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  Module 6: Failure and Damage
  Lecture 22: Macroscopic Failure Theories

 

Introduction
            
In the previous lecture we have seen maximum stress theory, maximum strain theory and Tsai-Hill
theory. The former two theories are similar but do not have interaction with other stress or strain
components. The Tsai-Hill theory is quadratic in stress and has interactive terms. In this lecture we
will see some more failure theories for composite. Then we will see some numerical examples.

The Lecture Contains
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  Module 6: Failure and Damage
  Lecture 22: Macroscopic Failure Theories

 
4. Hoffman Theory
            
The Hoffman criterion [1] is extension of Tsai-Hill theory. In Tsai-Hill theory the strength parameters
are obtained without considering the difference in values in tension and compression. However, one
should realistically consider the differing tension and compression strengths that characterize brittle
behaviour. This can be done by adding odd functions of  and   in the expression of Tsai-Hill
criterion. Thus, Equation (6.13) becomes

(6.24)

where,  are the material parameters. These are uniquely determined from nine basic

strength data, namely, three uniaxial tensile strengths,  and ; three uniaxial compressive

strengths,  and   and three shear strength parameters, Q, R and S. To determine these
material strength parameters, we need to do thought experiments as follows:
            
First, consider the state of stress such that  and all other stress components will be zero. For

shear failure in this mode, we need . Putting this in Equation (6.24), we get

(6.25)

Similarly, we get the constants

(6.26)

(6.27)

Now, to find remaining constants we apply following state of stress. Let  and all other stress

components be zero. For tensile failure, we need   for this stress state. Putting this in
Equation (6.24) we get

(6.28)

Similarly for this stress state, the compression failure requires . This results the Equation
(6.24) to give

(6.29)

Now, we have two stress states: First one as  and all other stress components are zero and

the second one as  and all other stress components are zero. Again, as in previous case for
failure in tension and compression, Equation (6.24) results into following conditions:

(6.30)
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Thus, Equations (6.28), (6.29) and (6.30) give a set of six simultaneous equations in 
. Solving these, we get

(6.31)

and

(6.32)

Thus, the Hoffman criterion as given in Equation (6.24) becomes

(6.33)

Now consider transverse isotropy of the material in 2-3 plane. Thus,  and . For

shear strength, we have . Then for plane stress condition , the criterion in
Equation. (6.33) becomes

(6.34)

Equation (6.34) represents Hoffman criterion for planar state of stress in transversely isotropic
materials. It should be noted that in this criterion there is no need to check the sign of the stress
components to decide whether a tensile or compressive strength is to be used.
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5. Tensor Polynomial Failure Criterion:
            
Tensor polynomial criterion attempts to mathematically overcome one of the shortcomings of the
quadratic criteria that they do not account for differences between tensile and compressive strengths.

           
In the present lecture we will see the second order tensor polynomial criterion proposed by Tsai and
Wu [2]. This is a complete quadratic tensor polynomial which includes the linear terms. 
            
The failure surface in the stress space has the following scalar form:

(6.35)

where,  and   are strength tensors of the second and fourth order, respectively. The expanded

form of the above equation is

(6.36)

It should be noted that the linear term   take into account the difference between tensile stress and

compressive stress induced failures. The quadratic terms   define an ellipsoid in the stress

space.
The features of this theory are given below:

1. The resulting criterion is a scalar function and thus an invariant. Further, the interactions
between various components are independent unlike in Tsai-Hill theory where interactions are
fixed and in case of maximum stress or maximum strain theory these interactions are not
possible.

2. The strength components are expressed as tensors; one can use the transformation rules as
discussed earlier for their transformations. Further, the invariants of these strength tenors are
also well defined.

3. The property of symmetry of strength tenors and number of independent and non-zero
components can be derived in similar way that we carried out for anisotropic materials earlier.

4. One can either transform the strength parameters from  to  and   to  or transform 

 to . Most of the existing criteria are limited to specially orthotropic materials. Such criteria
can be applied only by transforming the external stresses to material axes. However, the
transformations of strength criteria cannot be done as this transformation is not known.

5. Since Equation (6.36) is an invariant, hence, an invariant for any other coordinate system.
This also holds for curvilinear coordinate system as well.
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6. The theory has also introduced constraints over the magnitude of the strength interaction
terms in the following manner :

(6.37)

The terms   represent diagonal terms and are positive terms, whereas the off-diagonal
terms can be positive or negative depending upon their interaction with other terms. However,
their magnitudes are constrained by Equation (6.37). Further, the inequality in Equation (6.37)
is very important as it assures the failure envelope in Equation (6.35) intersects all stress
axes. The surface formed by Equation (6.35) is an ellipsoid and Equation (6.37) ensures that
it is a closed surface unlike a hyperboloid. It should be noted that the positive definiteness is
also imposed for  terms.

7. Gol’denbalt and Kopnov [3] proposed a tensorial criterion in a general form of

(6.38)

This form of the equation is more complicated than in Equation (6.35). Further, the size of the
strength terms is enormously very high to handle and the additional terms do not yield more
generality than the linear and quadratic terms.

Note: Statement 4 above equivalently says that the Tsai-Wu strength criterion can be given in
transformed coordinate system. The transformed criterion may be given as

(6.39)

And the strength terms can be transformed using the following relations

(6.40)

However, the transformation of any other strength criteria may not hold true.
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Now we will seek simplifications to Equation (6.36) as follows. The strength tensors can be written in
the form

  (6.41)

and

  (6.42)

where, both strength tensors are assumed to be symmetric with 6 and 21 independent constants for 
 and , respectively.

