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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 
Introduction

In the previous lecture we have derived constitutive equation for planar state of stress in a lamina.
We have derived these constitutive equations in principal material and global directions. In this
lecture, we are going to see a practical application of the planar constitutive equations in industry.
Although, the engineering constants in principal material directions are known, it is difficult to
comment on the engineering constant for off axis lamina, instantly. When laminae are used for
designing a structure, the engineering constants in global directions become very useful for a quick
estimate of the behavior of the structure under certain loads. Thus, for practical application purpose,
the various lamina engineering constants are obtained and their variation for fibre orientation
between   for a range of composite materials is given together. Thus, a designer
can use the required lamina with appropriate fibre orientation and material.

Here we are going to obtain engineering constants for any off axis lamina as a function of
engineering constants of that lamina in principal material directions and fibre orientation. This can be
done with the help of lamina constitutive equation with appropriate one dimensional state of stress.

We have constitutive equation in global directions as given in Equation (4.5)

Thus, for a given state of stress in global directions we can find the strains in global directions from
this equation.
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 
Axial Modulus:

Consider a unidirectional off axis lamina. This lamina is subjected to the loading  and 

 as shown in Figure 4.2.

Thus, from Equation (4.5) for this state of stress we can write the axial strain as

(4.61)

The Young’s modulus in x-direction is now defined as

(4.62)

Thus, from Equation (4.61), we can write

(4.63)

Figure 4.2: Off axis lamina loaded in traction along x direction

In the above equation,  is written using compliance terms in principal material directions as

(4.64)

Further, it can be writing compliance terms in principal directions using engineering constants doing
some rearrangements as

(4.65)

From this expression it is easy to see that the modulus  when   and  when 

. The variation of the modulus   with fibre orientation for AS4/3501-6 Epoxy material is

shown in Figure 4.3. The variation of the modulus   for both positive and negative fibre
orientations is identical in nature.
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Figure 4.3: Variation of axial modulus with fibre orientation for AS4/3501-6 Epoxy

Axial Poisson’s Ratio:

The axial Poisson’s ratio  can also be obtained for above loading condition. This Poisson’s ratio

is defined as

(4.66)

Using Equation (4.61) we can write

(4.67)

Further, expressing the compliance terms in above equation in terms of engineering constants we
can write

(4.68)
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 

Transverse Modulus:

Consider an off-axis lamina subjected to in-plane transverse loading as shown in Figure 4.4. Thus,
for this loading condition we have  and .

Figure 4.4: Off axis lamina loaded in traction along y direction

Let us define the transverse modulus as

(4.69)

Thus, from Equation (4.5) for the above loading, we can write

(4.70)

If we express  using engineering constants, we get

(4.71)

From this expression, we can see that the modulus  when  and   when 

. The variation of the modulus   with fibre orientation for AS4/3501-6 Epoxy material is

shown in Figure 4.5. The variation of the modulus , similar to the variation of , for both positive

and negative fibre orientations is identical in nature. Further, it can be observed that the curve for 

 is shifted by  to that of .
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Figure 4.5: Variation of transverse modulus with
fibre orientation for AS4/3501-6 Epoxy

Other Poisson’s Ratio:

The other Poisson’s ratio  can be obtained from the loading condition given in Figure 4.4. Let us

define this Poisson’s ratio as

(4.72)

Thus, using Equation (4.5) for this loading, it becomes

(4.73)

which can be written using engineering constants as

(4.74)

The fibre orientation dependence of axial Poisson’s ratio and the other Poisson’s ratio for AS4/3501-
6 Epoxy is shown in Figure 4.6.
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Figure 4.6: Variation of Poisson's ratios with fibre orientation
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 
In-plane Shear Modulus:

The in-plane or axial shear modulus for an off axis lamina can be obtained when it subjected to a
pure shear loading as shown in Figure 4.7. Thus, for this loading condition we have   and .

.

For this loading, we define the in-plane shear modulus  as

(4.75)

With the help of Equation (4.5) we rewrite this equation as

(4.76)

And in terms of engineering constants, it becomes

(4.77)

The variation of  with fibre orientation between   to   for AS4/3501-6 Epoxy material is

shown in Figure 4.8. From this figure it can be seen that shear modulus is maximum when 
. At  the value of shear modulus is

(4.78)

Figure 4.7: Off axis lamina loaded in pure shear

Note: When the material is isotropic, that is  and , then the above expression
reduces to the familiar relation

(4.79)
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The minimum value of shear modulus is seen when the lamina is loaded in shear in principal
material directions and its value becomes

(4.80)

Note: It is very important to note that the shear modulus of the lamina is a minimum when lamina is
in principal directions and a maximum when fibre orientation is  or . Further, the behavior

of a lamina under same pure shear for fibre orientation   is significantly different from that of

lamina with fibre orientation of . The physical significance of this phenomenon is explained in
greater details in the later section.

