d= − τ τɺ ɺɺ
           

(3.13) 

Thus, the change in displacement at time, t caused by the impulse at τ is given by  

( )   ( ) . ( )= − τ τ − τɺɺp gdx t x d h t
         (3.14)

 

Each impulse in Figure (3.3) will produce a vibration of this form. Because the system is linear, 

the effect of each impulse is independent of every other impulse and the total resulting motion 

can be obtained by the principle of super position.    

0
( )  ( )  ( ) 

t

p gx t x h t d= − τ − τ τ∫ ɺɺ                     (3.15) 

This integral is known as convolution or Duhamel integral. Explicit solution may be obtained 

for simple forms of forcing function such as rectangular and triangular. 

From equations (3.8), (3.9), (3.10) and (3.15), the total response (given in equation (3.7)) of 

system can be given by 

0 0

0

( ) ( ) ( ) [ ( )] ( )
t

gx t x g t x h t x h t d= + − −∫ɺ ɺɺ τ τ τ
          

(3.16) 

For the system with at rest condition (i.e. 0x =0 and 0xɺ =0) the response is given by     

0
( )  ( )  ( ) 

t

gx t x h t d= − τ − τ τ∫ ɺɺ                     (3.17) 

This is known as time domain solution because the response is calculated using time as a 

variable.  

In order to obtain recurrence formulas for time domain analysis, consider a SDOF system with 

displacement and velocity defined at initial time, ti and the response is required at, ti+1 (refer 

Figure 3.4). Suppose ix and ixɺ
 
are the initial displacement and velocity of the system, 

respectively, 
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Figure 3.4 Linear variation of ground acceleration across chosen time step �ti . 

The response of the system (reproducing equation (3.16)) is expressed as      

( )   ( )    ( )   ( )   ( )  
i

t

i i i i gt
x t g t t x h t t x x h t d= − + − − τ − τ τ∫ɺ ɺɺ

       
(3.18) 

( )

0

0

0

( ) 0

( )

 1  
 

( )

( )  sin  ( )  cos  ( )

( )  sin  ( )

( )     

( )   sin  ( )

i

i

t t
i d i d i

d

t t

i d i
d

i i
g gi

g g i
i

t

d
d

g t t e t t t t

e
h t t t t

x x
x x t

t

e
h t t

−ξω −

−ξω −

+

−ξω −τ

 ξω− = ω − + ω − ω 

− = ω −

ω 


− τ = + τ − ∆



− τ = ω − τ ω 

ɺɺ ɺɺ
ɺɺ ɺɺ

        (3.19) 

Back substituting in equation (3.18), 

0
1  ( )

( )  ( ) ( )  ( )  sin  ( )  
+ −ξω −τ −  

= − + − − + τ − ω − τ τ   ∆ ω    
∫

ɺɺ ɺɺ
ɺ ɺɺ

i

i i t
t g gi

i i i i g i dt
i d

x x e
x t g t t x h t t x x t t d

t
      (3.20) 

( ) ( ) 1
1 2( )  ( ) ( )     i i

i i i i i g i gx t g t t x h t t x f t t x f t t x+= − + − + − + −ɺ ɺɺ ɺɺ
       (3.21)

 

( )gx tɺɺ  

Time 

i
gxɺɺ

1i
gx +
ɺɺ

dτ 
 �� 

 

���� t 

τ 

∆ti 
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Similarly, the velocity of the system at time, t is given by  

( ) ( ) 1
1 2( )  ( ) ( )      i i

i i i i i g i gx t g t t x h t t x f t t x f t t x+= − + − + − + −ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺɺ
      

(3.22) 

At 1 1 1 ,   ( )  and    ( )i i it t x t x x t x+ + += = =ɺ ɺ , the displacement and velocity of the system are 

expressed as 

( ) ( ) 1
1 1 2 ( ) ( )     +

+ = ∆ + ∆ + ∆ + ∆ɺ ɺɺ ɺɺ
i i

i i i i i i g i gx g t x h t x f t x f t x
      

(3.23)
 

( ) ( ) 1
1 1 2 ( ) ( )     i i

i i i i i i g i gx g t x h t x f t x f t x+
+ = ∆ + ∆ + ∆ + ∆ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺɺ

      
(3.24) 

In the matrix form, the above equations can be re-written         

( ) ( )
( ) ( )

1 1 2
1

1 1 2

( ) ( )
  

( ) ( )

i
i i i i i i g

i
i i i i i i g

x g t h t x f t f t x

x g t h t x f t f t x
+

+
+

  ∆ ∆ ∆ ∆       = +       ∆ ∆ ∆ ∆           

ɺɺ

ɺ ɺ ɺɺ ɺ ɺ ɺɺ
      

(3.25) 

or  

1 11 12 11 12
1

1 21 22 21 22

  
i

i i g
i

i i g

x xa a b b x

x xa a b b x
+

+
+

         = +        
         

ɺɺ

ɺ ɺ ɺɺ
        

(3.26) 

or 

     
 

1{ } [ ]{ } [ ]{ } i
i i gx A x B x+ = + ɺɺ

          
(3.27) 

where, 

1{ }  , { } , 
i

i gi
i g i

i g

x x
x x

x x +

    = =   
    

ɺɺ
ɺɺ

ɺ ɺɺ
    

11 12 11 12

21 22 21 22

[ ]  ,    and     [ ]
a a b b

A B
a a b b

   
= =   

        

The elements of matrices [A] and [B] from Nigam and Jennings (1969) are given by equations 

