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  Module 7: Micromechanics
  Lecture 25: Strength of Materials Approach

 

Introduction

In the previous lecture we have introduced the concept of Representative Volume Element or Unit
Cell. This is the basic building block in a micromechanical study. Further, we explained the need of
micromechanical study. In the previous lecture we have obtained effective axial and transverse
modulus and axial Poisson’s ratio using the strength of materials approach. In the present lecture we
will derive the expressions for effective transverse and axial shear moduli. Further, we will derive the
expressions for coefficients of thermal and hygral expansions as well. We will conclude this lecture
with some numerical examples.

The Lecture Contains

Effective Transverse Modulus

Effective Axial Shear Modulus

Coefficients of Thermal Expansion

Coefficients of Hygral Expansion
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  Lecture 25: Strength of Materials Approach

 
Effective Transverse Modulus :

                       In the earlier lecture we have seen the first approach, where the deformation of individual
constituent is independent of each other and the deformation in direction 1 is not considered. In this
lecture we are going to derive an expression for effective transverse modulus using second approach
as follows.
            
Second Approach:

In this approach, we consider the resulting deformation in direction 1. It should be noted that when
the stress is applied in direction 2, the deformations of fibre and matrix in direction 1 are identical.
The deformation in direction 1 is calculated from two dimensional state of stress in fibre and matrix.
The deformations are shown in Figure 7.5.
The axial and transverse stresses in fibre and matrix can be given using planar constitutive relations
as

(7.34)

where,

(7.35)

To compute the effective transverse modulus   we need to find the total deformation  as a

function of the applied transverse stress . It should be noted that the net force in the direction 1

is zero. Thus,

(7.36)
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Figure 7.5: (a) Undeformed unit cell under uniform   stress (b) and (c)
deformed individual constituents of the unit cell
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Generally, the stresses are uniform in the fibre and matrix. Thus above equation reduces to

(7.37)

Further, for equilibrium in transverse direction, we have

(7.38)

The axial and transverse strains in fibre and matrix are

(7.39)

Using Equations (7.34) and (7.39) in (7.37), we get

(7.40)

Further, using Equation (7.34) in Equation (7.38), we get

(7.41)

We solve Equations (7.40) and (7.41) for ,  and . The transverse composite

strain then is obtained as

(7.42)

Finally, putting the values of  and   in the above equation, we get an expression for 

 as

(7.43)

where,
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(7.44)

Equation (7.43) is an alternate equation for effective transverse modulus . This is also a rule of

mixtures equations. It should be noted that the factors   and   are the nondimensional

factors.
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Effective Axial Shear Modulus :
            
To derive the effective axial shear modulus of the composite the RVE is loaded in shear as shown
in Figure 7.6(a). The fibre and matrix are assumed to deform independently. Figure 7.6(b) shows the
overall deformation of the RVE. The overall axial deformation is denoted by . It is important to
note that for equilibrium considerations the shear stresses acting on fibre and matrix are assumed to
be identical.
Under the pure shear loading, that is,  and other stress components are zero, the effective

axial shear modulus is defined as

(7.45)

Figure 7.6: (a) Undeformed unit cell under uniform   stress (b) overall
deformation of unit cell (c) and (d) deformed individual constituents of the unit
cell

where,  and  are the effective applied shear stress and the resulting effective shear strain in

the composite, respectively. The effective shear strain in composite is obtained from the
deformations of the fibre and matrix in RVE. The fibre and matrix undergo deformations   and 

, respectively. These deformations are shown in Figure 7.6(c) and (d), respectively.

The shear strains in the fiber and matrix are given as

(7.46)
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where,    is the inplane shear modulus of the fibre and   is the shear modulus of the matrix

material. From Figure 7.6(c) and (d), we can write the individual deformations in fibre and matrix as

(7.47)

Using Equation (7.46) in above equation, the total axial deformation is given as

(7.48)

Now, we can give the overall shear strain of the RVE as

(7.49)

Finally, the effective axial shear modulus of the composite can be given from above equation as

(7.50)

This is the rule of mixtures equation for the effective axial shear modulus. This equation is analogous
to Equation (7.33) for the effective transverse modulus of the composite.
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Coefficients of Thermal Expansion   and :

            
The coefficients of thermal expansion are very important as the composite is fabricated as elevated
temperature and cooled down to room temperature. In this process, due to difference in the
coefficients of thermal expansion of fibre and matrix materials, the thermal residual stresses are
developed. The determination of the coefficients of thermal expansion of the composite is dealt in
this section. 
           
First, we will derive an expression for the coefficients of thermal expansion in transverse direction, 

. We will use the deformation same as shown in Figure 7.5. The only difference is that the
effective stress in transverse direction must be zero. This is because that the thermal expansion
should occur without any applied stress. Thus, for the deformations as shown in Figure 7.5, we take 

. Now the deformation in fibre and matrix in transverse direction can be given as

(7.51)

where,   is the coefficient of thermal expansion of fibre in transverse direction and   is the

coefficient of thermal expansion of matrix. It should be noted that the matrix is assumed to be
isotropic in nature.   is increase in temperature. Let us define the coefficient of expansion for

composite in transverse direction,  as

(7.52)

Using Equation (7.51) in above equation, we get

(7.53)

Thus, using the volume fraction definitions, we get

(7.54)

This is the rule of mixtures for the transverse coefficient of thermal expansion. It should be noted
that in this derivation the interaction between fibre and matrix under the temperature effect is not
constant. Thus, this derivation neglects the thermally induced stresses in fibre and matrix. However,
this is not true as thermal stresses will be induced in fibre and matrix. We take into account this fact
and derive alternate expression for this coefficient of thermal expansion as follows. 
            
