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Chapter 7 

Non-linear Seismic Response of Structures  

7.1 Introduction 
As per the conventional earthquake-resistant design philosophy, the structures are designed 

for forces, which are much less than the expected design earthquake forces. Hence, when a 

structure is struck with severe earthquake ground motion, it undergoes inelastic deformations. 

Even though the structure may not collapse but the damages can be beyond repairs. In 

reinforced cement concrete (RCC) structures, a structural system can be made ductile, by 

providing reinforcing steel according to the IS:13920-1993 code. A sufficiently ductile 

structural system undergoes large deformations in the inelastic region. In order to understand 

the complete behaviour of structures, time history analysis of different Single Degree of 

Freedom (SDOF) and Multi Degree of Freedom (MDOF)  structures having non-linear 

characteristics is required to be performed. The results of time history analysis, i.e. non-linear 

analysis of these structures will help in understanding their true behavior. From the results, it 

can be predicted, whether the structure will not collapse / partially collapse or totally 

collapse.   

In this chapter, the modeling of SDOF and MDOF structures having non-linear 

characteristics for seismic response analysis is carried out. The push over analysis of the RCC 

building is also presented. 

7.2 Non-linear Force-Deformation Behavior  
The structural systems which have linear inertia, damping and restoring forces, are analysed 

by linear methods. Whenever, the structural system has any or all of the three reactive forces 

(i.e. inertia, damping and stiffness) having non-linear variation with the response parameters, 

namely displacement, velocity, and acceleration; a set of non-linear differential equations is 

evolved. To obtain the response, these equations need be solved. The most common non-

linearity is the stiffness and the damping non-linearity. The stiffness non-linearity comprises 

of two types namely the geometric non-linearity and the material non-linearity. 

For the material non-linearity, restoring action shows a hysteretic behavior under 

cyclic loading. For the geometric non-linearity, no such hysteretic behavior is exhibited. 

During unloading, the load deformation path follows that of the loading. Figure 7.1(a) shows 
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the case of load deformation behavior of the non-hysteretic type. Figure 7.2(b) shows the 

hysteretic behavior of a non-linear restoring force under cyclic loading (material non-

linearity).  

  

Damping non-linearity may be encountered in dynamic problems associated with 

structural control, offshore structures, and aerodynamics of structures. Most of the damping 

non-linearities are of a non-hysteretic type. Most structures under earthquake excitation 

undergo yielding. Hence, it is necessary to discuss material non-linearity exhibiting hysteretic 

behavior. 

For structural systems having linear behaviour (when subjected to weak ground 

motions) of inertial forces, spring elastic forces and linear damping characteristics, linear 

methods of analysis can be employed. Displacement, velocity and acceleration are important 

response parameters of any structural system. When any or all of the reactive forces, viz. 

inertia force / spring force or damping force has nonlinear variation with the response 

parameters, the analysis involves non-linear differential equations. Solution of these 

equations will give the response of the system. The popular method to obtain the response is 

Newmark’s Beta method.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1 (a) Non-linear restoring force for geometrical non-linearity (non-hysteretic type) 

and (b) Non-linear restoring forces (hysteretic type) 
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7.3 Non-Linear Analysis of SDOF system  
Consider a SDOF system having non-linear damping and stiffness characteristics as shown in 

the Figure 7.2. 

 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 7.2 Non-linear SDOF system and its free body diagram. 
 

For the SDOF system, the equation of motion in the incremental form is expressed as  

                                       i
i t i t i ggm x c x k x m x∆ + ∆ + ∆ = − ∆                                                  (7.1) 

where m is the mass of the SDOF system, tc  is the initial tangent damping coefficient and 

tk is the  initial tangent stiffness at the beginning of the time step, respectively.  

 

The solution of the equation of motion for the SDOF system is obtained using the numerical 

integration technique. The incremental quantities in the equation (7.1) are the change in the 

responses from time ti to ti+1 given by    
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(7.2) 

Assuming the linear variation of acceleration over a small time interval, it∆  the incremental 

acceleration and velocity (refer Section 3.3.1.1.1 Newmark’s Beta Method) are expressed as  

2
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(7.3) 
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(7.4) 

Substituting ix∆  and ix∆  in equation (7.1) and solving for the ix∆  will give 

 eff
i

eff

p
x

k
∆ =

            
(7.5) 

where effp  and effk are the incremental force and incremental stiffness during the ith  time step 

respectively expressed as.  

 6   2   2
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Knowing the ix∆ , determine ix∆  from equation (7.4). At time, t = ti+1, the displacement and 

velocity can be determined as 
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= + ∆               

(7.8) 

The acceleration at time, t = ti+1 is calculated by considering equilibrium of the system (refer 

Figure 7.1) to avoid the accumulation of the unbalanced forces i.e. 

1 1 1
1

1     F  i i i
i g d sx mx F

m
+ + +

+  = − − −  

         
(7.9) 

where 1Fi
d

+  and 1i
sF +  denote the damping and stiffness/restoring force at time, ti+1, 

respectively.  

