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  Module 2: Concepts of Solid Mechanics
  Lecture 9: Basic Concepts

 
In this lecture, we are going to introduce some concepts from solid mechanics which will be useful
for better understanding of this course. It is presumed that the readers have some basic knowledge
of linear algebra and solid mechanics. 
In solid mechanics, each phase of a material is considered to be continuum, that is, there is no
discontinuity in the material. Thus, in this course individual fibres and the matrix of a
lamina/composite are considered to be continuum. Further, this results in saying that heterogeneous
composite is also a continuum.

In this lecture, we will introduce some of the notations that will be followed for the rest of the course.
Hence, the readers are advised to understand them clearly before they proceed to further lectures.

Concept of Tensors

Tensors are physical entities whose components are the coefficients of a linear relationship between
vectors.
The list of some of the tensors used in this course is given in Table 2.1.

Table 2.1 List of some of the tensor quantities

  Quantity Live subscripts

Scalar (zeroth order tensor) 0

vi Vector (first order tensor) 1

σij,ε ij Second order tensor 2

Cijkl Fourth order tensor 4

It is often needed to transform a tensorial quantity from one coordinate system to another coordinate
system. This transformation of a tensor is done using direction cosines of the angle measured from
initial coordinate system to final coordinate system. Let us use axes as the initial coordinate axes

and  as the final coordinate axes (denoted here by symbol prime –   ). Now, we need to find the
direction cosines (denoted here by aij) for this transformation relation. Let us use the convention for

direction cosines that the first subscript (that is, i) of aij corresponds to the initial axes and the

second subscript (that is, j) corresponds to final axes. The direction cosine correspondence with this
convention in 3D Cartesian coordinate system is given in Table 2.2. The corresponding Cartesian
coordinate systems are shown in Figure 2.1.

Table 2.2 Direction cosines for 3D Cartesian coordinate system

From/To
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Figure 2.1 Rectangular or Cartesian coordinate systems
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Let us derive the direction cosines for a transformation in a plane. Let the coordinate axes x1-x2 (that

is, plane 1-2) are rotated about the third axis x3 by an angle  as shown in Figure 2.2. Thus, from the

figure it is easy to see that . A careful observation of the figure shows that the angle

between   is not the same as the angle between . It means that the direction

cosines .

Figure 2.2 Transformation about x3 axis

Now, we will find all the direction cosines. The list is given below.

The above can be written in a matrix form as

(2.1)

The matrix of direction cosines given above in Eq. (2.1) is also written using short forms for 
. Then Equation (2.1) becomes

(2.2)

Note: Some of the books and research articles also use .

Note: This matrix is also called Rotation Matrix.

Note: The above direction cosine matrix can be obtained from the relation between unrotated and
rotated coordinates. For the transformation shown in Figure 2.2 (a) one can write this relation  using
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the geometrical relations shown in Figure 2.2 (b) as

Now the direction cosines are given by the following relation:

Now we will use the direction cosines to transform a vector, a second order tensor and a fourth order
tensor from initial coordinate (unprimed) system to a vector, a second order tensor and a fourth order
tensor in final coordinate (primed) system.
First, let us do it for a vector. Let   denote the components of a vector P in unprimed and
primed coordinate axes. Then the components of this vector in rotated coordinate system are given in
terms of components in unrotated coordinate system and corresponding direction cosines as

(2.3)

Now, putting the direction cosines in terms of angles and summing over the repeated index j (=1, 2, 3)
in Equation (2.3) we get

(2.4)
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Let us assume that, the unprimed and primed coordinate systems are as shown in Figure 2.2. The
transformation matrix for this rotation is given in Equation (2.1). Then, the components  can be
given as

Note: In two dimensional case, the above transformation is written as

Equation (2.3) can also be written in an inverted form to give the components Pi in unrotated axes in

terms of components  in rotated axes system as

(2.5)

The rotation matrix aij in Equation (2.2) has a property that

(2.6)

Now, we will extend the concept to transform a second order tensor. Let us transform the stress
tensor  as follows

(2.7)

