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  Module 7: Micromechanics
  Lecture 24: Strength of Materials Approach

 

Introduction

In the earlier lectures we have used the effective properties of the unidirectional layers in the
development of various lamina or laminate mechanics issues. However, we know that at microscale
the fibrous composites are heterogeneous. A composite is made of two main phases - fiber and
matrix. Further, we know that apart from these two phases, additional phase may be present in the
composite. These phases may be fillers, zones formed due to reaction between fibre and matrix and
the coatings applied to the fiber, if any. The properties of these constituents, their amounts present
and their distribution affect the effective properties of the composite.

It is now well understood that to determine the effective properties of a composite one needs to
consider the microscale, that is, the scale at which the fibre and matrix are present. Thus, the study
of composites at the fiber and matrix level is referred to as micromechanics.

In the present lecture we will present various methods to determine the effective hygro-thermo-
mechanical properties of the composite. It is assumed that the properties of constituents, their
arrangements and amounts are known a-priori.

The Lecture Contains

Effective Elastic Constants

Idealization of Microstructure of Fibrous Composite

Volume and Mass Fractions, Density and Void Content

Mass Fractions

Density

Strength of Material Approximations

Effective Axial Modulus

Effective Axial (Major) Poison's Ratio

Effective Transverse Modulus
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Effective Elastic Constants:

The unidirectional lamina is interest of this course. The unidirectional lamina is orthotropic in nature.
We know from the 3D constitutive equations that an orthotropic material has 9 independent
constants. Further, for a transversely isotropic material there are 5 independent constants. The
average or effective constitutive equation for transversely isotropic material is given as below. The
transverse isotropy is in plane 2-3.

                                 

where ,   are the effective elastic constants of the equivalent homogeneous

material. 
In this chapter, we are going to see the micromechanical methods to obtain the effective engineering
constants that define the above effective elastic constants of the equivalent homogeneous material.
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Idealization of Microstructure of Fibrous Composite:

As mentioned earlier, the micromechanics is a study at fibre and matrix level. Thus, the geometry of
arrangement of the fibres and matrix in a composite is an essential requirement to develop a model
for the study. Some of the methods do not use the geometry of arrangement. Most of the methods
developed for micromechanical analysis assume that:

1. The fibers and matrix are perfectly bonded and there is no slip between them.

2. The fibres are continuous and parallel.

3. The fibres are assumed to be circular in cross section with a uniform diameter along its
length.

4. The space between the fibres is uniform throughout the composite.

5. The elastic, thermal and hygral properties of fibre and matrix are known and uniform.

6. The fibres and matrix obey Hooke’s law.

7. The fibres and the matrix are only two phases in the composite.

8. There are no voids in the composite.

There are many ways to idealize the cross section of a lamina. In Figure 7.1 are shown two popular
idealizations. The most commonly preferred arrangements are square packed and hexagonal packed
arrays of fibres in matrix. The square and hexagonal packed arrays can be as shown in Figure
7.1(a), and (b), respectively. 

In these idealizations it is seen that due to symmetry and periodicity of these arrays one can
consider only one array to analyze the lamina at micro scale. Further, if this one array represents the
general arrangement of fibres with respect to matrix and the interactions of fibre and matrix phases,
then such array is called Representative Volume Element (RVE). Further, this RVE as a volume of
material statistically represents a homogeneous material. In the analysis of an RVE the boundary
conditions are chosen such that they reflect the periodicity. Thus, the arrays shown in Figure 7.1 are
various RVEs. One should be able to see that the RVE also reflects the volume fractions. The term
RVE was first coined by Hill in 1963.  
For example, the square RVE represents a lower fibre volume fraction than a hexagonal RVE. Note
that RVE is also called as Unit Cell.
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Figure 7.1: Idealization of cross section of a lamina
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Volume and Mass Fractions, Density and Void Content:

In the present section we are going to introduce some important concept of relative fraction of fibres
and matrix by volume and mass. This is very important from the point that the most of the
micromechanics based approaches use these fractions, along with the properties of individual
phases, to express the properties of the equivalent homogeneous material.             

In the present case, the effective properties of a composite are obtained with the assumption that
the fibre is orthotropic or transversely isotropic and matrix is isotropic in behaviour. However, with
appropriate changes, fibre can also be considered to be isotropic. In the following, the subscripts or

superscripts  and  will denote fibre and matrix, respectively.