(3.28) and (3.29) 
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0

0

0

0

11 2

12

0
21 2

22 2

  sin    cos  
1

   sin  

      sin  
1

   cos     sin  
1

i

i

i

i

t
d i d i

t

d i
d

t
d i

t
d i d i

a e t t

e
a t

a e t

a e t t

−ξω ∆

−ξω ∆

−ξω ∆

−ξω ∆

 ξ
= ω ∆ + ω ∆ 

  − ξ 

= ω ∆ ω 
ω = − ω ∆
− ξ


 ξ= ω ∆ − ω ∆ 
 − ξ                                     

(3.28)

 

0

0

0

2

11 2 3 2
0 0 0 0

2

12 2 3 2 3
0 0 0 0

2

21 2
0

sin  2 1 2 1
 cos       

     

sin  2 1 2 1 2
   cos  

2 1
 

−ξω ∆

−ξω ∆

−ξω ∆

    ω ∆ξ − ξ ξ= + + + ω ∆    ω ∆ ω ω ω ∆ ω     

   ω ∆ξ − ξ ξ= + ω ∆ − +  ω ∆ ω ω ∆ ω ω ∆   

ξ −= +
ω ∆

i

i

i

t d i
d i

i d i

t d i
d i

i d i i

t

i

t
b e t

t t

t
b e t

t t t

b e
t

( )

0

2
0

03 2 2
0 0 0

2

22 2 2
0

cos  sin              
1

2 1 1
sin  cos    

2 1
 cos  sin                          

1

−ξω ∆

   ξ ξ
  ω ∆ − ω ∆  ω − ξ  

 ξ− + ω ω ∆ + ξω ω ∆ + ω ∆ ω ω ∆  

  ξ − ξ
  = ω ∆ − ω ∆

 ω ∆ − ξ 

−

i

d i d i

d d i d i
i i

t
d i d i

i

t t

t t
t t

b e t t
t

( )03 2
0 0

2 1
sin  cos  





















ξ
ω ω ∆ + ξω ω ∆ −ω ∆ ω ∆  

d d i d i
i i

t t
t t

   

(3.29) 
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Finally, the acceleration response of the SDOF system can be obtained by reproducing the 

equation of motion as 

1
1 1

1

 (    )
 =

i
i i g

i

cx kx mx
x

m

+
+ +

+

− − −ɺ ɺɺ
ɺɺ

          

(3.30) 

Hence, if the displacement and velocity of the system are known at some time ti, the state of the 

system at all subsequent times, ti+1 can be computed exactly by a step-by-step application of 

equation (3.27) to (3.30). The computational advantage of this approach lies in the fact that the 

elements of [A] and [B] matrix depend only on ξ, 0ω  and ∆ti. The value ξ and 0ω  are constant 

and if ∆ti is also constant,  ,    i i ix x and xɺ ɺɺ  can be evaluated by the execution of multiplication and 

summation operations for each step of integration. The matrices [A] and [B], defined by rather 

complicated expressions, equations (3.28) and (3.29) need to be evaluated only at the beginning 

of each response evaluation. If varying time intervals are used, it is necessary, in general, to 

compute [A] and [B] at each step of integration. However, by rounding the time coordinates of 

the record, the number of these matrices needed during the calculation can be reduced to only a 

few. These, too can be computed at the beginning of the calculation and called upon when 

needed, thereby saving the computational time. 
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3.3.1.1 Numerical Methods for Seismic Analysis of SDOF System 

There are number of numerical methods available for solving initial boundary value problems. 

Most commonly used methods are Newmark’s Beta method (Linear acceleration method) and 

Runge-Kutta method which are described here. 

3.3.1.1.1 Newmark’s Beta Method  

In this method, acceleration, velocity and displacement at time, t = ti+1 is obtained as a function 

of acceleration, velocity and displacement at t = ti (which is always known), assuming linear 

acceleration during small time step (Figure 3.5). Assume a SDOF system subjected to earthquake 

ground motion, the equation of motion is given by 

( ) ( ) ( )  ( )gmx t cx t kx t mx t+ + = −ɺɺ ɺ ɺɺ
       

(3.31) 

 

 

 

 

 

(a)                     (b) 

Figure 3.5 (a) Linear ground acceleration, (b) Linear relative acceleration of SDOF system over 
time step, it∆ . 

In the incremental form, equation (3.31) can be re-written as 

        i
i i i gm x c x k x m x∆ + ∆ + ∆ = − ∆ɺɺ ɺ ɺɺ

          
(3.32) 

where,  

1

1

1

1
  1  

  

  

      

  

  

i i i

i i i

i i i

i i i
i i i

g g g

x x x

x x x

x x x

t t t

x x x

+

+

+

+
+

∆ − =
∆ −= ∆ −= 
∆ −=


∆ −= 

ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ

ɺɺ ɺɺ ɺɺ
            

(3.33) 

��� ������  

������ 

�� � ����
it∆

�� � 

��� 

����

����� 

��	 
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Assuming linear variation of acceleration (see Figure 3.5(b)) 

1( )     .  + −= +
∆
ɺɺ ɺɺ

ɺɺ ɺɺ
i i

i
i

x x
x t x t

t           
(3.34) 

On integrating, 

2
  1( )        .     

2
i i

i i
i

x x t
x t x x t

t
+ −= + +
∆
ɺɺ ɺɺ

ɺ ɺ ɺɺ

            
(3.35)

 
2 3

  1( )            . 
2 6

i i
i i i

i

x xt t
x t x x t x

t
+ −= + + +
∆
ɺɺ ɺɺ

ɺ ɺɺ

         
(3.36) 

In equation (3.36) put it t= ∆  and express in terms of ix∆ɺɺ  i.e. 

