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Module 7: Micromechanics

Lecture 27: Hill's Concentration Factors Approach

Introduction

In the previous lecture we have introduced the concepts of statistical homogeneity, volumetric
averaging and standard mechanics approach. In case of standard mechanics, the effective stiffness
tensor for the composite is given in terms of local structure tensor and pointwise stiffness tensor. In
this lecture we will introduce another approach of Hill's concentration factors. This approach is an
extension of standard mechanics approach to two phase composites.

The Lecture Contains

E Voigt Approximation

B Reuss Approximation

B Examples

E Homework

B References
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Hill’s Concentration Factors Approach

The Hill's concentration factors approach is based on the concept similar to the standard mechanics
approach. In this approach, a composite with two elastic phases is considered. These phases are
fibre and matrix.

The average stress in composite is given from Equation (7.74). In this equation, the stresses in
individual phases are used to give following equation

_ 1 1
O = T (x)dVgye = v

VR VE v RVE

1

J- O’E.I;.f ) (x)dV + f Jii.”ﬁ (x)dV  (7.99)
RVE
Vf Vm

where ai.l;.f ) () and ai;.m} (x) are the local stresses in fibre and matrix, respectively. Now let us

define the volume averaged stress in fibre as

I 1 f
g =1 jyf u:rz.;.f e dv; (7.100)

i ve
and volume averaged stress in matrix as

g =1 o (xav, (7.101)

Ly Vm

Putting these two definitions in Equation (7.99) and adjusting the v, and v,, terms properly, we get

the average stress in composite as

=v, 57 +v, 5 (7.102)
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Similarly, we define the volume averaged strains in fibre and matrix as

p_ 1 () (m) _ 1 (m)
E, f = ﬂ—f f EE.J‘.f (x)dV; and E'E.‘}. =— f S5 (x)dV, (7.103)
vE Vm

Note: The average stresses in Equation (7.100) and (7.101) and average strains in Equation (7.103)
are also known as phase averaged stresses and phase averaged strains, respectively.

Putting these definitions for the definition of average strain in composite, we get

—_— —(F) —(m)
Ej = Ve & + Vi &; (7.104)

Now let us derive the average stress in fibre and matrix using the pointwise constitutive equation for
fibre and matrix in Equations (7.100) and (7.101) as
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In the above derivation it is assumed that the material behaviour is same everywhere for fibre and
matrix. Further, Equation (7.103) has been used in above equation. The above equation can be
written in terms of compliance of fibre and matrix material as

. 1 . 1
) _ §) 'f} (F (F) 'f}
E; —v—fj S O (0dV; —Si}k:v—ff (x]dV = S kOl
L " (7.106)
_tm) _ 1 glm) m} my 1 (m) (m) —(m)
£ ——J Gl © (x)dV, =Sia— | % (x)av,, _suk‘ :
Vi Jy Vi vm

Using Equation (7.105) in Equation (7.102) we get the average stress in composite in terms of
volume fractions, stiffness tensor and phase averaged strains as

L) If}-I-V C'm} ()

Tij = ViCijaf el Enr (7.107)

Similarly, the average composite strain in terms of phase averaged stresses in the fiber and matrix,
respective compliances and volume fractions using Equation (7.106) in Equation (7.104) is given as

- (9 7 (m) = (m)
&y = VS Sabd Ve Sii O

(7.108)
Note: It can be shown that if an RVE is subjected to homogeneous traction on its boundary, that is,

T, = cri_?n}- with az-g is a constant state of stress, then the average stress in composite is

=0 _ 0
.g':.}. = .:;rz.}.

Similarly, if an RVE is subjected to homogeneous displacement on its boundary, that is, i; = ES X;

with Eg- is a constant strain, then the average strain in the composite is

The local structure tensor used in Equation (7.94) in standard mechanics approach to define the
local strains in terms of composite average strains. Hill [4] used this concept to relate the pointwise
stresses and strains in fibre and matrix with average stresses and strains in composite through
pointwise phase concentration factors. The pointwise strains in fibre and matrix are given as

""}( x)= AY [:x:]sk, and g; m}[xj Auk,[xjgw (7.109)

ikl

where A‘f} (x) andf-l [x] are the pointwise fibre and matrix strain concentration factors,

ik ikl

respectively. Similarly, the pointwise stresses in fibre and matrix are given as

Jei-ﬂ[x] = Uk,[x] ,; and o, m}(x] B”k, (x)a,, (7.110)
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where B:;‘k} (x) and B:;::? (x) are the pointwise fibre and matrix stress concentration factors,

respectively.

The local strains and stresses in fibre and matrix as given in Equation (7.109) and Equation (7.110)

can be integrated over their respective volumes to give the phase averaged strains and stresses in

() Flm

terms of phase averaged concentration factors Az}k,, ikl and BJ,EUEUJ{, The phase averaged

concentration factors as defined are given below.

