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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Introduction

In the previous chapter, we have developed 3D constitutive equations. While analyzing composites,
most of the times a planar state of stress actually exists. It is noted that a typical unidirectional
lamina has very small thickness compared to its planar (xy) dimensions. Thus, it is appropriate to
assume a planar state of stress in a lamina. In this chapter, we are going to derive a constitutive
equation for plane stress problem in unidirectional laminar composite.

Plane Stress for Monoclinic (or Rotated Orthotropic) Material

3D constitutive equation for a single layer of a unidirectional composite with a fiber orientation g
relative to the global coordinate is
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For a state of plane stress, we have
Ozz = Tyz = Tpz= 0 4.2)

Thus, it is easy to see that the two out of plane shear strains ¥, = ¥,; = (1 are zero. We can write

these strains using Equation (4.1) as

T}'z = 5_44T}'z + 5_45sz =0
_ _ (4.3)
Yx== 545T}'z + 555T =0

The out of plane normal strain E is expressed using Equation (4.1) and Equation (4.2) as

O i Ty, + S Ty (4.4)

Note that this strain component is not zero.

In plane components of strain for a plane stress state can be written using Equation (4.1) as

(4.5)
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From 3D constitutive equation (Equation (3.72)) for the transformed stiffness, we can write .. as

g, =058, T0,; £y T s B T 5 Voo = 0 (4.6)

L

From this equation, we can get the out of plane transverse normal strain as

o + +
i — Fm Tom B T Ve 4.7)
C33

Thus, the out of plane normal strain is expressed in terms of in-plane strain components and known
stiffness coefficients.
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Reduced Transformed Stiffness Matrix

The equation for in-plane components of stress in terms of the transformed stiffness coefficients is

T =00 6 + 0y 6, +C00; 62 054 ¥y
T = Uy B + U0 6, + 005 82 +C4 ¥, (4.8)

Ty = e B 005 £y T s g T Cag Yoy

Substituting E from Equation (4.7) into Equation (4.8) and upon simplification, we get

o, = [t:_’n —~ CECH g, +| Ty — —CB_CH Ep +[51G — —CB_C“J Vo
C33 C33 I::".33

The above equation is written in matrix form as

w gl El:.' gm e
T =Ca Cn Cux || (4.10)

Top Elﬁ Eﬂﬁ gﬁﬁ Y

where the transformed reduced stiffness coefficients E{r are defined as

= = Cply s
0,=0,-—2% ;=126 (4.12)

Note: Transformed reduced stiffness matrix is symmetric.

Note: It is very important to note that the transformed reduced stiffness terms for plane stress, Eﬂ

are not simply the corresponding terms, E&. taken from the 3D stiffness matrix. This should be clear
from the fact that the inverse of a 33 3 matrix is different from that of a &= &. This can easily be
seen from Equation (4.11). The readers should easily understand that when E{? terms are used to

define a constitutive equation, then it is a reduced transformed constitutive equation.

Plane Stress for Orthotropic Material

Let us recall the constitutive equation for orthotropic material in principal directions.We can write the
constitutive equation using compliance matrix as (Equation (3.45))
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We have planar state of stress for orthotropic lamina. Then we have out of plane transverse stress
components zero, that is,

T =Ty =Ty =0 (4.13)

Let us write the out of plane transverse shear strains using this information and Equation (4.12) as

Vaz = ogy Tyy =0
(4.14)
Yz =855y =0
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Thus, the out of plane transverse shear strains are zero. Now, let us write the out of plane
transverse normal strain using Equation (4.12) as

£33 = 23 Opp T 85 Ty + 555 Ty (4.15)
Using and Equation (4.13) in the above equation, we get
iz = o3 Oy +85 Ty (4.16)

and the inplane strain components are given as

£11 SpooSp 0oy
1z 0 0 S| Tz

This equation is called reduced constitutive equation using compliance matrix.

