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Introduction

In this lecture we will introduce some more micromechanical methods to predict the effective
properties of the composite. Here we will introduce expressions for the effective properties without the
detailed derivations.

In the present lecture we will study the self consistent method, Mori-Tanaka method and some
relations based on semi-empirical method introduced by Halpin-Tsai.

The Lecture Contains

Self Consistent Method

Mori-Tanaka Method

Halpin-Tsai Semi-Empirical Relations

Homework
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Self Consistent Method
            
The self consistent method is based on the solution to an auxiliary inclusion problem where a single
ellipsoidal inclusion is embedded in an infinite medium. In this system it is assumed that the bond
between inclusion and the infinite medium is perfect. Therefore, there is displacement and traction
continuity across the interface of the two phases. One can determine the stresses and strains by
applying uniform stresses or strains to the system at infinity. It was shown by Eshelby [1] that in
these types of problems, the stress and strain fields in the inclusion are uniform. Further, the elastic
properties can be determined by finding the relation between far-field stresses and strains in the
homogeneous medium and stresses and strains in the inclusion, or the stress or strain concentration
factors.
            
The problem of determining the effective properties of such a system was dealt in depth by Hill [2]
and Budiansky [3]. In this approach the average stress and strain fields in the fiber are taken to be
equal to those in the inclusion problem. Further, the infinite medium is taken to be homogeneous
with the same properties of the composite.
            
For fibrous composites, which are transversely isotropic in nature with both fibre and matrix phases
also transversely isotropic, the self consistent estimates of Hill [2] of the overall moduli give the
following relations.

(7.283)

It was shown by Hill [4] that regardless of the method used to obtain the estimates, only three of the
five overall moduli of such composites are actually independent. Then the moduli  and  are
related through so called universal relations in terms of overall moduli and phase moduli and their
volume fractions as,

(7.284)

Therefore, only one of the three moduli is independent. This fact is clear from the relation in
Equation (7.283). This equation gives a cubic equation in  and quadratic equations for    and 

, again, in terms of . Hence, if      is known, then    and   can easily be obtained from Eq.
(7.284).

Note: When one or both phases are isotropic, then there are only two independent moduli in such
phase. Further, one can write then   and  in terms of engineering constants.
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Mori-Tanaka Method
            
The original method was proposed by Mori and Tanaka [5] in 1973. Further, Benveniste [6] proposed
a simpler version of the same model. The key assumption in this model is that the average strain in
the inclusion, that is fibre, is related to the average strain in the matrix by a fourth order tensor. This
fourth order tensor gives the relation between the uniform strain in the inclusion embedded in an all
matrix material. Further, this material is subjected to uniform strain at infinity. 
            
The strain concentration factors in fibre are given as

(7.285)

where,

(7.286)

Here,   is the fourth order tensor which relates the average strain in the inclusion to the average

strain in the matrix.  is Eshelby’s tensor,   and  are the stiffness tensors of fibre and

matrix materials, respectively. Dvorak et al [7-9] have given the explicit relations in terms of Hill’s
moduli as

(7.287)
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Halpin-Tsai Semi-Empirical Relations
            
A set of semi-empirical relations have been developed by Halpin and Tsai for easy design
procedure. These relations were developed by curve fitting to the results that are based on elasticity.
These relations are called semi-empirical relations because the parameters involved in these
relations have some physical significance. In the following we give these relations.
            
The longitudinal Young’s modulus is same as given by rule of mixtures using strength of materials
approach. Thus,

(7.288)

Further, the axial Poisson’s ratio is the same as given by the rule of mixtures using strength of
materials approach. Thus, the axial Poisson’s ratio is

(7.289)

The Hill’s Moduli are given as

(7.290)

where

(7.291)

Further,  stands for  or    and  and  stands for corresponding values for fibre

and matrix, respectively. Here,     is a measure of reinforcement geometry which depends upon
loading conditions and geometries of the inclusion, that is, fibre. 
            
The parameters used in the Equation (7.290) have physical significance. The limiting values give
following significant information:

1.  corresponds to a situation that the inclusions are rigid.

2.     corresponds to a homogeneous material

3. And for voids , , then .
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The limiting values of     are given as follows:

. . For this value, Equation (7.290) becomes

(7.292)

This gives,

(7.293)

It is easy to see that this is a series connected model which gives the lower bound of a composite
modulus.

. For this case, we get

(7.294)

Thus, Equation (7.290) becomes

(7.295)

This is the parallel connected model. This gives the upper bound of a composite modulus. Thus, 
  is regarded as a reinforcement measure. This factor covers all possible range of the composite
moduli as it varies from zero to infinity. Once this factor is known, the composite moduli are
determined from the generalized formula.
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For example, in case of   for a circular fibres in a square array,    and for rectangular

fibres cross section of length    and width     in a hexagonal array,     where      is in the

direction of loading. Similarly, for    for circular fibres in a square array , and for

rectangular cross-section with length     and width     in a hexagonal array,  ,

where    is in the loading direction.

Note: In case of transversely isotropic material in 23 plane, the constitutive relations are given as

(7.296)

and

(7.297)

Here, the moduli   and   refer to the values in the longitudinal or axial direction

of straining and      and     refer to the values in transverse plane. Further, the

Poisson’s ratios are defined as  and   under the uniaxial tensions

in 1 and 2 directions, respectively.
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The relationship between the Hill’s moduli,    and  and the engineering moduli are given
as

(7.298)

Some additional useful relations are

(7.299)

Further, if the phase is isotropic then with bulk modulus  and shear modulus   , we have

(7.300)
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Home Work:

1. What is meant by self consistent method?

2. Write a short note on Mori-Tanaka method.

3. Write a short note on Halpin-Tsai semi-empirical models.
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