, 1 1
=) _ 'f:' =lm)
A = o j Uk,(x:] dv; and A = . f ik (x) dv,,
f 12}

vy Vi

(7.111)

—ip _ 1 g (m) _ 1
Bifa = o J. ;jxt (%) dvy and Buk, = J. e () dvyy,
F m
L“f 1".'I‘l.
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Thus, using this definition the phase averaged strains in fibre and matrix can be written using
Equation. (7.109) and Equation (7.110) as

=) 700 2 —(m) _ Flm) -
f}‘k‘ AE_;IJ{1EJ{1" EE'_;I' - AE'_;I'J{:EJ{:
'f} =0 = — () —(m) — (7.112)
Tijkr Buk‘ kel 9 = Bz‘jmﬂk:

Now, using the first of Equation (7.112) in Equation (7.107) composite average stress is given as

{rm) Al"m:l —

= U A
a; VC A k‘ +V CE_:I?.J?‘J‘I amkl J{!

iy ijpm ~ pmkl

£z (m) Flm) ]2
[V Cf}‘ﬂm A?ﬂmk‘ T Vn C:_:l'pm A'pmk ] €kl (7.113)

C::;k: E
Similarly, using the second of Equation (7.112) in Equation (7.108) composite average strain is given
as
(m) g

ijpm T pmkl

—(m) —

g, =v,s BY . +v, e

ijpm — pmkl

) F (m) glm) | =
[V Si.i'?ﬂm B’ﬂmk‘ + V Szjfpm prmk ]Jk: (7.114)

&
=5 el Ot

Equation (7.102) can be written using the second of Equation (7.112) as

- -m}
a.. =T f +V

i = 'm}
V B‘:}k, . B:_;k‘ el (7.115)
— 'f} =
- [ F z_;lk‘-l_TrJr B:_;lk ]gkl
It should be noted that in above equation the stresses on left and right hand side are the composite

average stresses. Hence, they are same. Thus, the bracketed term in above equation is an identity
tensor of fourth order, that is,

1l glm) _
I{fgijk! + Vmgi_;l'k! - *rz'jk: (7.116)

Likewise, from Equation (7.104) and the first of Equation (7.112) we can write

Flm)

()
Ve 4; i = diju (7.117)

el +V, A

Now using the Eq. (7.117) in Eq. (7.113), we can write

'f]' mly 7(fF)
:_;'k‘ - z_;lk‘ +Vf( ijrs Cz_;lrs)ﬂrsk‘ (7.118)

Similarly, using Equation (7.116) in Equation (7.114), we can write

(7.119)
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Voigt Approximation

Voigt [5] assumed that the strains are constants throughout the composite. Thus, we can say that

_(Fy _ _( —
EE.}. E i Ez-}-

From the first of Equation (7.112), this leads to

o S
ﬂz’_:l'k! - Ai_;l'k:

Now, Equation (7.117) is written as

VA +v AT =y, A% + (1-v,

|f:|
f ijkl ijkl ijkl )Az_;lk‘ - ﬂz_:lk;

Thus, we can write

+F) _ glmd _
ﬂz’_:l'k! - Ai_;l'k: - *r:'jk:

Using this relation in Equation (7.118) we write

— plm) () (m) (F) (m)
C:_;k; Cz'_;l'k: + Vf (Ci}'k! - Ci_;l'k! ) Cz_;lk‘ + Vmcz}k‘

=1

ikl
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Reuss Approximation
Reuss [6] assumed that the stresses are constant throughout the composite. This assumption leads

to the relation

Efﬁ: = Esz (7.125)
which upon substitution in Equation (7.116) leads to the relation
E:I;fk} = _:I;:} = I (7.126)
Putting the above relation in Equation (7.119) gives
) (7.127)

_ olm) ) (mdy (F (
:j;l'k: - si_;l'k: + Li‘ (sz’_;l'k! - si}'k!) - L'}sz'}'k: + Vmsi}'k!
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Examples

Example 7.2: For AS4 fibre and 3501-6 Epoxy material with 0.6 fibre volume fraction calculate all
effective engineering constants of the composite using a) Voigt and b) Reuss approximations. The
properties are given in Table 7.1 and Table 7.2.

Solution:

a) Voigt Approximation:
According to this approximation the effective stiffness tensor for composite is given as

52 1V C'im}

=
C; ifkl mijkl

ikl = L'}C
The stiffness matrices for fibore and matrix are calculated using the respective engineering constants
and are given below.

For this purpose it is better to calculate first the compliance matrices for fibre and matrix materials
and invert them to get the stiffness matrices. We know that getting stiffness from compliance can be
easier than remembering individual stiffness entries in terms of engineering constants. The
compliance matrices for fibre and matrix material are calculated as below.