We have the 3D constitutive equation using stiffness matrix in principal material directions as
(Equation . (3.26))

Ty Ch Cla Cz O 0 0 £11
o Cla C Ty O 0 0 Eoy
T Cls Cos G O 0 0 Fiz
4 L — 4 ¥ (4.18
T Cop U 0 Yoz
Tz SyEmetric U O ¥z
Lt ) L Cee | [ 12

We have from the condition of plane stress problem that ¢, = (. Thus, using Equation. (4.18), we
can write

Ty = Cpa 05 €5y + 055853, = 0 (4.19)

This leads to non-zero transverse normal strain £y @S

ClaEn+ 00 &
€3 =~ (4.20)
Caz
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Using Equation. (4.18), we can write the inplane stress components as

ayy =Chy &y +Cy 8y +003 65
Ty = Uy 81+ Cpy 8y + Uz 533 (4.21)

T2 = Cag Mz

Putting the expression for &, from Equation. (4.20) in above equation, we get

A A
511=[C11_ lé 13]'5'11"'[012_—1; 23}5'22

33 33
' O O O 4.22
Oy = | Cp— =272 |5, +| Cpy - —272 | 5 (4.22)
Css Ca
T2 = Clgs Y12

This equation is written in matrix form as

an G ¢ 0 £11
Ty p = Gy 0 |78 (4.23)

111 0 0 s | [ 7

where, the Qi?. terms can be written using index notations as follows

L (1,i=126) (4.24)

Note: The reduced stiffness matrix is symmetric.

Note: The readers should again understand the difference between Qﬁ and Cir‘ terms. They are not

the same.

The inversion of Equation (4.23) should give us Equation (4.17), that is,

£11 Sy Ry 0| |ay

¥z 0 0 Sg [T
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Let us compare this equation with corresponding 3D equation (Eq. (4.12). It can easily be seen that
the compliance terms of the constitutive equation are identical for 3D and plane stress problems.
Thus, we can write for the plane stress problems as

[o]=[sT" (4.25)

It is easy to invert a 33 matrix. In fact, you need to invert a 2=2 matrix. Thus, we can write the
individual reduced stiffness entries in terms of compliance entries as

Ry Y
Qll = #, Qn =___~“u
311322 _312:4 311322 _3122
(4.26)
-5 1
Qu = = Qﬁﬁ ==

£

311322 - 312:4 ,

66
Compliance and Stiffness Coefficients Using Engineering Constants
Let us write the compliance and stiffness matrices using engineering constants. It is easy to see that

the individual entries of the compliance matrix in plane stress problem are same as the 3D
compliance. Thus, we write for the plane stress problem the compliance entries as

1 —u -
11 El 12 Eg 21 El
4.27)
1 1
S = — &=
Y E, it Gy

Here, we have used the property that compliance matrix is symmetric, that is, Si?. = Sﬁ' Using

31:4 = 321, we can develop the reciprocal relationship for 2D case as
1 1
a2 (4.28)
Ez 1

Note: It is easy to see for a plane stress problem of an orthotropic material that only four of the five
material constants are independent.

We can write the individual terms of reduced stiffness matrix in principal material directions by using
Equation (4.26) and Equation (4.27) as

(4.29)
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NI, 127 =1
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E
_ ] _
(g = oo {as = Ty
— Uy Wy

Note: For a transversely isotropic material there is no reduction of the number of independent
constants for plane stress problem.