Figure 4.8: Variation of shear modulus
with fibre orientation for AS4/3501-6
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 
Coefficients of Mutual Influence:

It is well understood by now that for an off-axis lamina there is normal-shear coupling. The terms 

 and   denote the normal-shear coupling. In other words, these terms express that when
there is a normal stress there will be associated shear strain and in a similar way when there is a
shear stress there will be associated normal strain or vice-a-versa.

The normal and shear coupling has been quantified by Lekhnitskii by coefficients of mutual influence.
Two kinds of coefficients of mutual influence have been defined. The first one is defined for applied
shear stress and the second one is defined for applied normal stress. These are defined as the ratio
of an associated strain to the applied strain for the given state of stress. Thus, the coefficients of
mutual influence of the first kind are defined as

(4.81)

where   denotes the axial normal strains, that is  or , and   denotes the in-plane

engineering shear strain. For this case, the state of stress would be   and .

Similarly, the coefficients of mutual influence of the second kind are defined as

(4.82)

The state of stress for this case could be either  and  or    and 

.

Now, let us obtain expressions for the coefficients of mutual influence of the first kind.  We have

(4.83)

(4.84

Now, we will obtain expressions for the coefficients of mutual influence of the second kind. For the
loading shown in Figure 4.2, we will get

(4.85)

which will be simplified and expressed in terms of engineering constants in principle material
directions and fibre orientation as

(4.86)
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Similarly, for the loading shown in Figure 4.4, we get the remaining coefficient of mutual influence as

(4.87)

The variation of the coefficients of mutual influence of the first kind and second kind for AS4/3501-6

Epoxy material with fibre orientation between  to  is shown in Figure 4.9.

Figure 4.9: Variation of coefficients of mutual influence with
fibre orientation for AS4/3501-6 Epoxy
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants

 
Significance of Shear Loading Directions in Off-Axis Lamina:

The direction of shear loads applied to a lamina, especially an off-axis lamina, is very important both
from shear stiffness as well as strength point of view. This is explained with respect to an off-axis
lamina. Here we have illustrated for .

The two cases of pure shear loading of a  lamina are shown in Figure 4.10. In these cases
the direction of loading is reversed. The pure shear loading can be shown to be equivalent traction
and compression loading along the  diagonals of a square element. This is depicted in Figure
4.10 for both cases. For the first case, the fibres are subjected to tensile normal stress and matrix is
subjected to compressive normal stress, whereas for the second case, the fibres are subjected to
compressive normal stress and matrix is subjected tensile normal stress. The first case of shear
loading shown in Figure 4.10 is called Positive Shear and the second case is called Negative
Shear.

In the case when fibres are oriented at , either tensile or compressive normal stress is aligned

along the fibres, thus resulting in higher shear stiffness at . However, when the lamina is
loaded in pure shear in principal material directions (as shown in Figure 4.11), the equivalent stress
in fibre is neither pure normal tensile stress nor pure normal pure compressive stress. Thus, it
results in lower shear stiffness, that is 

.

Figure 4.10: Off-axis lamina loaded in pure shear

It is well known that fibres are good in traction and weak in compressive loading. Thus, it is desirable
from designing point of view that the shear loading should results in an equivalent loading in which
the fibres are subjected to tensile normal stress. This kind of shear loading of an off-axis lamina will
ensure the higher shear strength of the lamina. In case of   off-axis lamina the fibres are in
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pure tensile for their positive shear loading. Thus, it results into the highest shear strength.

The loading of an off-axis lamina in pure shear should be, in general, positive shear. This is one of
the important design consideration.

Figure 4.11: Unidirectional lamina loaded in pure shear
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  Module 4: Plane Stress Constitutive Equations
  Lecture 15: Lamina Engineering Constants
 

Examples:

Example 4.4 : Calculate all the lamina engineering constants for an off-axis lamina of AS4/3501-6 Epoxy
with fibre orientation of .

Solution:

We know that all the lamina engineering constants are either reciprocal of ratio of two compliance terms in
global material directions. So, we obtain compliance terms in principal material directions and then we
transform it into global directions with .

Unit of all terms is 1/MPa.

Now, for 

Thus, carrying out matrix multiplications, we get

 1/MPa

Now, we calculate the lamina engineering constants as
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Using direct equations given above can also be used but this should be done only when one is confident of
remembering these relations in terms engineering constants in principal material directions.
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  Module 4: Plane Stress Constitutive Equations

  Lecture 15: Lamina Engineering Constants

 

Homework:

1. Obtain the lamina engineering constants for materials given in Table 3.1 for fibre orientation
of 

2. Write a computer code to plot the variation of all lamina engineering constants and
coefficients of mutual influence against the fibre orientation from   . Further,
plot the variations for the materials given in Table 3.1 simultaneously and compare their
behaviour and comment on key observations.
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