[44 444 —8 388 -8 898 0 0 (]
—3 838 666666 —47619 0 0 o
—2838 47619 666 666 0 0 o
Y w107
¥ 0 0 0 1428572 0 0 (FPa
0 0 o 0 666666 o
I 0 0 o 0 0 666666
(22808 —2095 —8095 0 0 (]
—2095 23809 —8095 0 0 o
—2095 —20%5 23809 0 0 o
oy w107
¥ o 0 0 63809 0 0 (P
o 0 o 0 63809 o
I o 0 o 0 0 63.309 ]
Now the stiffness matrices of fibre and matrix are:
(2062959 3245 3249 0 0 0]
3249 15123 1123 0 0 0
. 3249 1123 15123 0 0 0
et = TR
¥ " " 0 70 0 0
" " 0 0 150 0
I " " 0 0 0 15.0]
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[6.464 3331 3.331 0 0 0

3331 6464 33531 0 0 0

- 3331 3331 6464 0 0 0
C.. = GPCI

¥ 0 0 0 1.567 0 0

0 0 0 0 1.567 0

0 0 0 0 0 157

Thus, the effective stiffness matrix according to Voigt approximation for fibre volume fraction of 0.6 is

(128365 3282 3282 0 0 0
2282 11.65% 2004 0 0 0
. 2282 2006 114659 0 0 0
= GFa
v 0 0 0 4828 0 0
0 0 0 0 9626 0
i 0 0 0 0 0 9.626_
The inverse of this effective stiffness matrix is
[ 7311 1755 -1.755 0 0 0]
17755  BBEEBEOZ —147785 ] ] ]
. |=17755 =148 BE.B0Z ] ] ] 5 1
5= x 10
¥ ] ] o 207173 ] 0 Ol
] ] 0 0 105875 ]
0 0 0 0 0 103.875
Effective engineering constants:
1 1
E, = —— = 136.78 GPa, G5 =——= 4.826 GPa
11 } Sas
1 1
E, =— — = 11.26 GPa, Gz = ——= 9.626 GPa
1 1
E, = ——= 11.26 GPa, G, = - = 9.626 GPa
33 Sce
55 Sis
v, = —— = 0.24, vy, = —— = 0.0197
514 532
52 5
vig = ——= =024, vy = —=10.0197
51 33
S1q S53q
V3 = —— = 0.166, Vg, = —— = 0.166
55 533

b) Reuss Approximation:
According to this approximation the effective compliance tensor for composite is given as
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D 4y gm

ikl m>=ijkl

Si = ViS

Using the compliance matrices for fibre and matrix we get the effective compliance for composite as

[ 9791 —3.292 —32%2 0 0 ]
—3.292 153524 -3524 0 0 ]
. —3.292 =3524 13524 0 0 ] a1
5= #1100
¥ ] 0 0 34095 0 ] GFa
] 0 ] 0 29523 ]
i ] 0 ] 0 0 29.523_
Effective engineering constants:
1 1
E, = - = 10.214 GPa, Gyy = —= 2.933 GPa
Sh Sas
1 1
E, =— = 7.394 GPa, Gz = = 3.387 GPa
532 Scs
1 1
E, = - = 7.394, GPa, Gy, = —= 3.387 GPa
S33 Sie
534 517
Vi = — = 0.336,v,; = — = 0.243
511 532
5 5
v = ——— = 0.336,15 = — —— = 0.243
11 533
53, 53
Vpg = — =0.261,vy, = — = 0.261
55 533
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Example 7.3: Plot the variation of following effective stiffness terms against the fibre volume
fractions for both Voigt and Reuss approximation. Cy;, Ci5. Cy3. Caz, Cag. Ciiand Oy,

Solution: The plots of €5, C5,,CiyandC;,  are shown in Figure 7.10 and plots of

C;;.C 3, and Cizare shown in Figure 7.11. The Voigt approximation gives upper bound for the

terms Cf  C%, Ci, and C;; whereas Reuss approximation gives the lower bound for these terms.

11
However, for the terms Cy,, Cy;,and C5; Voigt approximation gives lower bound and Reuss

approximation gives upper bound.
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Example 7.4: Plot the variation of following effective compliance terms against the fibre volume
fractions for both Voigt and Reuss approximation.Sy;, 517,513,522, 535, 52.and 5;..

Solution: The plots of 5;;,53,,5:;.and S, are shown in Figure 7.12 and plots of
5;5.51zand S2; are shown in Figure 7.13. The Voigt approximation gives lower bound and Reuss
approximation gives upper bound for 55,53, 5i.and 57, terms. Further, for terms
5,5, 51zand 575 Voigt approximation gives upper bound and Reuss approximation gives lower

bound.
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Figure 7.10: Variation of C;.C5,,Ciy and C}, terms with

fibre volume fractions for AS4/3501-6 Epoxy composite
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Figure 7.11: Variation of Cy,, C{5,and C3; terms with fibre
volume fraction for AS4/3501-6 Epoxy composite
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Figure 7.12: Variation of S;;,53,, Si.and 5Z, terms with fibre
volume fractions for AS4/3501-6 Epoxy composite
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Figure 7.13: Variation of S;,, 5 ;and 5;; terms with fibre
volume fraction for AS4/3501-6 Epoxy composite
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Home Work:
1. Explain in detail the Hill’'s concentration factors approach.

2. What are Reuss and Voigt approximations in connection with Hill’'s concentration factors
approach?

3. For fibre volume fraction of 0.6, determine all the effective mechanical properties for the fibre
and matrix materials given in Table 7.1 and Table 7.2 and compare them with the
experimental effective properties as reported in Soden et al [7]. Calculate percentage
difference for all properties. Use Voigt and Reuss approximation for this exercise.
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