One can write the constitutive equation in material coordinates, using Equation (3.42), Equation
(3.43) and introducing the corresponding reduction in out of plane direction as

= Yy a
n=— "= 9y
) &
1+ fap
Ep =~ —- O+t (4.30)
1 £,
T
12
Yo ==~
i

It is easy to write the compliance coefficients in Equation (4.27) from these relations. Further, we can
write the above relations in inverted form as

1, &
_ 1 12 £
g = 1 £11 1 Ea
= Ll = Ul
P ¥ £y _— E, - (4.31)
R Y
LI [P LN
Tp = Gy Mz

These relations lead to individual reduced stiffness coefficients given in Equation (4.29).
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

2D Transformations about an AXxis:

In planar stress condition we need to transform the stresses in plane. Let us write, similar to
Equation (3.63), the transformation equation for stresses as

iy T
ot =151, (4.32)
Ty Ty

where [Tl] is the transformation matrix for stress tensor. For the above equation, using Equation
(3.64), this matrix can be written as

B n 2mn
[Tl]= 2oomt - 2mn (4.33)

— MR RR P’.’Eg—?ﬂg

Similarly, we can write the strain transformation equation in the following form.

&1 Ex
gnt=5155, (4.34)
:}'}12 :y;l:}l

where [Tz] is the transformation matrix for strain tensor. We can find this matrix using Equation
(3.69) and the above relations as

i 7 PR

[Tg] =| e —mn (4.35)

2 3
— Zmm 2w omt —n

Note: The transformation matrices [Tl] and [Tj] are not symmetric. There is a difference of factor 2
in two entries of these matrices.

Note: The transformation matrices [Tl] and [Tg] can be inverted using following relation

L -8 i-12 (430

i

The readers should verify this result.
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Note: We have used the same matrix notation for stress and strain transformation matrices ([Tl]
and [Tg]) in 3D case and plane stress case. However, the readers should note the corresponding

differences.
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Lamina Constitutive Relations in Global Coordinates:

The plane stress constitutive equation in principal material coordinates is

{oha = [Q ]{5}123 (4.37)

Let us write the stresses and strains in terms of components in global directions using Equation
(4.32) and Equation (4.34). The above equation can be re-written to give stresses in global
coordinates as

(o) =[LT 10N ) e (4.38)

We define the plane stress transformed reduced stiffness matrix [@ J as

[@] =[] elln] (4.39)

Introducing this definition in Equation (4.38), we get

() = [EJ{E‘}W (4.40)
The above equation is written in expanded form as

T En gu gm E
Tpr=|Cn COn Cnl|ic, (4.41)

T Cis O Cas || Ve

Note: l@J is a symmetric matrix. Further, it is a fully populated matrix with non zero J. O..

coefficients.

Thus, using Equation (4.33), Equation (4.35 in Equation (4.39), we can write the individual terms in
expanded form as

(4.42)
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O, = Oyt + 2[00, + 20wt a® + Ot

Ooy = (00 + 0 — 4 oo + 0 fn* +1°)

O = Oyt +2(0, +2 0 ' + O

Oi = (O~ C1a — 2Css) ' + By — Oy + 2 G Jn"m
Ons = (C1 = Gz = 205 )mn” +(01; — Oy + 2 O Jwd”
Dre = (O +0n — 201 — 204 i + Oe st +)

Note: Reduced stiffness coefficients are fourth order in the sine and cosine functions.

Note: @16, Ezﬁ are very important. They define the coupling between in-plane normal and shear

responses. Figure 4.1 shows response of an isotropic and orthotropic material under traction. The
behaviour of an orthotropic lamina loaded along fibre direction and perpendicular to fibre direction is
essentially similar to an isotropic material. However, for an off axis lamina, the behaviour clearly
shows the coupling between normal and shear terms.

T
= 7
il

X

L.

¥

\

%

f—

|

lsotropic Orthotropic Crff-mxas lanmna

Ongmal shape Dretonmed shape

Figure 4.1: Normal shear coupling in orthotropic lamina

The transformed plane stress constitutive equation can also be given in inverted form of Equation
(4.40) as

()., = 5Kl (4.43)

where

(4.44)

=[LIerE]

Using [T;] from Equation (4.33) and [T, ] from Equation (4.35) in the above equation, we get the
individual coefficients of transformed reduced compliance matrix as
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=t S et (28, + S et

12 = {311 +85 - Sﬁﬁ}"gzmz +5, ("’4 +m4)
15 = [(2311 — 25y - Sﬁﬁ)mz + (2 Slp— 28 +Sﬁﬁ}’32]

(4.45)

=t S (28, + S )t s,

o= (2 S — 25, — S )0 (28, — 285, + Sy )
5= 40’ e’ [311_ 2.5, +S:42]+Sﬁﬁ ("’32 +m3)2

e

Note: The same notation has been used for compliance matrices in principal directions [3] and

transformed directions [,5_*] in 2D and 3D. This is because the corresponding terms are identical.