While obtaining the above solution, it is assumed that the damping and restoring force non-

linearities follow the specified path during loading and unloading condition.   

7.3.1 Elasto-plastic Material Behavior 

For the elasto-plastic material behavior, tc  is assumed to be constant. The stiffness matrix 

tk is taken either as k or zero depending upon whether the system is elastically loaded and 

unloaded or plastically deformed. When the system enters from elastic to plastic state or vice-

versa, the stiffness varies within the time step. Due to variation of stiffness with respect to 

time, the system no more remains in equilibrium.    
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If the system is elastic at the beginning of the time step and remains elastic at the end of the 

time step, then the computation is not changed i.e. 

                                                       1i
sF Q+ <                                                        (7.10) 

and the computations for the next time step start. In equation (7.10),Q is the yield force. 

 

The system enters into plastic state from elastic state as soon as  

                                                       1i
sF Q+ =                                                        (7.11) 

Normally, it is not possible to have the scenario that at time, ti+1, the spring force is just equal 

to the yield force. However, this can be archived by reducing the time interval of the 

computation. 

Once the system enters into the plastic state, it continues to remain in that state until the 

incremental displacement and the stiffness force are in the same direction. Thus, the plastic 

state exists until 

                                                       1 0i
s iF x+ × ∆ >                                                        (7.12) 

When the velocity at the end of the time interval changes the sign then the unloading takes 

place. Thus, the system changes from plastic to elastic state when 

                                                       1 0i
s iF x+ × ∆ <                                                        (7.13) 

 

The system remains in the elastic state until equation (7.10) is satisfied otherwise, it will 

change from elastic to plastic state.  
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Example 7.1 

Consider an elasto-plastic SDOF system having mass = 1 kg, elastic stiffness = 39.478 N/m 

and damping constant = 0.251 N.sec/m. Determine the displacement response of the system 

under the El-Centro, 1940 motion for (i) yield displacement = 0.05m and (ii) yield 

displacement = 0.025m.  

Solution:  

Based on the method developed in the Section 7.2, a computer program is written in the 

FORTAN language and the response of the SDOF system with the above parameters and 

elasto-plastic behavior under El-Centro, 1940 earthquake motion is obtained. The time period 

of the system based on the elastic stiffness is 1 sec and the damping ratio is 0.02. The time 

variation of displacement and spring force of the system is plotted in Figures 7.2 and 7.3 for 

the yield displacement, q = 0.05m and 0.025m, respectively. The salient values of the 

maximum response of the system are summarized as below: 

 

Response quantity q = 0.05m q = 0.025m 

Maximum displacement (m) 0.099 0.113 

Maximum Stiffness force (N) 1.974 0.987 

Time of change of first elastic to plastic state 1.92 sec 1.84 sec 

Time of change of first plastic to elastic state 1.98 sec 2.02 sec 

Maximum elastic deflection (refer Example 3.5) 0.1516 m 
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Figure 7.3 Response of elasto-plastic SDOF system with yield displacement of 0.05m. 
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Figure 7.4 Response of elasto-plastic SDOF system with yield displacement of 0.025m. 
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7.4 Non-linear Force-Deformation Behaviour using Wen’s Equation  
 
Wen (1976) proposed the equation for modeling non-linear hysteretic force-deformation 

behavior, in which the force, Fs is given by  

                         0 (1 )sF k x Q Z= α + − α                                                (7.14) 

where k0 is the initial stiffness; α is an index, which represents the ratio of post to pre-

yielding stiffness; x is the relative displacement; Q is the yield strength; and Z is a non-

dimensional hysteretic component satisfying the following non-linear first order differential 

equation expressed as 

   1 ( , )n ndZq x Z Z x Z Ax g x Z
dt

−=β − τ + =                              (7.15) 

where β, τ, A and n are the dimensionless parameters which control the shape of the 

hysteresis loop; q is the yield displacement; and x is the relative velocity. 

 The parameter n is an integer constant, which controls the smoothness of transition from 

elastic to plastic state. Various parameters of the Wen’s equation are selected in such a way 

that predicted response from the model closely matches with the experimental results. In 

order to solve, the equation of motion of a system in the incremental form using the 

Newmark’s step-by-step method will require the incremental force (refer equation (7.1)) 

which is given by  

                         0 (1 )sF k x Q Z∆ = α ∆ + − α ∆                                                (7.16) 

The above equation involves the incremental displacement component, ΔZ which can be 

obtained by solving the differential equation (7.15) using the fourth order Runge-Kutta 

method by 

 

 0 1 2 32 2
6

K K K KZ + + +
∆ =                                   (7.17) 

0 ( , ) /tK t g x Z q= ∆                    (7.18) 

/2
1 0( , / 2) /t t tK t g x Z K q+∆= ∆ +              (7.19) 

/2
2 1( , / 2) /t t tK t g x Z K q+∆= ∆ +              (7.20) 
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3 2( , ) /t t tK t g x Z K q+∆= ∆ +             (7.21) 

It is to be noted that the above solution requires the velocity of the system at time, t+Δt/2 and 

t+Δt which are not known initially. To start with, it is assumed the same velocity at time, t 

and t+Δt and the value of the incremental hysteretic displacement component is obtained to 

find the velocity at time, t+Δt. This is to be iterated until the following convergence criterion 

is satisfied for incremental hysteretic displacement component i.e. 

