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  Module 7: Micromechanics
  Lecture 28: Homogenization

 

Introduction

In the previous lectures, we have seen the various micromechanics based approaches to find the
effective composite properties. In the standard mechanics approach we introduced the concept of
local structure tensor which relates the macroscopic or average strains or stresses in composite to
microscopic or local strains or stresses in the phases of composite. In the standard mechanics
approach the boundary conditions are chosen such that the applied displacements or tractions
produce average strains or stresses in the RVE material.

In this lecture we are going to introduce the concept of homogenization.

The Lecture Contains

Homework
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Homogenization

First, we will discuss the key points from statistical homogeneity and standard mechanics approach
in the RVE analysis to determine the effective RVE properties. In micromechanical analysis most of
the methods accurately predicts the effective composite properties provided that the ratio of the RVE
size to the global structural dimension is very small tending to zero. In reference to Figure 7.9, we

have . We denote  . 

            
In the micromechanics based methods the local level and global level analyses are decoupled. The
local level analysis considers the microstructural details in its modeling. This analysis gives the
effective elastic properties. Further, as we have seen in standard mechanics approach, the local
level analysis can also be used to calculate the relationship of the effective or average RVE strain to
the local strain within the RVE. However, the global level analysis is used to calculate the effective
or the average stress and strain within the equivalent homogenous structure.
            
The process of calculating effective properties has been termed homogenization by Suquet [1].
Further, the local strains can be estimated from the relationship between average and local strains
through local structure tensor obtained from local analysis. This process is called as localization.
            
In the RVE analysis the RVE is subjected to boundary condition. The solution of this boundary value
problem gives the average properties along with the relation between the average and local strains.
However, the accuracy of the results depends upon the fact that the applied boundary conditions
should be able to reflect the in-situ (or the actual) boundary conditions to which an RVE is
subjected. This is explained in the following paragraph.
            
Consider that the applied boundary conditions to the RVE which produce the same average strain in
RVE are not same as the in-situ boundary conditions. Using the principle of minimum of strain
energy the average stiffness predicted by the RVE analysis with assumed boundary conditions will
be higher than that with in-situ boundary conditions. This is because the in-situ boundary conditions
will minimize the strain energy. On the contrary, although the assumed boundary conditions are
admissible they produce higher strain energy as the average stress produced is higher. Similarly, for
the applied tractions by the principle of minimum of complementary energy the RVE analysis with
applied homogeneous boundary produces higher complementary energy than that with in-situ
boundary conditions. The applied boundary conditions would produce higher average stress in RVE
than due to in-situ boundary conditions and also results in higher compliance. Thus, the RVE
analyses with applied displacement boundary conditions give upper bound on effective stiffness
whereas applied traction boundary conditions give the lower bound.
            
The homogenization theory is developed from studies of partial differential equations with rapidly
varying coefficients. This theory is based on the two assumptions: the first one is that the fields vary
on multiple scales due to existence of a microstructure and second one is that the microstructure is
spatially periodic.  
            
In the composite, it is well known to us that the microstructure is spatially periodic. Now in the
following we explain that the displacement field is oscillating around the mean displacement and
strain field is periodic over this microstructure. Further, the displacement and strain fields are varying
over the two length scales.
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Figure 7.9: (a) A bar representing alternate fibre and matrix (b)
actual and average strain (c) actual and average displacement and
(d) periodic nature of displacement difference over RVE length

Consider Figure 7.9. Figure 7.9 (a) represents a bar with alternating materials. This bar represents alternate
arrangement of fibre and matrix material in cross section. Let    be the RVE length such that   . Figure

7.9 (b) shows the variation of strain field. It should be noted that the strain in either of the element is constant
and periodic in nature. However, the average strain in the bar is constant. Figure 7.9(c) shows the variation of
actual displacement  and average displacement field   . From this figure it is clear that the actual

displacement is oscillating around the average displacement. Figure 7.9 (d) shows the variation of  

 and one can easily notice that this variation is periodic over the RVE length. Thus, displacement and strain
fields are varying over the two length scales, that is, at micro and macro scales. Further, the strain field and  

  are periodic over the RVE. Thus, the problem of determining effective stiffness can be addressed by

using the homogenization concept. The details of theory can be seen in [1-3].
            
In the following we explain the theory of homogenization in brief.

Let  denote the global level or macro coordinates and  denote the micro level coordinates. These two level
coordinates are related through
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(7.128)

Here      is the ratio of the RVE size to the size of the macroscopic region in which it exists. The field variables
involved in this study are approximated by an asymptotic expansion as

(7.129)

where      is the exact value of the field variable,      is the macroscopic or average value of the field

variable. In elasticity theory, this is known as continuum level displacement field. The displacements
  etc. are the perturbations in the field variable due to the microstructure. These are also called microstructural
displacements.