2

6 6
      3i i i i

i i

x x x x
t t

∆ = ∆ − −
∆ ∆

ɺɺ ɺ ɺɺ

          
(3.37) 

Similarly, from equation (3.35) put it t= ∆  and solve for ix∆ɺ   
3

    3   
2

i
i i i i

i

t
x x x x

t

∆∆ = ∆ − −
∆

ɺ ɺ ɺɺ

          
(3.38) 

Substituting ,  i ix x∆ ∆ɺɺ ɺ  in equation (3.32) and solve for ix∆  i.e. 

 eff
i

eff

p
x

k
∆ =

             
(3.39) 

where,
 

 6
   3   3

2

  ∆ = − ∆ + + + +   ∆   
ɺɺ ɺ ɺɺ

i i
eff g i i

i

t
p m x m c x m c x

t
       

(3.40)
 

 2

6 3
      eff

i i

k m c k
t t

= + +
∆ ∆            

(3.41) 

Knowing the ix∆ , determine ix∆ɺ  from equation (3.38). At t = ti+1, displacement and velocity can 

be determined as 

1

1

 i i i

i i i

x x x

x x x
+

+

= + ∆ 
= + ∆ ɺ ɺ ɺ

            
(3.42) 
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The acceleration at time ti+1 is calculated by considering equilibrium of equation (3.31) to avoid 

the accumulation of the unbalanced forces i.e. 

1
1 1 1

1
       i

i g i ix mx cx kx
m

+
+ + + = − − − ɺɺ ɺɺ ɺ

         
(3.43) 

In this way, using this step-by-step numerical integration scheme, the response of SDOF system 

can be obtained for given time history. Repeat the same steps to obtain response at t =t i+2 and so 

on. The accuracy of output response depends upon the magnitude of time-step ‘ it∆ ’ chosen. 

Optimum values of ‘ it∆ ’ should be chosen to obtain fastest converging results with required 

precision. Time stepping methods has got limitation that error goes on accumulating with 

calculation proceeds. In order to keep Newmark’s Beta method stable, the time step should be 

taken such that (Chopra, 2007) 

0

  0.551it

T

∆ ≤
              

(3.44) 

where,  0 02 /T = π ω ,is the time period of the SDOF system. 

This method is conditionally stable if above inequality satisfies, otherwise method will “blow-

up” giving illogical results. 

 

3.3.1.1.2 Runge-Kutta Method 

Knowing the initial conditions, response of SDOF system with time can be determined using 

Runge-Kutta method. Let the equation of motion of the SDOF system be  

( )  ( )  ( )  ( )+ + = −ɺɺ ɺ ɺɺgmx t cx t kx t mx t
         

(3.45) 

Define a vector, 

  
x

x
x

 
=  

 ɺ                       
(3.46a)  

On differentiating the above equation         
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0 1 0
     

       = +− −       −       

ɺ

ɺɺɺɺ ɺ g

x x
k c xx x

m m

x
x

x

 
=  
 

ɺ
ɺ

ɺɺ
                   

(3.46b) 

Using Equation (3.45) and (3.46a), above equation can be reproduced as,  

 

 

or,            (3.47)
 

where,  
 

 

 

 

 

 

 

 

 

Figure 3.6: Time step for Runge-Kutta method 

Determine the following constant vectors, 

1    ii ik t Ex F = ∆ +              
(3.48)

 

1
2      

3 3
i

ii i

k F
k t E x F

    ∆= ∆ + + +   
               

(3.49)
 

2
3

2 2
   

3 3
i

ii i

k F
k t E x F

    ∆= ∆ + + +   
               

(3.50) 

(Note: Subscript ‘i’ refers to the value at time t = t i , ‘∆’ refers to difference in value at ti+1 and ti, 

and ‘¯ ’ indicates a matrix)   

it∆

�� � ����

1i
gx +
ɺɺ

 
i
gxɺɺ

 

0 1 0
    ;         

 
  = =− −    −   
ɺɺg

E Fk c x
m m

  x Ex F= +ɺ
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then,
  

1 2 32
 =  

4
i

i
i

x k k k
x

x

∆  + +∆ = ∆ ɺ            
(3.51) 

1
1

1

=      i
i i i

i

x
x x x

x
+

+
+

 
= + ∆ 

 ɺ            
(3.52) 

From equations (3.52) and (3.45) 

1
1 1

1

 (    )
 =

i
i i g

i

cx kx mx
x

m

+
+ +

+

− − −ɺ ɺɺ
ɺɺ

          

(3.53) 

Repeat same steps to obtain response at time t = ti+2 and so on. A Runge-Kutta method is 

conditionally stable for linear second order differential equation like equation (3.45). But still the 

time step, it∆  should be taken short enough to ensure required precision in results. 
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3.3.2 Frequency Domain Analysis 

This method is used for obtaining response of linear systems subjected to irregular excitations 

such as earthquake forces and it requires knowledge of complex frequency response function for 

its proper application. If the stiffness ‘k’ and damping ‘c’ of the SDOF system are frequency 

dependent, then this approach is much superior to the time domain. 

In frequency domain analysis, the response of a SDOF system is given by 

1
( ) ( ) ( )

2
i t

gx t X H e d
∞

ω

−∞

= ω ω ω
π ∫
ɺɺ

          
(3.54) 

where, ( )gX ωɺɺ  is the Fourier transform of [- ( )gx tɺɺ ] and ( )H ω is the complex frequency 

response function.  

Consider a SDOF system (Figure 3.7), subjected to the forcing function of eiωt, producing 

displacement response as 

( ) ( ) i tx t H eω= ω             (3.55) 

 

 

 

 

Figure 3.7: Explanation of complex frequency response function. 