ε≤
δ

δ−δ +

j

jj

Z

ZZ

)(

)()( 1

    (7.22) 

where ε is a small threshold parameter. The superscript to the ΔZ denotes the iteration 

number. 

 
The typical force-deformation hysteresis loops generated using the equations (7.14) and 

(7.15) are shown in the Figure 7.5 under a sinusoidal motion (amplitude of 7.5 cm and 

frequency of unit Hz).  The other parameters of the model considered are q = 2.5 cm, β = τ = 

0.5 and A = 1. Thus, by changing the different parameters of the Wen’s model one can 

achieve the desired hysteretic behavior such as elasto-plastic and bi-linear type. The 

comparison of the loop for two values of the n indicates that for n=1, there is smooth 

transition from elastic to plastic state and vice versa where as for n=15 the change in the 

states takes place immediately.  
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Figure 7.5 Different hysteresis loops from the Wen's equation. 
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Example 7.2 

Consider an elasto-plastic SDOF system having mass = 1kg, elastic stiffness = 39.478 N/m 

and damping constant = 0.251 N.sec/m. The yield displacement = 0.05m. Determine the 

displacement response of the system under the El-Centro, 1940 motion using the Wen’s 

equation.  

Solution:  

Based on the given input, the values of the various parameters of the Wen’s equation will be  

k0 = 39.478 N/m
  

q = 0.05m 

Q = 39.478 × 0.05 =1.974 N 

β = τ = 0.5 

A = 1 

n = 15  

Based on the method developed in the Section 7.3, a computer program is written in the 

FORTAN language and the response of the SDOF system with above parameters subjected to 

the El-Centro, 1940 earthquake motion is obtained. The time variation of displacement and 

spring force response is plotted in Figure 7.6. As expected, the response of the system is 

similar to that shown in the Figure 7.3 using the conventional approach. A comparison of the 

displacement response of the elasto-plastic system with two approaches is shown in the 

Figure 7.7. The maximum response is the same for the two methods; however, there is 

difference in the permanent drift of the system by two approaches.  
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Figure 7.6 Response of the elasto-plastic SDOF system of Example 7.2. 
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Figure 7.7 Comparison of displacement response of the system by two approaches. 
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7.5 Non-Linear Analysis of Multi-Storey Building Frames 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Idealized multi-storey building frame with non-linear behavior of columns. 

 

The multi-storey building frames can be idealized as 2D frames as shown in the Figure 7.8. 

The equations of motion for a MDOF system with bi-linear stiffness are a set of coupled non-

linear differential equations. The governing equations of motion are expressed as 

[ ]{ } [ ]{ }  [ ]{ }  -  [ ]{ }  t gm x c x k x m r x+ + =          (7.23) 

where, [m] = mass matrix (n × n); [kt]  = time dependent stiffness matix (n × n); [c] = 

damping matrix (n × n); {r} = influence coefficient vector (n×1); { ( )}x t = relative 

displacement vector; { ( )}x t = relative velocity vector, { ( )}x t = relative acceleration vector, 

and ( )gx t = earthquake ground acceleration. 

The solution can be obtained by using Newmark’s Beta iterative technique or any other 

numerical procedure, by solving the incremental equations of motion. Over the small time 

interval ∆t, the response of the structure is assumed to be linear. The response of the structure 

in the next time step is obtained from the response in the earlier time step. The incremental 

equations of motion will be of the form 

[ ]{ } [ ]{ }  [ ]{ }  -  [ ]{ }  t gm x c x k x m r x∆ + ∆ + ∆ = ∆         (7.24) 
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The solution of the equation of motion for the MDOF system is obtained using the numerical 

integration technique. The incremental quantities in the equation (7.24) are the change in the 

responses from time ti to ti+1 given by    
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(7.25) 

Assuming the linear variation of acceleration over a small time interval, it∆  the incremental 

acceleration and velocity (refer Section 3.3.1.1.1 Newmark’s Beta Method) are expressed as  

2
6 6{ }  { }  { }  3{ }i i i i

i i
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t t
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(7.27) 

Substituting { }ix∆  and { }ix∆  in equation (7.19) and solving for the ix∆  will give 
1{ } [ ] { } i eff effx k p−∆ =

           
(7.28) 

where,
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(7.30) 

Knowing the{ }ix∆ , determine { }ix∆  from equation (7.4). At t = ti+1, the displacement and 

velocity can be determined as 
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(7.31) 

The acceleration at time, t = ti+1 is calculated by considering equilibrium of the system (refer 

Figure 7.8) to avoid the accumulation of the unbalanced forces i.e. 
1 1 1 1

1{ } [ ]  [ ]{ }{ }  [c]{ } { }i i i
i g sx m m r x x F− + + +
+  = − − −   

      
(7.32) 

where 1{ }i
sF +  denotes the stiffness/restoring force at time, ti+1.  
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Example 7.3 
A two-story building is modeled as 2-DOF system and rigid floors as shown in the Figure 

7.9. Determine the floor displacement responses due to El-Centro, 1940 earthquake ground 

motion. Take the inter-story stiffness, k =197.392 × 103 N/m and the floor mass, m = 2500 

kg. The columns of the building are having elasto-plastic behavior with yield displacement of 

0.05m. 