However, for the stiffness coefficients these are different in 2D and 3D.

Note: One can see the difference between the stiffness values by algebra involved. The inverse of
the 3.2 compliance matrix for plane stress case is different from the inverse of the § =« & matrix for

3D case.
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Thermal Effects:

Thermal strains in principal material coordinates are proportional to the temperature change AT .

These are given using coefficient of thermal expansion as

[Em]m = {a} AT

where {a}.. ={a & U}r'

Transformation of the thermal strains [,5-0" 3']-123

en &’ &
g =L 8 =L e AT
}“,Ef:' 3"’1%":I 0

Let {a}m = [Tg]_l{c}:}m- Thus, Equation (4.47) becomes

g @ oy +nta,
EE:' =98, (4T = ;33.::31+mz.:12 AT
v e, 2mnfcy — )

[E(T:']m = {c}:}m AT

Thermo-Elastic Constitutive Equation:

(4.46)

to the strains [E‘I:T}]'m in global coordinates gives

(4.47)

(4.48)

(4.49)

The total strain due to mechanical and thermal loading in principal material directions is given as

{ehs = [E(ﬂ]m + [Em]m

We can write for the mechanical strains as

[Em]m =[$ ok

Thus, Equation (4.50) becomes

{ehe = [S]{J}uz + [E(m]m

(4.50)

(4.51)

(4.52)
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Re-arranging the above equation, we can write for the stresses as
{ohas = [Q]({E}uz - [Em}lzz) (4.53)

The above equation can be written in global coordinate system as

(e =10 eh e 1))
[0}, ~{ed AT

dllPrevious Next||p

file:///IDJ/Web%20Course%20(Ganesh%20Rana)/Dr.%20M ohite/ CompositeM aterial g/l ecturel4/14 _8.htm([8/18/2014 12:16:35 PM]



Objectives_template

Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Moisture Effect:

The hygroscopic expansion in principal material direction is proportional to the amount of percentage
weight of moisture absorbed. Further, the hygroscopic expansion will be in principal normal directions
only. This expansion will not lead to any shear. Thus, we write the hygral strains in principal
directions for planar problem as

it
[E(H}]m = {ﬁ}uzﬁMz Gy rAM (4.54)
0

Here, {ﬁ}m denotes the coefficient of hygroscopic expansion in principal material directions for

planar problem and a1 denotes the amount by percentage weight of moisture absorbed.
Now let us transform the hygroscopic strains in global coordinate system as

[E(H:I]m- = [Tz ]_I[E(H}]mz (4.55)

Using Equation (4.54), we can write

(@), = (L] {BhmAM= (gl AM (4.56)
where
A w8+t 8
{Bhe=18, =0T {ghs =3 A4+ 8 (4.57)
&, 2§ — 5,)

It is clearly seen from Equation (4.48) and Equation (4.57) that {&'}m and {ﬁ}m behave in a

similar way.