Consider equation of motion of SDOF system 

22 i t
o ox x x eω+ ξω + ω =ɺɺ ɺ

           (3.56) 

Substituting equation (3.55) in equation (3.56) 

2 2H( )( ) 2 ( ) H( )  ω ω ω ωω ω + ξω ω ω + ω ω =i t i t i t i t
o oi e H i e e e                    (3.57) 

or, 2 2( )[ 2 ]  1o oH iω −ω + ξωω + ω =           (3.58) 

Thus, the complex frequency response function is expressed as 

( ) ( ) i tx t H eω= ω  
i te ω

          SDOF 
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2 2

1
( )

( ) 2o o

H
i

ω =
ω − ω + ξωω            

(3.59)
        

  
 

The Fourier transform of [- ( )gx tɺɺ ] is expressed as  

( ) [ ( )] i t
g gX x t e dt

∞
− ω

−∞

ω = −∫ɺɺ ɺɺ

                                   (3.60)
 

The response of a SDOF system can be obtained by substituting equations (3.59) and (3.60) in 

equation (3.54) and solving the integral.               

Note: Properties of Fourier transform are as follows, 

Consider a function ( )f t  which is periodic and it is absolutely integrable i.e., 

( )   f t dt
∞

−∞

< ∞∫
            

(3.61) 

Then the Fourier transform of ( )f t  exists and given by 

( ) ( )    i tF f t e dt
∞

− ω

−∞

ω = ∫
           

(3.62) 

From the inverse Fourier transform 

1
( ) ( )   

2
i tf t F e d

∞
ω

−∞

= ω ω
π ∫            

(3.63) 

The ( )f t  and ( )F ω  makes the Fourier Pair.   
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3.4 Numerical Examples on SDOF system 

Example 3.1 

A SDOF system is subjected to a harmonic ground motion of ( ) sing ox t x t= ωɺɺ ɺɺ . Determine the 

steady state response using time and frequency domain method and considering that the system 

starts from rest. The natural frequency and fraction of critical damping of SDOF system are oω  

andξ , respectively. 

Solution: Equation of motion is given by 

2( ) 2 ( ) ( ) sino o ox t x t x t x t+ ξω + ω = − ωɺɺ ɺ ɺɺ  

A. Time Domain Analysis (Using Duhamel Integration) 

Using equation (3.17) steady state response of system in time domain is given by 

0

( ) ( ) ( )
t

gx t x h t d= − −∫ ɺɺ τ τ τ  

where,  ( ) sinτ = ωτɺɺ ɺɺg ox x  and  
( )

( ) sin( ( ))
o t

d
d

e
h t t

−ξω −τ

− τ = ω − τ
ω

 

Thus, 

( )

0

( ) ( sin ) sin( ( ))   
−ξω −τ

= − ωτ ω −τ τ
ω∫ ɺɺ

ot t

o d
d

e
x t x t d   

       
2 2 2 2

1
sin( )

(1 ) (2 )
o

o

x
t= − ω −θ

ω −β + ξβ

ɺɺ
 

where, 
o

ωβ =
ω

 and 1
2

2
tan

1
−  ξβθ =  − β   

B. Frequency Domain Analysis 

The steady state response is given by equation (3.54) i.e., 

1
( ) ( ) ( )    

2
i t

gx t X H e d
∞

ω

−∞

= ω ω ω
π ∫
ɺɺ  
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where, 

2 2

1
( )

2o o

H
i

ω =
ω − ω + ξωω  

and 
 

[ ] [ ]( ) FT sin( ) sin( )     i t
g o oX x t x t e dt

∞
− ω

−∞

ω = − ω = − ω∫ɺɺ ɺɺ ɺɺ  

Evaluating the integral, 

[ ]( ) FT sin( ) sin( ) i t
g o oX x t x t e dt

∞
− ω

−∞

ω = − ω = − ω∫ɺɺ ɺɺ  

( )
2

i t i t i tox
e e e dt

i

∞
ω − ω − ω

−∞

= − −∫
ɺɺ

                                 : sin
2

i t i te e
Note t

i

ω − ω −ω = 
 

 

( ) ( )

2

∞ ∞
ω−ω −ω−ω

−∞ −∞

 
= − − 

 
∫ ∫

ɺɺ i t i tox
e dt e dt

i
 

( ) ( )2 2
2

ox

i
= − πδ ω− ω − πδ −ω− ω  
ɺɺ

 

[ ]( ) ( )oi x= π δ ω− ω − δ ω+ ωɺɺ  

      

 

 

             

 

Figure 3.8 Graphical Representation of 0FT [ sin ]x t− ωɺɺ . 

Recalling the properties of Fourier Transform, 

1 ( ) i tt e dt
∞

− ω

−∞

= δ∫
  

and
 

( ) 1
1.

2
i tt e d

∞
ω

−∞

δ = ω
π ∫

 


����
 

ω 
� � 
�� 

� � �� 

����
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Implying that, 

2 ( )i te d t
∞

ω

−∞

ω = πδ∫  

Recalling the properties of Dirac Delta ‘δ(t)’ function 

1
(kt) (t) and

k
δ = δ

   
( ) 0ot tδ − =  if ot t≠  

( ) 1ot t dt
∞

−∞

δ − =∫  

( ) ( ) ( )o ot t t dt t
∞

−∞

δ − ψ = ψ∫  

( ) ( )o ot t t tδ − = δ −  

Using the above properties, the response of the SDOF system is expressed as 

1
( ) ( ) ( )

2
i t

gx t e H X dω= ω ω ω
π ∫

ɺɺ  

[ ]( )2 2

1 1
( ) ( ) ( )

2 2 o

i t

o o

x t e i x d
i

∞
ω

−∞

 
= π δ ω− ω − δ ω+ ω ω π ω − ω + ξωω 

∫ ɺɺ  

2 2 2 2
( ) ( )

2 2 2

i t i t
o

o o o o

ix e e
d d

i i

∞ ∞ω ω

−∞ −∞

 
= δ ω− ω ω− δ ω+ ω ω ω − ω + ξωω ω − ω + ξωω 

∫ ∫
ɺɺ

 