 

 

 

 

 

 

 

Figure 7.9 

Solution: 

Based on the method developed in the Section 7.5, a computer program is written in the 

FORTAN language and the response of the system with the above parameters under El-

Centro, 1940 earthquake motion is obtained. The time variation of displacement response of 

the frame is plotted in Figures 7.10 and 7.11. The peak displacement of the top and bottom 

floor is observed as 0.1483 m and 0.068 m, respectively. The corresponding elasto-plastic 

force-deformation loops of the two floors are also plotted in the above figures.  
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Figure 7.10 Top floor displacement response of two DOF system of Example 7.3. 
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Figure 7.11 Bottom floor displacement response of two DOF system of Example 7.3. 
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7.6 Pushover Analysis 
Amongst the natural hazards, earthquakes have the potential for causing the greatest 

damages. Since earthquake forces are random in nature & unpredictable, the engineering 

tools need to be sharpened for analyzing structures under the action of these forces. 

Earthquake loads are to be carefully modeled so as to assess the real behavior of structure 

with a clear understanding that damage is expected but it should be regulated. In this context 

pushover analysis which is an iterative procedure is looked upon as an alternative for the 

conventional analysis procedures. Pushover analysis of multi-story RCC framed buildings 

subjected to increasing lateral forces is carried out until the preset performance level (target 

displacement) is reached. The promise of performance-based seismic engineering (PBSE) is 

to produce structures with predictable seismic performance.  

The recent advent of performance based design has brought the non linear static push 

over analysis procedure to the forefront. Pushover analysis is a static non linear procedure in 

which the magnitude of the structural loading along the lateral direction of the structure is 

incrementally increased in accordance with a certain pre-defined pattern. It is generally 

assumed that the behavior of the structure is controlled by its fundamental mode and the 

predefined pattern is expressed either in terms of story shear or in terms of fundamental mode 

shape.  

With the increase in magnitude of lateral loading, the progressive non-linear behavior 

of various structural elements is captured, and weak links and failure modes of the structure 

are identified. In addition, pushover analysis is also used to ascertain the capability of a 

structure to withstand a certain level of input motion defined in terms of a response spectrum. 

Recently, modifications to push over procedures have also been proposed so as to capture 

contribution of higher modes of vibration of structure, change in distribution of story shear 

subsequent to yielding of structural members, etc. Push over procedure is gaining popularity 

during the last few years as appropriate analytical tools are now available (SAP-2000, 

ETABS).   

Pushover analysis is of two types, (i) force controlled or (ii) displacement controlled. 

In the force control, the total lateral force is applied to the structure in small increments. In 

the displacement control, the displacement of the top storey of the structure is incremented 

step by step, such that the required horizontal force pushes the structure laterally. The 

distance through which the structure is pushed, is proportional to the fundamental horizontal 

translational mode of the structure. In both types of pushover analysis, for each increment of 
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the load or displacement, the stiffness matrix of the structure may have to be changed, once 

the structure passes from the elastic state to the inelastic state. The displacement controlled 

pushover analysis is generally preferred over the force controlled one because the analysis 

could be carried out up to the desired level of the displacement (refer Figure 7.12).  

 

                           Roof displacement 
Lateral loads                       
 
 
 
  
   
        

  

                                          

                        (Structural Model)                                                                             Base Shear 

   Figure 7.12 Static Approximations in the Pushover Analysis. 

 

In Pushover analysis, a static horizontal force profile, usually proportional to the 

design force profiles specified in the codes, is applied to the structure. The force profile is 

then incremented in small steps and the structure is analyzed at each step. As the loads are 

increased, the building undergoes yielding at a few locations. Every time such yielding takes 

place, the structural properties are modified approximately to reflect the yielding. The 

analysis is continued till the structure collapses, or the building reaches certain level of lateral 

displacement. It provides a load versus deflection curve of the structure starting from the state 

of rest to the ultimate failure of the structure. The load is representative of the equivalent 

static load of the fundamental mode of the structure. It is generally taken as the total base 

shear of the structure and the deflection is selected as the top-storey deflection. The selection 

of appropriate lateral load distribution is an important step. The first step then is to select a 

displacement shape and the vector of lateral loads is determined as 

{ } [ ]{ }F p m= Φ
      

(7.33) 

where {Φ}  is the assumed displacement shape, and p is the magnitude of the lateral loads.  