The transformation of a fourth order tensor  is given as

(2.8)

The readers are suggested to write the final form of Equation (2.8) using similar procedure used to
get the last of Equation (2.7).
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Deformation of a Body

When a deformable body is subjected to external forces, a body may translate, rotate and deform as
well. Thus, after deformation the body occupies a new region. The initial region occupied by the
body is called Reference Configuration and the new region occupied by the body after translation,
rotation and deformation is called Deformed Configuration. Let us consider a point P in reference
configuration. Its position with respect to origin of a reference axes system  is shown in Figure

2.3. The point P occupies a new position  and its position vector  is also given. 

Figure 2.3 Reference and deformed configurations

The deformation map is defined as

(2.9)

Thus, deformation map is a vector valued function. Similarly, for deformation of a point Q to , we
can write

(2.10)

We can find the deformation  as

(2.11)

where  is called Deformation Gradient. In component form, one can write

(2.12)

Now, let us give the deformation map for the displacement of a point. Let us consider the point P in
reference configuration again. It undergoes a deformation   and occupies a new position .
Thus, we can write this deformation as follows
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(2.13)

This gives us the deformation gradient as

(2.14)

or in component form

(2.15)
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Now, we will define strain tensor. We are going to find . We know that 

. Thus,

(2.16)

where E is Lagrangian Strain Tensor. Now using the last two of Equation (2.16) for  we

get,

(2.17)

This equation can be written in index form as

(2.18)

where   is given as . Thus, the strain components are nonlinear in . Here, 

  are the displacement components in three directions. For example, let us

write the expanded form of strain components .

(2.19)

Similarly,

(2.20)

The readers should observe that from the definition of strain tensor in Equation (2.18), the strain tensor is
symmetric (that is, ). If the gradients of the displacements are very small the product terms in

Equation (2.18) can be neglected. Then, the resulting strain tensor (called Infinitesimal Strain Tensor) is
given as

(2.21)

The individual strain components are given as

(2.22)
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The readers are very well versed with these definitions. This strain tensor can be written in matrix form as

(2.23)

Note: The shear strain components mentioned above are tensorial components. In actual practice,
engineering shear strains (which are measured from laboratory tests) are used. These are denoted by .

The relation between tensorial and engineering shear strain components is

(2.24)
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The engineering shear strain components are given as follows:

(2.25)

Using the engineering shear strain components, the strain tensor can be written in matrix form as

(2.26)

Stress

Now, we will introduce the concept of stress. The components of stress at a point (also called State
of Stress) are (in the limit) the forces per unit area which are acting on three mutually perpendicular
planes passing through this point. This is represented in Figure 2.4. Stress tensor is a second order
tensor and denoted as . In this notation, the first subscript corresponds to the direction of the

normal to the plane and the second subscript corresponds to the direction of the stress. For
example,  denotes the stress component acting on a plane which is perpendicular to direction 2

and stress is acting in direction 3. The tensile normal stress components  are

positive. The shear stress components   are defined to be positive when the normal to the
plane and the direction of the stress component are either both positive or both negative. 
The readers should note that the state of stress shown in Figure 2.4 represents all stress
components in positive sense. In this figure, the stress components are shown on positive faces
only.

Figure 2.4 State of stress at a point
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The stress tensor can be written in matrix form as follows:

(2.27)

In general, instead of using global 1-2-3 coordinate system, x-y-z global coordinate system is used.
Further, the shear stress components are shown using notation . Thus, the stress tensor in this

case can be written as

(2.28)

Note: The stress tensor will be symmetric, that is  only when there are no distributed

moments in the body. The readers are suggested to read more on this from any standard solid
mechanics book. In this entire course, we will deal with symmetric stress-tensor.