Volume Fractions:             

As stated earlier, the fibre volume fraction is defined as the ratio of fibre volume to composite volume
and matrix volume fraction is defined as the ratio of matrix volume fraction to composite volume. Let, 

 be the volume occupied by fibres and matrix, respectively. Let,  be the composite volume.

We know that,

(7.1)

Thus, from these two definitions of volume fractions, we can write

(7.2)

Thus, in notations

(7.3)

where,  denotes the fibre volume fraction and  denotes the matrix volume fraction. Note that

“total volume” and “composite volume” are used interchangeably.

Note: If the interphase is also present as a third phase then, Equation (7.2) is modified as

 

or

(7.4)

where,  denotes the interphase volume fraction and  denotes the interphase volume.
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In case, there are voids present in composite, then the above equation becomes as

or

(7.5)

where,  denotes the void volume fraction and  denotes the void volume. In the remaining,

we will consider that there are only two phases and Equation (7.3) is used.
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Mass Fractions:

Let  and  be the mass of fibres, matrix and composite, respectively. We know that

(7.6)

The mass fractions, similar to volume fractions, are defined as the ratio of mass of respective phase
to the mass of composite. Thus, we can write,

(7.7)

where,   is fibre mass fraction and   is matrix mass fraction. Now, let us write the mass of

each phase in terms of density and volume of respective phase as

(7.8)

where,  and   are the densities of fibre, matrix and composite, respectively. Now, mass

fractions can be written in terms of density and volume fractions as

(7.9)

This relation between mass and volume fractions is given in terms of individual constituent properties
(using Equations (7.6) and (7.8)) as

(7.10)

Thus, it is clear from the above equation that the volume and mass fractions are not the same. One
should always state the basis for calculating the fibre content in a composite.

Density:
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The density of composite is derived in terms of densities and volume fractions of the individual
phases as follows. The mass of composite is given by Equation (7.6). We can write this in terms of
respective volume fractions and densities (with rearrangement) as

(7.11)

This is written using the definition of volume fraction for fibre and matrix as

(7.12)

We will write the density of composite in terms of mass fraction from Equation (7.9) as

(7.13)

 
 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture24/24_6.htm[8/18/2014 1:03:00 PM]

  Module 7: Micromechanics
  Lecture 24: Strength of Materials Approach

 

Strength of Material Approximations:

In general, the laminates made are thin. Hence, for such laminates the analysis done using Kirchhoff
and plane stress assumptions is reasonably good. For such analysis, one needs the engineering
constants that occur in defining planar constitutive equations. These engineering constants are:

1.  - the axial modulus

2. =  - transverse modulus

3.  - axial Poisson’s ratio (for loading in - direction) 

4. - axial shear modulus (shear stress parallel to the fibers)

Further, it is seen that for transversely isotropic composite, four out of five (the fifth one is )

properties can be developed from this approach. For the planar hygro-thermal analysis of such
laminates, one can also obtain the in-plane coefficients of thermal expansions   and  and

hygroscopic expansion  and  as well.

It is important to note that this approach involves assumptions which do not necessarily satisfy the
requirements of an exact elasticity solution. In this approach the effective properties will be
expressed in terms of the elastic properties and volume fractions of the fiber and matrix. The lamina
is considered to be an alternate arrangement of fibres and matrix. The RVE chosen in these
derivations is shown in Figure 7.2. The RVE here does not take into account the cross sectional
arrangement of fibres and matrix, rather it represents volume of the material through the cross
sectional area of fibre and matrix.

Figure 7.2: (a) Unidirectional lamina, (b) RVE for unidirectional composite for
prediction of elastic properties

Let,  and represent fibre area and matrix area, respectively.  and represent fibre

and matrix widths, respectively.  be the length of the RVE.
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Effective Axial Modulus :

The unit cell as shown in Figure 7.2 is used to compute the effective axial modulus . It should be

noted that the thickness of the unit cell is not important in this computation. Further, the cross
sectional shapes are not considered in this calculation. However, the cross sectional areas are
important in this calculation. The thicknesses of the fibre and matrix constituents are same in the unit
cell. Hence, the areas of the constituents represent the volume fractions of the constituents.