From equation (7.33), it follows that the lateral force at any level is proportional to the 

assumed displacement shape and story mass. If the assumed displacement shape was exact 

and remained constant during ground shaking, then distribution of lateral forces would be 

equal to distribution of effective earthquake forces. 
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For pushover analysis of any structure, the input required is the assumed collapse 

mechanism, moment–rotation relationship for the sections that are assumed to yield, the 

fundamental mode shape, the limiting displacement, and the rotational capacity of the plastic 

hinges. In addition to data needed for usual elastic analysis, the non-linear force deformation 

relationship for structural elements under monotonic loading is also required. The most 

commonly used element is beam element modeled as line element. Seismic demand is 

traditionally defined in the form of an elastic acceleration spectrum Sae, in which spectral 

accelerations are given as a function of the natural period of structure, T. 

The structure is modeled as a SDOF system. The displacement shape is assumed to be 

constant. This is the basic and most critical assumption. The starting point is the equation of 

motion of planar MDOF model that explicitly includes only lateral translation degrees of 

freedom.      

[ ]{ } +{R} [ ]{1} gm u m x= 

      
(7.34) 

where {u} and {R} are the vectors representing displacements and internal forces, {1} is a 

unit vector, and gx  is ground acceleration as a function of time. The displacement vector, {u} 

is defined as 

                                                                { } { } tu D= Φ                                                         (7.35) 

where Dt is the time dependent top displacement.  

For equilibrium, the internal forces, {R} are equal to statically applied external loads {F}. 

The equation of motion of equivalent SDOF is written as 

                             * "* * * gm D F m x+ = −                    (7.36) 

where *m  is equivalent mass of the SDOF system, *D  and *F are the displacement and force 

of the equivalent SDOF system, respectively. 

For simplification the force-displacement relationship is assumed to be elastic perfectly 

plastic for equivalent SDOF as shown in the Figure 7.13. 
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Figure 7.13 Approximate elasto-plastic force-displacement relationships. 

 

Determine the strength, *
yF , yield displacement, *

yD  and period *T . The *T is given by 

                                                          
* *

*
*2 y

y

m D
T

F
π=                                                 (7.37) 

From the acceleration spectrum, the inelastic spectrum in acceleration-displacement format is 

determined. The capacity diagram in acceleration displacement (AD) format is obtained by 

dividing the forces in force deformation diagram by *m . 

                                                            
*

*a
FS
m

=                                                               (7.38) 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 Demand in the AD format. 

 

D* Dy* 

F* 

Fy* 

T*=3sec 

T*=2sec 

T*=1sec 

T*=0.6sec 
T*=0.15sec 

Sde 

Sae 



261 
 

The displacement demand for the SDOF model Sd is transformed into the maximum top 

displacement Dt of the MDOF system. The local seismic response (e.g. story drifts, joint 

rotations) can be determined by pushover analysis. Under increasing lateral loads with a fixed 

pattern the structure is pushed to a target displacement Dt. Consequently it is appropriate the 

likely performance of building under push load up to target displacement.  The expected 

performance can be assessed by comparing seismic demands with the capacities for the 

relevant performance level. Global performance can be visualized by comparing 

displacement capacity and demand. 

The seismic performance of a building can be evaluated in terms of pushover curve, 

performance point, displacement ductility, plastic hinge formation etc. The base shear vs. 

roof displacement curve (Figure 7.15) is obtained from the pushover analysis from which the 

maximum base shear capacity of structure can be obtained. This capacity curve is 

transformed into capacity spectrum by SAP as per ATC40 and demand or response spectrum 

is also determined for the structure for the required building performance level. The 

intersection of demand and capacity spectrum gives the performance point of the structure 

analyzed. This is illustrated in the Figure 7.14.  

 

        

 

                                                                          

 

 

                                  

 

Figure 7.15 Base shear vs roof displacement. 

Roof Displacement 
 

Base Shear 

Pushover Curve by NSP Analysis 
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At the performance point, the resulting responses of the building should then be 

checked using certain acceptability criteria. The Performance Point thus obtained from 

pushover analysis is then compared with the calculated target displacement. 

    
                                                                                                                              
         Sa 
 Capacity Spectrum:                                                                                                                                                                                                                                                                                                                 
   Representation of structure’s  
   ability   to  resist  the  seismic 
   demand
  Sd 
  Sa 
  Demand Spectrum:                                                                                               
   Representation of earthquake 
   ground motion 
 Sd 
                                                                                           Sa           Performance Point 
   Performance Point: 
   Intersection point of demand                                                                                                                                                         
   Spectrum     and       Capacity 
   Spectrum                                                                                                                                           Sd 
 
 

Figure 7.16 Determination of Performance Point. 
 

There are three procedures described in ATC-40 to find the performance point.  

Procedure A, which uses a set of equations described in ATC-40.  

Procedure B is also an iterative method to find the performance point, which uses the 

assumption that the yield point and the post yield slope of the bilinear representation, remains 

constant. This is adequate for most cases; however, in some cases this assumption may not be 

valid.  

Procedure C is graphical method that is convenient for hand as well as software analysis. 

SAP2000 uses this method for the determination of performance point. To find the 

performance point using Procedure C the following steps are used: 

First of all, the single demand spectrum (variable damping) curve is constructed by doing the 

following for each point on the Pushover Curve:  

1) Draw a radial line through a point (P) on the Pushover curve. This is a line of constant 

period.  