           
The number of independent strength parameters can be further reduced if we have some form of
material symmetry. We consider a special case of specially orthotropic material. Thus, for specially
orthotropic material the terms  and   will vanish. Further, the off-diagonal terms which give

normal shear coupling like , etc. will also become zero if we assume that the sign of
shear stress does not change the failure stress. Further, with same reasoning we assume that the
shear strengths are also uncoupled leading to . Thus, with this material
symmetry, we have

 and

The number of independent strength parameters are now 3 and 9 for   and , respectively. Thus,

for orthotropic material the criterion becomes

  (6.43)

Now we will determine the strength parameters by thought experiments. First, we apply  and

other stress components being zero. For this state of stress, the failure in tension requires .
Thus, Equation (6.43) becomes

  (6.44)

Similarly, for this state of stress, the failure in compression requires . This results in
Equation (6.43) to become
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  (6.45)

Equation (6.44) and Equation (6.45) are two simultaneous equations with  and  as two
unknowns.

Solution of these two equations gives

  (6.46)
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Likewise, if we apply stress states as  and  with other stresses being zero, it will give
us the following constants:

 
(6.47)

 
(6.48)

Similarly, if we apply , ,  and with other stress components as zero, as three
separate states of stress, then we get following constants:

 
(6.49)

So far we have developed expressions for 3 strength terms for  and diagonal terms of . Now

the expressions for off-diagonal terms of    require combined state of stress to be applied. The

pure axial or shear state of stress will not be sufficient. In other criteria the interaction terms like  

are assumed to be dependent or terms like  are zero.
            
There are an infinite combinations of the stresses from which these terms can be obtained. However,
one should choose those combinations which can yield the desired result in a reliable and easy
manner. In the following, we will see typical combinations of stresses to find .

Consider the equivi-biaxial stress state    and other stress components are zero. Putting
this in Equation (6.43), we get

 
(6.50)

Solving for , we get

 
(6.51)

Similarly, if we apply equivi-biaxial stress states in 1-3 and 2-3 planes, then we get the following
constants:

 
(6.52)

 
(6.53)
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We can find the constants  and  by imposing the equivi-biaxial state of stress. However,
practically it is very difficult to impose such a state of stress. Hence, many researchers have
proposed tests on  angle specimens to determine these strength parameters.
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 Consider the stress state

 
(6.54)

and other stresses are zero. Here,   is the axial tensile strength of  specimen. The stress state

in Equation (6.54) is obtained by applying   in axial direction for  specimen. One should be able
to get the state of stress in Equation (6.54) from our earlier stress transformation equations. Putting
Equation (6.54) in Equation (6.43), we get

 
(6.55)

which upon solving for   gives

 
(6.56)

A similar expression can be derived with compressive strength of  specimen. One can further find

this constant using the in-plane shear strength of  specimen,  which produces the stress state
as

 
(6.57)

This reduces Equation (6.43) to

 
(6.58)

The solution  from this equation is

 
(6.59)

Note: In case of anisotropic materials the constant   is no longer zero. This can be obtained by a
tension-torque test such that it results in following stress state

 
(6.60)

Using this in Equation (6.43), we get

 
(6.61)
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which gives

 
(6.62)

The Tsai-Wu criterion for planar state of stress can be given as

 
(6.63)

The strength parameters are as given above. If the strength term   then, the criterion
becomes

 
(6.64)
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Examples

Example 6.3: For the data in Example 6.1, find whether lamina will fail if a) Hoffman and b) Tsai-
Wu theory is used.

Solution: The strain transformation and  are as given in Example 6.1. 

Hoffman Theory: 

For planar stress the Hoffman theory is

Using the strength parameters and stresses we get

Thus, the failure index is greater than unity. Hence, according to this theory, for the given state of
strain/stress the lamina fails.

Tsai-Wu Theory:

Using the stresses and strength parameters, for planar stress state the Tsai-Wu theory with term 
 is given as

The strength parameters are calculated as
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Thus, putting the stress values, we get

Since, the value of failure index by Tsai-Wu theory is greater than unity, the lamina will fail.
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Example 6.4: For the data in Example 6.2, find the maximum value of   if a) Hoffman and b) Tsai-
Wu theory is used.

Solution: 

Hoffman Theory:

For planar stress the Hoffman theory is rearranged as

Using the stresses and strength parameters,

Thus, we get

Solving this quadratic equation for  we get .

Tsai-Wu Theory:

For planar stress state the Tsai-Wu theory with term  is given as

The strength parameters are as given in Example 6.3. Putting the stresses, we get

Solving this for , we get  .

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture22/22_9.htm[8/18/2014 12:50:13 PM]

  Module 6: Failure and Damage
  Lecture 22: Macroscopic Failure Theories

 

Home Work:

1. Explain in detail the following failure theories.

a. Hoffman Theory

b. Tsai-Wu Theory

2. What is the difference between Tsai-Hill and Hoffman theory?

3. What are the key features of the Tsai-Wu theory?

4. What are the different methods to find the strength parameter  in Tsai-Wu theory?

5. Explain the methods to find the strength parameter  in Tsai-Wu theory.

6. A ply of AS4/3506-1 material with   fibre orientation is in the planar state of stress. The

strains are . Check that whether lamina will fail if a)

Hoffman theory b) Tsai-Wu theory is used.

7. Find the maximum value of   if a state of stress of     and 

  is applied to the   lamina of AS4/3506-1 material using a) Hoffman theory b)

Tsai-Wu theory.
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