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  Module 3: 3D Constitutive Equations

  Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy
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  Module 3: 3D Constitutive Equations
  Lecture 11: Constitutive relations: Transverse isotropy and isotropy

 
Transverse Isotropy:

Introduction:

In this lecture, we are going to see some more simplifications of constitutive equation and develop
the relation for isotropic materials.

First we will see the development of transverse isotropy and then we will reduce from it to isotropy.

First Approach: Invariance Approach

This is obtained from an orthotropic material. Here, we develop the constitutive relation for a material
with transverse isotropy in x2-x3 plane (this is used in lamina/laminae/laminate modeling). This is

obtained with the following form of the change of axes.

(3.30)

Now, we have

Figure 3.6: State of stress (a) in x1, x2, x3 system
                                         (b) with x1-x2  and x1-x3 planes of symmetry

From this, the strains in transformed coordinate system are given as:
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(3.31)

Here, it is to be noted that the shear strains are the tensorial shear strain terms. 

For any angle α,

(3.32)

and therefore, W must reduce to the form

(3.33)

Then, for W to be invariant we must have

Now, let us write the left hand side of the above equation using the  matrix as given in Equation

(3.26) and engineering shear strains. In the following we do some rearrangement as

Similarly, we can write the right hand side of previous equation using rotated strain components.
Now, for W to be invariant it must be of the form as in Equation (3.33).

1. If we observe the terms containing  and    in the first bracket, then we conclude

that   is unchanged.

2. Now compare the terms in the second bracket. If we have   then the first of

Equation (3.32) is satisfied.
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3. Now compare the third bracket. If we have , then the third of Equation (3.32) is

satisfied.
4. Now for the fourth bracket we do the following manipulations. Let us assume that 

and  is unchanged. Then we write the terms in fourth bracket as

To have W to be invariant we need to have  so that the third of Equation (3.32) is

satisfied.

Thus, for transversely isotropic material (in plane x2-x3) the stiffness matrix becomes

(3.34)

Thus, there are only 5 independent elastic constants for a transversely isotropic material.
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  Module 3: 3D Constitutive Equations
  Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy

 
Second Approach: Comparison of Constants

This can also be verified from the elastic constants expressed in terms of engineering constants like 
. Recall the constitutive equation for orthotropic material expressed in terms of

engineering constants. For the transversely isotropic materials the following relations hold.

When these relations are used in the constitutive equation for orthotropic material expressed in
terms of engineering constants, the stiffness matrix relations in Equation (3.34) are verified.

Isotropic Bodies

If the function W remains unaltered in form under all possible changes to other rectangular Cartesian
systems of axes, the body is said to be Isotropic. In this case, W is a function of the strain
invariants. Alternatively, from the previous section, W must be unaltered in form under the
transformations

(3.35)

and

(3.36)

In other words, W when expressed in terms of  must be obtained from Equation (3.33) simply by

replacing  by . By analogy with the previous section it is seen that for this to be true under the

transformation Equation (3.35). We can write

And the transformed strains are given as
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(3.37)

Thus, for any angle α,

(3.38)

and therefore, W must reduce to the form

(3.39)

Then, for W to be invariant we must have

Now, let us write the left hand side of above equation using the   matrix as given in Equation

(3.34) and engineering shear strains. In the following we do some rearrangement as

(3.40)

Similarly, we can write the right hand side of the previous equation using rotated strain components.
Now, for W to be invariant it must be of the form as in Equation (3.39)

1. From the second bracket, if we propose , then we can satisfy the first of Equation

(3.38).
2. From the third bracket, third of Equation (3.38) holds true when 

.

3. The fourth bracket is manipulated as follows:
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Thus, to satisfy the second of Equation (3.38) we must have . Further, we should

have . From our observation in 2, we can write .

It follows automatically that W is unaltered in form under the transformation in Equation (3.36). 

Thus, the stiffness matrix for isotropic material becomes as

(3.41)

Thus, for an isotropic material there are only two independent elastic constants. It can be verified
that W is unaltered in form under all possible changes to other rectangular coordinate systems, that

is, it is the same function of  as it is of  when  is changed to .
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  Module 3: 3D Constitutive Equations

  Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy

 

Homework:

1. Starting with the stiffness matrix for transverse isotropic material, take the transformations
about x1 and x2 and show that you get the stiffness matrix as given in Equation (3.41).
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  Module 3: 3D Constitutive Equations
  Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy
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