2) Calculate the damping associated with the point (P) on the curve, based on the area 

under the curve up to that point.  
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3) Construct the demand spectrum, plotting it for the same damping level as associated 

with the point ‘P’ on the pushover curve.  

4) The intersection point (P’) for the radial line and associated demand spectrum 

represents a point on the Single Demand Spectrum (Variable Damping Curve).  

 

A number of arbitrary points are taken on the Pushover curve. A curve is then drawn by 

joining through these points. The intersection of this curve with the original pushover curve 

gives the performance point of the structure as shown in Figure 7.16. 
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Figure 7.17 Capacity Spectrum Procedure ‘C’ to Determine Performance Point 

It has been recognized that the inter-story drift performance of a multistory building is an 

important measure of structural and non-structural damage of the building under various 

levels of earthquake motion. In performance based design, inter-story drift performance has 

become a principal design consideration. The system performance levels of a multistory 

building are evaluated on the basis of the inter-story drift values along the height of the 

building under different levels of earthquake motion. Inter-storey drift is defined as the ratio 

of relative horizontal displacement of two adjacent floors (δ) and corresponding storey height 

(h).  

                            δ                 δi – δi-1                   
   Inter-story Drift =  =                                  (7.39) 
                  h                     h 

Spectral Displacement, Sd      
 

Spectral  
Acceleration,  
Sa/g     
 

Radial line with constant 
period drawn through any 
point P on pushover curve                                       

Demand curve drawn for 
same drawing as that for 
point P on pushover curve 

Pushover curve in A-D form                                

Damping based on area 
under curve upto point P    
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The sequence of plastic hinge formation and state of hinge at various levels of building 

performance can be obtained from SAP output. This gives the information about the weakest 

member and so the one which is to be strengthened in case of a building need to be 

retrofitted. Accordingly the detailing of the member can be done in order to achieve the 

desired pattern of failure of members in case of severe earthquakes. It is concluded that 

pushover analysis is a successful method in determination of the sequence of yielding of the 

components of a building, possible mode of failure, and final state of the building after a 

predetermined level of lateral load is sustained by the structure. 

Following assumptions are made while analyzing a structure in the SAP: (i) The 

material is homogeneous, isotropic, (ii) All columns supports are considered as fixed at the 

foundation, (iii) Tensile strength of concrete is ignored in sections subjected to bending, (iv) 

The super structure is analyzed independently from foundation and soil medium, on the 

assumptions that foundations are fixed, (v) Pushover hinges are assigned to all the member 

ends. In case of Columns PMM hinges (i.e. Axial Force and Biaxial Moment Hinge) are 

provided while in case of beams M3 hinges (i.e. Bending Moment hinge) are provided, (vi) 

the maximum target displacement of the structure is calculated in accordance with the 

guidelines given by FEMA 356 for maximum roof level lateral drift. Performance of building 

has been classified into 5 levels, viz. (i) Operational (OP), (ii) Immediate Occupancy (IO), 

(iii) Damage Control (DC), (iv) Life Safety (LS) and (v) Collapse Prevention (CP). 

Structural Performance Level S-1, Immediate Occupancy, means the post earthquake 

damage state in which only very limited structural damage has occurred. The basic vertical-

and lateral-force-resisting systems of the building retain nearly all of their pre-earthquake 

strength and stiffness. In the primary concrete frames, there will be hairline cracking. There 

may be a few locations where the rebar will yield, but the crushing of concrete is not 

expected. The transient drift will be about 1%, with negligible permanent drift. In the brick 

infill walls, there will be minor cracking and minor spalling of plaster. The risk of life-

threatening injury as a result of structural damage is very low, and although some minor 

structural repairs may be appropriate, these would generally not be required prior to re-

occupancy. 

Damage Control Performance Range (S-2) means the continuous range of damage 

states that entail less damage than that defined for the Life Safety level, but more than that 

defined for the Immediate Occupancy level. Design for Damage Control performance may be 
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desirable to minimize repair time and operation interruption; as a partial means of protecting 

valuable equipment and contents; or to preserve important historic features when the cost of 

design for Immediate Occupancy is excessive. Acceptance criteria for this range may be 

obtained by interpolating between the values provided for the Immediate Occupancy (S-1) 

and Life Safety (S-3) levels. 

Life Safety Performance Level (S-3) means the post-earthquake damage state in 

which significant damage to the structure has occurred, but some margin against either partial 

or total structural collapse remains. Some structural elements and components are severely 

damaged, but this has not resulted in large falling debris hazards, either within or outside the 

building. In the primary concrete frames, there will be extensive damage in the beams. There 

will be spalling of concrete cover and shear cracking in the ductile columns. The transient 

drift will be around 2%, with 1% being permanent. In the brick infill walls, there will be 

extensive cracking and some crushing. But the walls are expected to remain in place. The 

transient drift will be about 0.5%, with 0.3% being permanent. Injuries may occur during the 

earthquake; however, it is expected that the overall risk of life threatening injury as a result of 

structural damage is low. It should be possible to repair the structure; however, for economic 

reasons this may not be practical. While the damaged structure is not an imminent collapse 

risk, it would be prudent to implement structural repairs or install temporary bracing prior to 

re-occupancy. 