Hygro-Thermo-Elastic Constitutive Equations:

When hygral and thermal effects are present along with mechanical strains, then the total strain in
principal material direction is given as

{ehs = [E(F}]m + [Em]m + [El:m]m (4.58)

Using Hooke’s low for mechanical strain and solving for stress the hygro-thermal constitutive
equation, we get
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{chas = [Q][{E}m - [Em}lzz - {E(m}m) (4.59)
= [Q ]{{5}123 —{a} AT —{ 8 A1)

Equation (4.59) can be written to give stresses in global directions as

{J}m - [E]({E}m B [El:m}m B {E(Hj}m)
= [@]({E}m —{ﬂ}mﬂT—{ﬁ}m&M:] (4.60)

are as given in Equation (4.48) and Equation (4.57), respectively.

where {c}:}m and {ﬁ}m
4l Previous Next||p
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Examples:
Example 4.1: Calculate Eu for AS4-3501-6 Epoxy material for fibre orientation of &)2.

Solution:

Calculate the Poisson’s ratio 1, as

B, 11x10

vy = =21y, = ———— 0.28= 0.02444
TR R 12610

Calculate the reduced stiffness matrix entries in principal material directions as

On=— 1 126868 3433MPa,  Qp=—2%2 - "B 31011697 pp
1=u, vy =y I-vpuy
(o = li = 110758077 MFPa, (g = G, = 6600 MFPy
~ VgV

Now, calculate [Tl]'l and [Tz] as from Equation (4.33), Equation (4.35) and Equation (4.36) with
m=cosb0%=05and p=zn 60" =0.866.

0.25 075 -0.866
[T]'=|075 025 0366 |and
0433 -0433 05
025 075 0433
[T]=| 075 025 -0433

~0.866 0866 0.5

Now, [@:I =[T;]_1[Q][T;] This gives us

2027237 2285279 13666.24
[E}: 0285279 T8168.64 3647339 | MPa
1366624 3647339 2635156

Example 4.2: In the above example, if the state of strain at a point in principal material directions is

{5}123 :{2 1 1].1" w1074, then find the corresponding state of stress in global directions for fibre

orientation of #(®.

Solution:

We find stresses in global directions as
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And
025 075 -0433
(] =| 075 025 0433
0866 -0866 05
Thus,
{£} ={0817 2183 0366} x10™*
nE
And

(€}, ={7.145 20266 10.043) MPa

Example 4.3: In Example 1, the coefficients of thermal expansion in principal material directions are
{{x}m :{—1_ o8 D}x‘l[j"jf ‘. Calculate the stresses developed due to temperature rise of

I in principal material directions as well as in global material directions.
Solution:

Stresses in principal material directions due to thermal strains alone are given as

{Thy = [ Q][ Em]
Here, AT = 20% . Thus,

=[Q]{ ﬁ}uz AT

123

{a),,={-1387 8346 0} MPa

And stresses in global directions are

{6}, =[B] {o}, ={6.063 1096 4301 MPa
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Module 4: Plane Stress Constitutive Equations

Lecture 14: 2-Dimensional Lamina Analysis

Homework:

1.
2.

Verify the result given in Equation (4.36).
Using the invariance property of strain energy density function, show that:

(5] =[5] and [5]" =[]

Using the relation between Qir’ and Ci?. as given in Equation (4.24) and Ci?. in terms of

engineering constants, show that Qi?. are as given in Equation (4.29).

4. Write the compliance coefficients in Equation (4.45) in terms of engineering constants.

10.

Using Equation (4.24) in Equation (4.42) obtain the individual terms of E in terms of Cir"
i
For fibre orientation 4= 30~ and g =5 obtain [@J matrix for materials given in Table 3.1.

. The [@J matrix for a composite with fibre orientation of = &0~ is given as

18409 10436 3193
[0]=|10436 33524 9836 | MPa
3193 9896 11635

Find all engineering constants for this material.

. Write a computer code to calculate reduced transformed stiffness and compliance matrix for

any angle of fibre orientation with respect to global coordinate system.

Extend the code written for the above problem to plot the variation of E terms for
i

orientation of fibres between — Q(1° - g - 9~. Plot the variation for materials given in Table

3.1

Write a computer code to plot the variation of thermal and hygroscopic expansion coefficients

with fibre orientation between — 402 - & - 5~ for T300/5208 composite.
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