2 2 2 22 2 2

ω − ω 
= − ω − ω + ξωω ω − ω − ξωω 

ɺɺ
i t i t

o

o o o o

ix e e

i i
 

Taking 
o

ωβ =
ω

 and 1
2

2
tan

1
−  ξβθ =  − β  ,

 

( ) ( ) ( ) ( )2 22 22 2 2 22 2 2

i t i t
i io

o o o o

ix e e
e e

ω − ω
− θ + θ

 
 = − 

ω − ω + ξβωω ω − ω + ξβωω  

ɺɺ
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( ) ( )
2 2 2 2

1
( )

2 (1 ) (2 )

i t i to

o

ix
e eω −θ − ω −θ

 
= − 

ω  −β + ξβ  

ɺɺ
 

2 2 2 2

1
2 sin( )

2 (1 ) (2 )

 
= ω − θ 

 ω − β + ξβ 

ɺɺo

o

ix
i t

 

2 2 2 2

1
sin( )                     

(1 ) (2 )
o

o

x
t= − ω −θ

ω −β + ξβ

ɺɺ
 

Thus, the same expression for the steady state response of the SDOF system subjected to the 

harmonic earthquake acceleration is obtained using the time and frequency domain approach.   

 

Example 3.2 

Show that the displacement response of an undamped SDOF system subjected earthquake 

acceleration, 0( ) at
gx t x e−=ɺɺ ɺɺ is given by 

0
0 02 2

0 0

( ) sin cos atx a
x t t t e

a
− 

= − ω − ω + + ω ω 

ɺɺ
 

where, 0ω = natural frequency of the SDOF system; and a = parameter having the same unit as 

that of 0ω . 

 

Solution: The displacement response of the SDOF system to earthquake acceleration, 

0( ) at
gx t x e−=ɺɺ ɺɺ

is expressed in time domain analysis as 
 

( ) ( ) ( )
0

t

gx t x h t d= − τ − τ τ∫ ɺɺ  

( ) ( )0
00

0

sin
t ax

x t e t d− τ= − ω − τ τ
ω ∫
ɺɺ

 

On integrating by parts, 
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( ) ( ) ( )0 0 0
0 00

0 00

sin cos
ta

t ax xe
x t t e t d

a a

− τ
− τ  ω= − − ω − τ + ω − τ τ ω ω 

∫
ɺɺ ɺɺ

 

( ) ( ) ( )0 0 0 0
0 0 02 0

0 0

1
sin cos sin

ta
t ax x xe

x t t t e t d
a a a a

− τ
− τ  ω = − ω + − ω − τ + ω − τ τ  ω    

∫
ɺɺ ɺɺ ɺɺ

 

( ) ( )
2

0 0 0
0 02 2 2

0

1
sin cosg atx x x

x t t e t x t
a a a a

− ω = − ω − + ω − ω  

ɺɺ ɺɺ ɺɺ
 

( )
2
0 0

0 02 2
0

1 sin cos atx a
x t t t e

a a
−  ω+ = − ω − ω +   ω   

ɺɺ
 

( ) 0
0 02 2

0 0

sin cos atx a
x t t t e

a
− 

= − ω − ω + + ω ω 

ɺɺ

 

Alternate Solution by Direct Solution of Differential Equation 

 
The differential equation of motion of an SDOF system is expressed as 

2
0( ) ( ) ( )gx t x t x t+ ω = −ɺɺ ɺɺ  

Let the solution of the equation be  

( ) ( ) ( )h px t x t x t= +  

where xh(t) is the solution of homogeneous part of differential equation and xp(t) is the particular 

solution. 

The homogeneous solution will take the following form  

0 0( ) A cos Bsinhx t t t= ω + ω  

The particular solution of the given differential equation will be  

( ) at
px t ce−=  

( )   at
px t a c e−= −ɺ  
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2( ) −=ɺɺ
at

px t a ce  

Substituting the above in the equation, 2
0( ) ( ) atx t x t xe−+ ω = −ɺɺ ɺɺ  

2 2
0 0

at at ata ce ce x e− − −+ ω = −ɺɺ  

0
2 2

0

= −
+ ω
ɺɺx

c
a

 

0
2 2

0

( ) −= −
+ ω
ɺɺ at

p

x
x t e

a
 

The response of the system will be  

( ) ( ) ( )h px t x t x t= +  

0
0 0 2 2

0

( ) cos sin −= ω + ω −
+ ω
ɺɺ atx

x t A t B t e
a

 

The initial conditions for system with at rest are i.e. at t = 0 are(0) 0x = and (0) 0x =ɺ .  

(0) 0x =  � 0
2 2

0

 0
x

A
a

− =
+ ω
ɺɺ

 

             0
2 2

0

x
A

a
=

+ ω
ɺɺ

 

Similarly,
 

(0) 0x =ɺ  � 00
0 0 2 2

0

0 1 0− ×−ω × + ω × + =
+ ω
ɺɺ aax

A B e
a

 

             0
2 2

0 0

xa
B

a
= −

ω + ω
ɺɺ

 

Substitute the expression for A and B, the response of SDOF system simplifies to 
 

0 0 0
0 02 2 2 2 2 2

0 0 0 0

( ) cos sin −−= ω + ω −
+ ω ω + ω + ω
ɺɺ ɺɺ ɺɺ atx x xa

x t t t e
a a a

 

      

0
0 02 2

0 0

sin cos − 
= − ω − ω + + ω ω 

ɺɺ atx a
t t e

a
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Example 3.3 

Using the frequency domain approach and time domain analysis, show that the displacement of 

an undamped SDOF system subjected to earthquake acceleration, ( ) ( )0gx t c tδ=ɺɺ  is given by 

 ( )0
0

0

( ) sin
c

x t t= − ω
ω

 

where 0ω  is the natural frequency of the SDOF system and ( )tδ is the Dirac delta function. 