Collapse Prevention Performance Level (S-5) means the building is on the verge of 

experiencing partial or total collapse. Substantial damage to the structure has occurred, 

potentially including significant degradation in the stiffness and strength of the lateral-force-

resisting system, large permanent lateral deformation of the structure and to more limited 

extent degradation in vertical-load-carrying capacity. However, all significant components of 

the gravity load-resisting system must continue to carry their gravity load demands. In the 

primary concrete frames, there will be extensive cracking and formation of hinges in the 

ductile elements. There will be about 4% inelastic drift, transient or permanent. There will be 

extensive cracking and crushing in the brick infill walls. Walls may dislodge due to out-of-

plane bending. There will be 0.6% inelastic drift, transient or permanent. Significant risk of 

injury due to falling hazards from structural debris may exist. The structure may not be 

technically practical to repair and is not safe for re-occupancy, as aftershock activity could 

induce collapse. Figure 7.18 depicts various performance levels and damage functions. 
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                          Operational                  Immediate                       Life                        Collapse 
                                                                       Occupancy                      Safety                    Prevention                        
 
 
 
                   No Damage             Less Damage           Little more damage     Large Damage
 System is functional      but serviceable          to nonstructural         to structural 

               Members but         members too  
           Serviceable               & not  
                                          serviceable  

Figure 7.18 Performance levels and damage Functions. 

7.6.1 Procedure of Pushover Analysis using SAP 2000 

The procedure of Pushover Analysis using SAP 2000 software is summarized below: 

1. Select the type of model and scale of system 
 

2. Fill in the blanks and click the ‘+’ to select the sections and their properties 

to create required structure / structural frame/ model 
 

3. Select the bottom Joints and assign the support conditions as per requirement 

Assign – Joint – Restraint 
 

4. For Loading (Response Spectrum or Time History) 

Define – Functions  
 

5. For Dead Load, Live Loads, Wind Load etc 

Define- Load Patterns 
 

6. To assign loads to beam / slab 

Define – Load Case  
 

7. Add New Load Case to add Response Spectrum/ Time History and details 
 

8. Define – Load Combinations – Add New Combination 
 

9. Analyze – Set Analysis Options – Analysis Options 
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10. Analyze – Run Analysis 

 
11. Design – Concrete Frame Design – View/Revise Preference..... to Select IS code 

 
12. Design – Concrete Frame Design – Start Design / Check of Design to design  

 
13. Click  Unlock Model 

 
14. Select Beams and Columns – Assign – Frame – Hinges – Assign Hinges 

 
15. Define – Load Cases – Select Dead Load – Assign Non Linear – OK 

 
16. Define – Load Cases -  Add new Load Case  

 
Type - Push X in Load Case Name 
 
Click – Non Linear in Analysis Type 
 
Select -  Accel in Load Applied – Load Type and write -1 in Scale Column 
 
In Other Parameters Column - Select Modify / Show of Load Application 

And then click Displacement control and then OK 
 
In Other Parameters Column - Select Modify / Show of Results saved 

And then click Multiple States and then OK 
 

 Now Click Ok twice to come out of Load Case window. 
 

17. Click Run Analysis and then select Response Spectrum / Time History and click Run / Do no  
 
Run Case and then Click Run Now Button to run analysis for Pushover Analysis 
 

18. Now Click  Display- Show Static Pushover Curve  to see Pushover curve by FEMA 356,  
 
Capacity Curve using ATC 40 
 

19. To get performance point – Click – Modify / show Parameters and then change Ca and Cv to  
 
get performance point. 
 

20. Click – File – Display Tables – and check the Teff  (i.e. T*)at which performance point is 
achieved  
 
and see the step number and then click OK twice to come out of the Pushover Curve  
 
Window. 
 

21. Now Click – Display – Show Deformed Shape and select Push X in Case / Combo Window  
 
and then select same step to get hinge pattern at that particular step and conclude with respect  
 
to the hinge pattern. 
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Example 7.4 
Perform the pushover analysis and draw pushover curve, capacity curve and demand curve 

using SAP 2000 for a two storied RCC frame (refer Figure 7.19)  having the properties. 

i) RCC frame with single bay and two storied 

ii) Floor to floor height is 3.5m and bay width is 4m 

iii) Reinforcement – Fe 415 and Concrete – M20 

iv) Column Size – 400mm x 230mm 

v) Beam Size – 300mm x 230mm 

vi) Response Spectra- IS:1893 (Part 1)-2002 

vii) Soil strata- Hard Rock 

viii) Zone – V  

ix) Importance Factor- 1 

x) Lumped Mass – 1500kg at each floor  

xi) Modal Combination – Square root of sum of squares (SRSS) 

xii) Directional Combination - Square root of sum of squares (SRSS) 

xiii) Load Combination- 1.5 (DL+EL) as per IS: 1893-2002 

 

 

 

 

 

 

         

 

                      

 

 

Figure 7.19 Model of the frame. 
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Table 7.1 Data of Push Over Curve. 