The stresses in fibre can be given for the temperature change of   as

(7.55)
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and in matrix can be given as

(7.56)
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Now it should be noted that due to temperature change the force in direction 1 should be zero.
Further, the stresses in transverse direction in fibre and matrix should be identically zero. The first
condition leads to

(7.57)

Further, assuming that the stresses in fibre and matrix are uniform, the above equation becomes

(7.58)

The second condition that the stresses in transverse direction are zero leads to

(7.59)

Putting the first of Equation (7.55) and Equation (7.56) in Equation (7.58), we get

(7.60)

Using the second of Equation (7.55) and Equation (7.56) in Equation (7.59), we get

(7.61)

Thus, Equation (7.60) and Equation (7.61) are three simultaneous equations in ,  and 

. We solve these three equations and define the coefficients of thermal expansions for

composites as

(7.62)

and

(7.63)
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The above expressions are the rule of mixture for coefficients of thermal expansions for composite in
terms of individual coefficients of thermal expansion, volume fractions and other properties. In the
above equation   is the effective axial modulus, as given earlier. Comparing Equation (7.54) and

Equation (7.63), it is clear that the last term in Equation (7.63) is due to the imposition of deformation
constraint under thermal loading.
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Coefficients of Hygral Expansion  and :
            
When the composite is subjected to hygroscopic environment, it absorbs the moisture and deforms.
It should be noted that the deformation of the fibre and matrix depends upon the amount of moisture
absorbed. Further, the amount of moisture absorbed by fibre and matrix in same environment are, in
general, not same. It will be shown that, unlike the coefficients of thermal expansion, the moisture
content will enter into the expressions of coefficients of hygral expansion of composite.
           
The derivation also follows similar procedure as used in the derivation of coefficients of thermal
expansion. The deformation constraints, similar to the derivation of coefficients of thermal expansion,
are also imposed in this derivation.
            
The force in axial direction in composite should be zero. This condition leads to the equation

(7.64)

The axial stresses in fibre and matrix due to moisture absorption alone are given as

(7.65)

where,  and   are the coefficients of hygral expansion of fibre and matrix, respectively. 

 and   are the per weight % moisture absorption for fibre and matrix, respectively.
Putting this in Equation (7.64) and knowing that the axial strain in fibre and matrix are equal, that is, 

 

(7.66)

The effective coefficient of hygral expansion in axial direction is defined as

(7.67)

where,   is the per weight % moisture absorption for composite. Thus, the above equation
becomes

(7.68)

The above equation can be further simplified by expressing the percentage weight moisture
absorbed by composite to the moisture absorbed by fibre and matrix. Thus,
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(7.69)

where, ,   and   are the masses (as defined earlier) of composite, fibre and matrix,

respectively. The above equation can be written as

(7.70)

Thus, Equation (7.68) becomes

(7.71)

The mass fractions are written in terms of volume fractions with the use of densities of composite,
fibre and matrix. Then the above equation becomes

(7.72)

The coefficient of thermal expansion in transverse direction,  is given as

(7.73)
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Examples:

Table 7.1: Mechanical and thermal properties of fibres [5]

Property/Fibre AS4 T300 E-Glass 21xK43
Gevetex

Silenka E-Glass
1200tex

 GPa 225 230 80 74

 GPa 15 15 80 74

 GPa 15 15 33.33 30.8

G23 GPa 7 7 33.33 30.8

0.2 0.2 0.2 0.2

-0.5 -0.7 4.9 4.9

15 12 4.9 4.9

Table 7.2: Mechanical and thermal properties of matrix [5]

Property/Matrix 3501-6
epoxy

BSL914C
epoxy

LY556/HT907/DY063
epoxy

MY750/HY917/DY063
epoxy

 GPa 4.2 4.0 3.35 3.35

 GPa 1.567 1.481 1.24 1.24

0.34 0.35 0.35 0.35

45 55 58 58

Example 7.1: For AS4/3501-6 Epoxy with 0.6 fibre volume fraction calculate all mechanical and
thermal properties using strength of materials approach of composite.

Solution:

1. Effective axial modulus:

2. Effective transverse modulus without deformation constraint satisfied
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Effective transverse modulus with deformation constraint satisfied

where,

Putting these values, we get

3. Effective axial shear modulus

4. Effective axial coefficient of thermal expansion with deformation constraint satisfied
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5. Effective transverse coefficient of thermal expansion without deformation constraint satisfied

Effective transverse coefficient of thermal expansion with deformation constraint satisfied

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture25/25_9.htm[8/18/2014 3:51:06 PM]

  Module 7: Micromechanics
  Lecture 25: Strength of Materials Approach

 

Home Work:

1. Using strength of materials approach, derive the expression for effective transverse modulus
with deformation constrains satisfied.

2. Derive an expression for effective axial shear modulus of the composite using strength of
materials approach.

3. Using strength of materials approach, derive the expressions for effective coefficients of
thermal and hygral expansions in axial and transverse directions.

4. For fibre volume fraction of 0.6, determine all the effective mechanical and thermal properties
of the fibre and matrix materials given in Table 7.1 and Table 7.2 and compare them with the
experimental effective properties as reported in Soden et al [5]. Calculate percentage
difference for all properties with respect to experimental effective properties.
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