Solution: 

A. Frequency Domain Analysis 

The displacement of SDOF system to earthquake excitation is given by 

( ) ( ) ( )1

2
i t

gx t X H e d
∞ ω

−∞
= ω ω ω

π ∫
ɺɺ

 

where,
 

( ) 2 2
0

1
H ω =

ω − ω
    (For undamped system) 

And Fourier transform of ( )gx tɺɺ  is 

( ) ( ) i t
g gX x t e dt

∞ − ω

−∞
ω = −∫ɺɺ ɺɺ  

( ) ( )0
i t

gX c t e dt
∞ − ω

−∞
ω = − δ∫ɺɺ  

( ) 0 0 
i t

g tX c e− ω
=ω = −ɺɺ

 

( ) 0ω = −ɺɺ
gX c  

Therefore, the response of the SDOF system is given by 

( ) 0 2 2
0

1 1
( )

2

∞ ω

−∞
= − ω

π ω − ω∫
i tx t c e d  

        0
2 2
0

  
2

i tc e
d

ω∞

−∞
= − ω

π ω − ω∫  
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The integral have two poles at 0 ω = ± ω .Applying Cauchy residual theorem for solving the 

integral 

( ) ( ) ( )
0 0

0
0 02 2 2 2

0 0

2  lim  2  lim  
2

ω ω

ω→ω ω→ω

 
= − π ω− ω + π ω+ ω π ω − ω ω − ω 

i t i tc e e
x t i i  

( )
0 0

0
0 02 2

ω − ω 
= − − + ω ω 

i t i te e
x t ic  

( ) 0 00

02
ω − ω = − ω

i t i tic
x t e e  

( ) [ ]0
0

0

2 sin
2

= ω
ω

ic
x t i t  

( )
2

0
0

0

sin
i c

x t t= ω
ω  

( ) ( )0
0

0

sin
c

x t t= − ω
ω

 

B. Time Domain Approach 

( ) ( ) ( )
0

 
t

gx t h t x d= − − τ τ τ∫ ɺɺ

 

where,
 

( ) ( )0

0

sin t
h t

ω − τ
− τ =

ω
 

( ) ( )0 gx cτ = δ τɺɺ  

Therefore, the response of the SDOF system is given by 

( ) ( ) ( )0
00

0

sin
 

t t
x t c d

ω − τ
= − δ τ τ

ω∫
 

( ) ( )0
0

0  0

sin t
x t c

τ=

ω − τ 
= − ω 

 

( ) 0
0

0

sin
c

x t t= − ω
ω
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 Example 3.4 

Show that the maximum displacement response of a damped SDOF system subjected earthquake 

acceleration, 0( ) ( )g gx t x tδ=ɺɺ ɺ is  

2
0 1

max 2
0

1
exp tan

1

−
  − ξξ= − −  

 ω ξ− ξ   

ɺgx
x  

where 0ω and ξ are natural frequency and damping ratio of the SDOF system, respectively; 0gxɺ is 

the increment in velocity or the magnitude of acceleration impulse and ( )tδ is the Dirac delta 

function. 

 
Solution: The general solution of SDOF system will be given by

 

( )
0

( ) ( )
t

gx t x h t d= − τ −τ τ∫ ɺɺ  

        ( ) ( ) ( )( )0

0

0

1
sin

t
t

g d
d

x e t d−ξω −τ= − δ τ ω − τ τ
ω∫ ɺ  

        ( )00 sing t
d

d

x
e t−ξω= − ω

ω
ɺ

 

For the maximum displacement of the system,
 ( ) 0x t =ɺ  

i.e. [ ]00
0

0

sin cos 0−ξω− −ξω ω + ω ω =
ω
ɺg t

d d d

x
e t t  

i.e. 
2 2

0

0 0

1 1
tan( ) d

dt
ω − ξ − ξωω = = =

ξω ξω ξ
 

From above equation, the time at which maximum displacement occurs will be  

   

2
1 11

tanm
d

t − − ξ
=

ω ξ
 

If 
2

1 1
tand mt

−
 − ξ
 ω =
 ξ 

 , it implies that the 2sin 1d mtω = − ξ  (refer Figure 3.9) 
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Figure 3.9 

The maximum displacement will be given by  

 

    
( )00

max sin−ξω= − ω
ω
ɺ

mg t
d m

d

x
x e t  

2
0 1 2

0

11
exp tan 1−

  − ξ= − −ξω  × − ξ 
 ω ω ξ   

ɺg

d d

x

   

    Substituting for 2
0  1  dω = ω − ξ   and simplifying        

2
0 1

max 2
0

1
exp tan

1

−
  − ξξ= − −  

 ω ξ− ξ   

ɺgx
x                          

  

ξ 

1 �1
 �� 

���� 
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Example 3.5 

Find the response of SDOF system having time period as 1 sec and damping ratio as 0.02 

subjected to the El-Centro, 1940 earthquake motion (refer Appendix-I for the digitized 

acceleration values). Plot the displacement response of the SDOF system using (a) Exact method 

of time domain analysis, (b) Newmark’s Beta method, and (c) Runge-Kutta method.  

Solution:  

Based on the computer program written in the FORTAN language, the response of the SDOF 

system with time period as 1 sec and damping ratio as 0.02 subjected to the El-Centro, 1940 

earthquake motion were obtained and is plotted in Figure 3.10. The calculated maximum 

displacement of the system is found to be 0.15163m, 0.15166m and 0.15158m for exact method 

of time domain analysis, Newmark’s Beta method and Runge-Kutta method, respectively. As 

expected all the methods predict the same response of the system. Further, time interval taken for 

numerical integration of equation of motion of the system is 0.002 sec for Newmark’s Beta and 

Runge-Kutta methods.    
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Figure 3.10 Response of SDOF system of Example 3.5 by various methods. 
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3.5 Response Analysis of MDOF System 

Multi degree of freedom (MDOF) systems are usually analyzed using modal superposition 

analysis. A typical MDOF system with n degrees of freedom is shown in Figure (3.11). This 

system when subjected to ground motion undergoes deformations in number of possible ways. 