Now, using the small deformations the strain tensor is written as

(7.130)

In this derivation, the derivative of any function  is given using chain rule as

(7.131)

has been used.

Note: The perturbation part of the solution is small, but clearly the corresponding strain is not. This strain is of
the same order as the average strain.

Note: The quantities on the local level like stress vary     times more rapidly than the corresponding global level

quantities.
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Equation (7.130) can be simplified neglecting the terms of   and higher order. Further, from Equation
(7.131) we define the following strain tensors as

(7.132)

where , as defined earlier, is the local or microstructural strain tensor,    is the average or macroscopic

strain tensor corresponding to the average displacements and      is fluctuating strain tensor corresponding to

the oscillating displacements. As shown earlier, the fluctuating strain tensor is assumed to vary periodically.
Now for the virtual displacement or weak form of the equilibrium equations let us assume that the virtual
displacement     and hence the virtual strain      can also be expressed as asymptotic functions of  

 and   . Thus, the virtual strain is given as

(7.133)

Further, this strain can be written as average and microscopic strain due to virtual displacement as

(7.134)

The weak form of the equilibrium equations is given by

(7.135)

Here,   denotes the total, that is, macroscopic plus microscopic domain of the composite. The tractions  
 and the boundary displacements, if any, are applied only on the macroscopic boundaries of the composite. The
first of Equation (7.132) and the first of Equation (7.134) are used in above equation. The resulting expanded
form of the above equation is then given as

(7.136)
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It should be noted that the virtual displacement      is any arbitrary displacement. It can be chosen

to vary on macroscopic or microscopic level. If we choose      to vary only on macroscopic level
and be a constant on microscopic level then we get the macroscopic equilibrium equation as

(7.137)

Here,     for the chosen variation of virtual displacement. However, if we choose     to

vary only on microscopic level and be a constant on macroscopic level then we get the microscopic
equilibrium equation as

(7.138)

Here,     for the chosen variation of virtual displacement. Since     varies periodically,

Equation (7.137) and Equation (7.138) may be simplified assuming  approaching zero in the limit
as

(7.139)

and

(7.140)

Equation (7.140) to be true, the integration term over the RVE should be zero. This leads to the
following condition:

(7.141)

Here, in general, the strain      is not known. However, for a linear problem, any arbitrary     can

be written as linear combination of unit strains as given in the following equation. The unit strains in
the following equation are given for 3D case.
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(7.142)

Due to symmetry considerations one needs to consider only the first six strains components in the
linear combination. Substituting these unit strains in right hand side of Equation (7.141) we get the
stress tensor

Now, putting this stress tensor in Equation (7.141) we solve the resulting auxilliary problem as

(7.143)

The periodicity of the strain field      is obtained by constraining equal displacements on opposite

sides of RVE. Once   is determined, the solution to Equation (7.141) is obtained by

(7.144)

where   is Kronecker delta and   is the local structure tensor. When the relationship between

local RVE strain and the average strain is substituted into the macroscopic equilibrium equations, we
get

(7.145)

Here, it should be noted that the terms  and   are outside the integration over the RVE as

they represent the average strain, which is constant, over RVE. The homogenization approach gives
the equivalent properties of the composite laminate. The effective stiffness tensor,     is defined

(as in standard mechanics approach in Equation (7.98))

(7.146)

Using this effective stiffness tensor, the final form of macroscopic equilibrium equation may be written
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as

(7.147)

It is important to note that the effective stiffness tensor obtained from Equation (7.146) is
independent of size of RVE due to periodicity assumption used in obtaining    .

Note: The effective stiffness tensor obtained using homogenization approach is independent of size
of RVE as periodicity assumption has been imposed on RVE. In case of standard mechanics such
boundary conditions are not imposed. Hence, the effective stiffness obtained is dependent on the
size of RVE. This fact can be explained by St. Venant’s principle for applied displacement or traction
boundary conditions. However, when St. Venant effect is not significant (as in case of analysis with
multi cell RVE) the two approaches may yield the same results.
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Home Work:

1. What are the lacunas in standard mechanics approach?

2. Explain the importance of applied boundary conditions on RVE in determining the effective
properties.

3. Explain in detail the concept of homogenization.

4. Show that for the one dimensional case as shown in Figure 7.9 the effective Young’s modulus
determined using homogenization approach is same as given by the standard mechanics
approach.
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