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture9/9_8.htm[8/18/2014 11:57:03 AM]

  Module 2: Concepts of Solid Mechanics
  Lecture 9: Basic Concepts

   

Equilibrium Equations

The equilibrium equations for a body to be in static equilibrium at a point are given in index notations
as

(2.29)

where,    are the body forces per unit volume. If the body forces are absent, then the equilibrium
equation becomes

(2.30)

The equilibrium equations, without body forces are written using xyz coordinates as follows:

(2.31)

Boundary Conditions            

The boundary conditions are very essential to solve any problem in solid mechanics. The boundary
conditions are specified on the surface of the body in terms of components of displacement or
traction. However, the combination of displacement and traction components is also specified. 
Figure 2.5 shows a body, where the displacement as well as traction components are used to specify
the boundary conditions.

We define traction vector  for any arbitrary point (for example, point P in Figure 2.5) on surface as
a vector consisting of three stress components acting on the surface at same point. Here, the three
stress components are normal stress  and shear stress  and . The traction vector at this
point is written as

(2.32)

where  is the ith component of the unit normal to the surface at point P. For example, if this

surface is perpendicular to axis 2, then  and the components of traction acting at a

point on this surface are given as follows

(2.33)
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Figure 2.5: (a) A body showing displacement and traction boundary
conditions,  (b) Traction vector at any arbitrary point P on the surface of a
body
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 : 
Constitutive Equations

The relationship between stress and strain is known as constitutive equation. The general form of
this equation is

(2.34)

Here,   are called elastic constants. This is also referred to as elastic moduli or elastic
stiffnesses. This form of constitutive equation is known as generalized Hooke’s law. Very soon, we
will see this equation in detail for various material types.
The inverse of this equation can be written as

(2.35)

where  is known as compliance.

Plane Stress Problem

Plane stress problem corresponds to a situation where out of plane stress components are negligibly
small. Thus, we can say that the state of stress is planar. The planar state of stress in x-y plane is
shown in Figure 2.6. For the case shown in this figure, the normal and shear stress components in z
directions, that is  are zero. Please note that the state of stress shown in this figure

assumes the stress symmetry.

Note: A careful observation for strain components in z direction ( ) reveals that

these need not be zero. This is a common mistake made by many readers. The magnitude of these
strain components can be found with the help of constitutive equation given in Equation (2.34).

Figure 2.6: Plane stress problem

For plane stress problem the equilibrium equations take the following form
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(2.36)

Plane Strain Problem

Plane strain problem corresponds to a condition where all the out of plane strain components are
negligibly small. Here, we denote as out of plane strain components. The readers

are again cautioned to note that the out of plane stress components need not be zero. These
depend upon the constitutive equation. Further, the equilibrium equation is same as Equation (2.36)
and .
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Principles from Work and Energy

Strain Energy Density

                       The strain energy stored in a body per unit volume is called as strain energy density. In
the absence of internal energy, the strain energy density for a linearly elastic body is given as

(2.37)

The expanded form of the above equation using symmetry of stress and strain components is

(2.38)

The readers should note that strain energy density is a scalar quantity. Further, it is a positive
definite quantity.

Principle of Minimum of Total Potential Energy

The principle of minimum of total potential energy states that of all possible kinematically admissible
displacement fields, the actual solution to the problem is one which minimizes the total potential
energy .
The total potential energy (for linearly elastic material) is defined as

(2.39)

Note: The kinematically admissible displacement field is a single valued and continuous
displacement field that satisfies the displacement boundary condition.

Principle of Minimum of Total Complementary Potential Energy

The principle of minimum of total complementary potential energy states that of all possible statically
admissible stress fields, the actual solution to the problem is one which minimizes the total
complementary potential energy .
The total complementary potential energy (for linearly elastic material) is defined as

(2.40)

Note: The statically admissible stress field is one that satisfies both equilibrium equations and
traction boundary condition.
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Homework

1. Verify the property given in Equation (2.6) for rotation matrix.

2. Using Equation (2.6), show that

where the term , called Kronecker delta, has the value 1 on the diagonal and 0 on the off

diagonal, that is, it represents an identity matrix when represented in matrix form.

3. Using relation for strain components (given in Equation (2.21)) write the expanded form of all
strain components and understand the physical significance of all strain components. (The
normal strain components denote the stretching of a line element, etc.) 

4. Derive the principles of minimum of total potential and total complementary potential energy. 

5. Derive the principle of virtual work.
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