These deformed shapes are known as modes of vibration or mode shapes. Each shape is vibrating 

with a particular natural frequency. Total unique modes for each MDOF system are equal to the 

possible degrees of freedom of system. The equations of motion for MDOF system is given by 

[ ]{ ( )} [ ]{ ( )}  [ ]{ ( )}  -  [ ]{ } (t) + + =ɺɺ ɺ ɺɺgm x t c x t k x t m r x
       

(3.64) 

where, [m] = Mass matrix (n × n); [k]  = Stiffness matix (n × n); [c] = Damping matrix (n × n); 

{ r} = Influence coefficient vector (n×1); { ( )}x t = relative displacement vector; { ( )}ɺx t = relative 

velocity vector, { ( )}ɺɺx t = relative acceleration vector, and ( )gx tɺɺ = earthquake ground acceleration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 MDOF system. 

 

  

(t)gxɺɺ

 

Xn 

 

X1 

 

X2 
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The undamped eigen values and eigen vectors of the MDOF system are found form the 

characteristic equation  

[ ] [ ]}{ 2   0           1, 2, 3, ,   i ik m i n− ω φ = = …

                   

(3.65)      

[ ] [ ]}{ 2det 0ik m− ω =

                                                                   

(3.66)   

where,    

2
iω = eigen values of the ith mode 

iφ = eigen vector or mode shape of the ith mode 

ωi = natural frequency in the ith mode. 

Let the displacement response of the MDOF system is expressed as 

{ ( )}  [ ] { ( )}    x t y t= φ             (3.67) 

where {y(t)} represents the modal displacement vector, and [ ]φ  is the mode shape matrix given 

by 

[ ] 1 2= [ ,  ,.........  ]    nφ φ φ φ
           (3.68) 

Substituting { } [ ]{ }x y= φ  in equation (3.64) and pre-multiply by  T[ ]φ  

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ]{ }    
( ) ( ) ( )   ( )φ φ + φ φ + φ φ = − φɺɺ ɺ ɺɺ

T T T T

gm y t c y t k y t m r x t     
(3.69) 

The above equation reduces to 

{ } { } { } [ ] [ ]{ } 
[ ] ( ) [ ] ( ) [ ] ( )  ( )

T

m d d gM y t C y t K y t m r x t+ + = − φɺɺ ɺ ɺɺ
     

(3.70) 

where, 

[ ] [ ][ ] [ ] 
=

T

mm Mφ φ  = generalized mass matrix 

[ ] [ ][ ] [ ] T

dc Cφ φ =   = generalized damping matrix    

[ ] [ ][ ] [ ] T

dk Kφ φ =   = generalized stiffness matrix 
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By virtue of the properties of the [φ], the matrices [Mm] and [Kd] are diagonal matrices. However, 

for the classically damped system (i.e. if the [Cd] is also a diagonal matrix), the equation (3.70) 

reduces to the following equation   

2( )   2 ( )   ( )  ( ) (   1, 2, 3, , )i i i i i i i gy t y t y t x t i n+ ξ ω + ω = − Γ = …ɺɺ ɺ ɺɺ
   

(3.71) 

where,  

( )iy t  = modal displacement response in the ith mode, 

iξ = modal damping ratio in the ith mode, and  

iΓ = modal participation factor for ith mode expressed by 

{ } [ ]{ }

{ } [ ]{ }

T
i

i T
i i

m r

m
Γ = φ

φ φ
            

(3.72) 

The equation (3.71) represents n second order differential equations (i.e. similar to that of a 

SDOF system) and the solution of which will provide the modal displacement response in the ith 

mode, ( )iy t
 
for i=1 to n. The displacement response of the MDOF system can be obtained by 

equation (3.67) using the {y(t)}. The other response quantities of the structure can be obtained 

from the displacement response of the system. 
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3.6 Numerical Examples on MDOF System 

Example 3.6 

A two-story building is modeled as 2-DOF system and rigid floors as shown in the Figure 3.12. 

Determine the top floor maximum displacement and base shear due to El-Centro, 1940 

earthquake ground motion. Take the inter-story stiffness, k =197.392 × 103 N/m, the floor mass, 

m = 2500 kg and damping ratio as 2%. 

 

 

 

 

 

 

 

Figure 3.12 

Solution: 

Mass of each floor, m = 2500 kg and stiffness, k = 197.392 kN/m 

Stiffness matrix = [k] = 
3k k

k k

− 
 − 

 

Mass matrix = [m] = 
5000 0

0 2500

 
 
 

 

Using the equations (3.65) and (3.66), the frequencies and mode-shapes of the structures are  

1ω = 6.283 rad/sec and 2ω =12.566 rad/sec 

k 

2k 

x2 

x1 

m 

2m 
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 1{ }φ =
0.5

, and 
1

 
 
   

2{ }φ =
1

1

− 
 
   

The modal column matrix is given by 

1 2[ ] [ ]φ = φ φ =
0.5 1

1 1

− 
 
   

The modal participation factors are given by 

{ } { }
{ } { }

[ ]

[ ]

T

i
i T

i i

m r

m

φ
Γ =

φ φ
 

{ } { }
{ } { }

[ ]

[ ]
1

1

1 1

5000 0 1
0.5 1

[ ] 0 2500 1
=1.333

5000 0 0.5[ ] 0.5 1
0 2500 1

T

T

m r

m

  
  
  Γ = =

   
   
   

φ
φ φ   

 

Similarly, 

{ } { }
{ } { }

[ ]