Step Displacement 
(m) 

Base Force 
(kN) 

OP IO LS CP Beyond 
CP 

Total 

0 4.06E-06 0 12 0 0 0 0 12 
1 0.006007 21.524 11 1 0 0 0 12 
2 0.015512 39.235 8 4 0 0 0 12 
3 0.016973 40.611 7 5 0 0 0 12 
4 0.019389 41.097 6 6 0 0 0 12 
5 0.047389 41.838 6 6 0 0 0 12 
6 0.075389 42.569 6 2 4 0 0 12 
7 0.103389 43.292 6 0 6 0 0 12 
8 0.131389 44.007 6 0 4 2 0 12 
9 0.15703 44.654 6 0 1 3 2 12 
10 0.173724 44.663 6 0 0 3 3 12 

*SAP 2000 Advanced 14.2.0 do not provide data for Damage Control Level (DC) 

 

 

Figure 7.20 Capacity spectrum curve. 
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Figure 7.20 shows that performance point is at Teff = 0.297 sec which is close value of Teff at 

Step No. 4. Hence, it is required to see the hinge formations at Step No. 4.  From Fig. 7.20, it 

also becomes clear that hinges formed in beams and columns are below immediate 

occupation level. Hence, structure is very safe to use. 

 

 

 

 

 

 

 

 

    Figure 7.20 Hinge formations at Step No. 4. 

 

Table 7.2 Modal Periods and Frequencies. 

Output 
Case Step Type Step Num Period Frequency Circ Freq 

Eigen 
value 

Text Text Unitless Sec Cyc/sec rad/sec rad2/sec2 
MODAL Mode 1 0.263335 3.7974 23.86 569.3 
MODAL Mode 2 0.075421 13.259 83.308 6940.2 
MODAL Mode 3 0.017003 58.814 369.54 136560 
MODAL Mode 4 0.016885 59.224 372.12 138470 
MODAL Mode 5 0.009896 101.05 634.94 403150 
MODAL Mode 6 0.008829 113.26 711.64 506430 
MODAL Mode 7 0.006795 147.17 924.72 855100 
MODAL Mode 8 0.006789 147.31 925.55 856640 
 

The mode shapes for all eight steps are as shown in Figure 7.21 and deformed shapes and 

hinge formation has been shown in Figure 7.22. 
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Figure 7.21 Deformed Shapes as per Modal Analysis (Mode Shapes) 

 
 
 
Deformed                   Deformed                 Deformed                Deformed                Deformed 
Shape 00                      Shape 01                  Shape 02                  Shape 03                 Shape 04 
 

 

     

   

    Figure 7.22 Deformed Shapes and Hinge Formation due to Push X .            
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7.7 Tutorial Problems
 

Q1. Consider an elasto-plastic SDOF system having mass = 1kg, elastic stiffness = 157.914 

N/m and damping constant = 1.1257 N.sec/m.  Determine the maximum response of the 

system under the El-Centro, 1940 motion for (i) yield displacement = 0.025m and (ii) 

yield displacement = 0.0125m.  

Q2. A three-story building is modeled as 3-DOF system and rigid floors as shown in Figure 
7.23. Determine the maximum floor displacements under El-Centro, 1940 earthquake 
ground motion. Take the inter-story lateral stiffness of floors are modeled as elasto-
plastic with elastic stiffness i.e. k1 = k2= k3=16357.5 kN/m and the yield displacement of 
0.005m. The floor masses are m1= m2=10000 kg and m3=5000 kg.  

  
 
 
 m1 = m2 = 10000 kg 
 m3 = 5000 kg  

        1 2 3 16357.5 /k k k kN m= = =
 

 

 

  

 

 

Figure 7.23 
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Q3. For a three storied frame (refer Figure 7.24), perform pushover analysis and draw 

pushover curve, capacity curve and demand curve using SAP 2000. 

i)              RCC frame with single bay and three storied 

ii)              Floor to floor height is 4m and bay width is 4m 

iii)             Reinforcement – Fe 415 and Concrete – M20 

iv)             Column Size – 400mm x 230mm 

v)             Beam Size – 300mm x 230mm 

vi)             El-Centro Time History 

vii)            Lumped Mass – 10000kg at each floor  

viii)           Load Combination- 1.5 (DL+EL) as per IS: 1893-2002 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.24 
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7.8 Answers to Tutorial Problems 
Q1.  (i) Maximum displacement =0.04277 m 
        (ii) Maximum displacement = 0.038 m 

Q2. Maximum displacement, x3 = -0.0176m 

       Maximum displacement, x2 = -0.0153m  

       Maximum displacement, x2 = -0.0115m  

Q3.   

  
 

Performance point is very close to Teff equal to 0.362 sec which is at step number 3 and as per 

the hinge formation at Step 3, structure is safe from the pushover analysis. 
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