[ ]
2

2

2 2

5000 0 1
1 1

[ ] 0 2500 1
0.333

5000 0 1[ ] 1 1
0 2500 1

T

T

m r

m

  −   
  Γ = = = −
−   −    

   

φ
φ φ        

 

The response in the each mode of vibration is computed by solving the Equation (3.71) for the 

system. The displacement and base shear response is shown in the Figures 3.13 and 3.14, 

respectively. The maximum top floor displacement and base shear are found to be 0.202 m and 

40.72 kN, respectively. 
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Figure 3.13 Top floor displacement response of two DOF system of Example 3.6. 
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Figure 3.14 Base shear response of two DOF system of Example 3.6. 
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Example 3.7 

An industrial structure is modeled as 2-DOF system as shown in the Figure 3.15. Determine the 

horizontal and vertical displacement of the free end of the structure due to El-Centro, 1940 

earthquake ground motion. Take EI =80 × 103 N.m2, L= 2m, m1= 100kg and m2= 200kg. The 

damping shall be considered as 2 percent. 

 

 

 

 

 

 

Figure 3.15 

Solution: Given, 

Mass, m1= 100kg, m2= 200kg, Length, L= 2 m and flexural rigidity, EI= 80 × 103 Nm2 

Stiffness matrix =
3

8 36
[ ]

3 27

EI
k

L

− 
=  − 

; 

Mass matrix = 
300 0

[ ]
0 200

m
 

=  
 

 

Using equation (3.65), eigen values and eigen vectors can be obtained as 

1ω = 5.4925 rad/sec;  2ω = 16.856 rad/sec 

1

2.7
{ }

6.25

 =  
 

φ ;  2

5.103
{ }

3.307

 =  − 
φ

 

m1=100kg 

x1 

EI, L 

EI, L

x2 

m2=200kg 
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Modal participation can be obtained by
 

{ } { }
{ } { }

[ ]

[ ]

T

i
i T

i i

m r

m

φ
Γ =

φ φ
 

1 0.081Γ =  and 2 0.153Γ =  

The displacement response in the each mode of vibration is computed by solving the Equation 

(3.71) for the system. The horizontal and vertical displacement of the free end of the structure is 

shown in the Figures 3.16 and 3.17, respectively. The maximum horizontal and vertical 

displacement of the free end of the structure is found to be 0.039 m and 0.0699 m, respectively. 
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Figure 3.16 Horizontal displacement response of the Industrial Structure of Example 3.7.  
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Figure 3.17 Vertical displacement response of the Industrial Structure of Example 3.7. 
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3.8 Tutorial Problems
 

Q1. Develop general computer programs (preferably using Matlab or Scilab) to obtain the 

response of a SDOF system under earthquake excitation using (a) Newmark’s Beta method, 

(b) Runge-Kutta method, and (c) Exact method of time domain analysis. Compare the 

results from above three methods by plotting the response of a SDOF system having time 

period as 0.5 sec and damping ratio as 0.05 under the El-Centro, 1940 motion.  

Q2. Derive the expressions for the elements of matrices [A] and [B] (i.e. equations (3.28) and   

(3.29)) used in exact method for evaluation of the response of a SDOF system under 

earthquake excitation. 

Q3. Derive the expression for displacement response of an undamped SDOF system subjected to 

earthquake ground motion of ( ) ( )at bt
g ox t x e e− −= −ɺɺ ɺɺ . Take, 0ω = natural frequency of the 

SDOF system; and a = parameter having the same unit as that of0ω . 

Q4. A rigid-jointed plane frame is fixed at A and roller support at C as shown in Figure 3.18. 

The members AB and BC are rigidly connected at B making a right angle and are 

supporting a mass of 200 kg. Neglect the mass of frame, determine the maximum horizontal 

displacement and base shear due to El-Centro, 1940 earthquake. Take the flexural rigidity, 

EI = 294772.2 Nm2 and length, L = 4m for both members. Consider the damping as 2%. 

 

 

 

 

 

 
 
 
Figure 3.18 

L 

L 

A 

B 
C 
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Q5. A 2-degrees-of-freedom system (Figure 3.19) is subjected to horizontal earthquake 

excitation of El-Centro, 1940 earthquake. Take the flexural rigidity, EI = 106 Nm2 and 

length, L = 2m. The each lumped mass is 100 kg. Determine the maximum displacement of 

the two masses. Take 2% damping in each mode of vibration.   
 

 

 

 

    
 

 

 

 

 

 

   Figure 3.19 

Q6. A three-story building is modeled as 3-DOF system and rigid floors as shown in Figure 

3.20. Determine the maximum top floor maximum displacement and base shear due to El-

Centro, 1940 earthquake ground motion. Take the inter-story lateral stiffness of floors i.e. k1 

= k2= k3=16357.5 kN/m, the floor mass m1= m2=10000 kg and m3=5000 kg and damping 

ratio as 2%.  
  

 

 

  

   

        
 

 

 

         Figure 3.20 

k3 

k2 

k1 

x3 

x2 

x1 

m3 

m2 

m1 

EI, L

EI, L 

100 kg 

100 kg 
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3.8 Answers to Tutorial Problems 

Q1. Maximum Displacement = 0.057 m 

Q3. 

0 0
0 0 0 02 2 2 2

0 0 0 0

( ) sin cos sin cosat btx xa b
x t t t e t t e

a b
− −   

= − ω − ω + + ω − ω +   + ω ω + ω ω   

ɺɺ ɺɺ

 

Q4. Horizontal displacement = 0.0684 m 

       Base shear = 2160.2 N 

Q5. Displacement of lower mass = 7.76×10-3 m 

       Displacement of top mass = 24.02×10-3 m  

Q6. Top floor displacement = 0.0234 m 

       Base shear = 196.4 × 103 N 

 