In the calculation of effective axial modulus, it is assumed that the axial strain in the composite is
uniform such that the axial strains in the fibers and matrix are identical. This assumption is justified
by the fact that the fibre and the matrix in the unit cell are perfectly bonded. Hence, the elongation in
the axial direction of the fibre and matrix will also be identical. Thus, the strains in the fibre and
matrix can be given as

(7.14)

where,   is the axial strain in the composite and  and   are the axial strains in fibre and

matrix, respectively. Now, let  and   be the axial Young’s moduli of the fibre and matrix,

respectively. We can give the axial stress in the fibre,  and matrix,  as

(7.15)

Using the above equation and the cross section areas of the respective constituent in the unit cell,
we can calculate the forces in them as

(7.16)
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The total axial force in the composite is sum of the axial forces in fibre and matrix. Thus, the total
axial force in the composite substituting the expressions for axial strains in fibre and matrix from
Equation (7.14) in above equation, can be given as

(7.17)

Now  be the average axial stress in composite. The total cross sectional area of the composite is 

. Thus, using the average axial stress and cross sectional area of the composite, the

axial force is

(7.18)

Thus, combining Equation (7.17) and Equation (7.18) and rearranging, we get

(7.19)

Figure 7.3:   (a) Undeformed unit cell under   (b) and (c) deformed individual
constituents of the unit cell
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Let us define

(7.20)

Further, noting that the ratios  and   for same length of fibre and matrix represent the fibre

and matrix volume fractions, respectively. Thus, combining Equations (7.19) and (7.20), we get

(7.21)

The above equation relates the axial modulus of the composite to the axial moduli of the fibre and
matrix through their volume fractions. Thus, the effective axial modulus is a linear function of the
fiber volume fraction. This equation is known as rule of mixtures equation. It should be noted that the
effective properties are functions of the fiber volume fractions; hence it should always be quoted in
reporting the effective properties of a composite.
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Effective Axial (Major) Poison’s Ratio : 

To determine the effective axial Poisson’s ratio we consider the loading as in the case applied for
determining the effective axial modulus. Here, for this loading we have   and other stresses

are zero. We define the effective axial Poisson’s ratio as

(7.22)

The effective strain in direction 2 from Figure 7.3(b) and (c) can be given as

(7.23)

Now, the changes in    and   can be obtained using the Poisson’s ratio of individual

constituents. The axial Poisson’s ratios for fibre and matrix are given as

(7.24)

Thus, the changes in  and  are given as

(7.25)

The total change in  is given as

(7.26)

The strain in direction 2 for the composite can be given using Equation (7.25) and Equation (7.26)
as

(7.27)

Here,  and   denote the fibre and matrix volume fractions for same length of fibre and

matrix. Note that  denotes the effective axial strain . Thus, from Eq. (7.27) the effective axial

Poisson’s ratio is written as

(7.28)

The above equation is the rule of mixtures expression for composite axial Poisson’s ratio.
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Effective Transverse Modulus :

Here, we are going to derive the effective transverse modulus by loading the RVE in direction 2 as
shown in Figure 7.4(a). There are two considerations while deriving this effective modulus. The first
approach considers that the deformation of the each constituent is independent of each other as
shown in Figure 7.4(b) and (c) and the deformation in direction 1 is not considered. The second
approach considers that deformations of the fibre and matrix in direction 1 are identical as they are
perfectly bonded. 
To calculate the effective modulus in direction 2, a stress   is applied to the RVE as shown in

Figure 7.4(a).

First Approach:

As mentioned, the fibre and matrix deform independently of each other. The resulting deformation in
direction 1 is not considered here. This assumption is simplistic and was used by early researchers. 
The fibre and matrix are subjected to same state of stress. The state of stress is unidirectional, that

is, . Now, using the individual moduli and deformations in direction 2, these

stresses can be given as

(7.29)

From this equation we can write the individual deformations, which give the total deformation in
direction 2 as

(7.30)

Now, the composite strain in direction 2 can be calculated from the definition as

(7.31)
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Figure 7.4: (a) Undeformed unit cell under uniform   stress (b) and (c)
deformed individual constituents of the unit cell

Introducing the volume fractions in the above equation,

(7.32)

Noting that , from the above equation, we get

(7.33)

This equation is the rule of mixtures equation for effective modulus .
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Home Work:

1. What are the assumptions in a typical micromechanical analysis?

2. Write a short note on RVE/Unit Cell.

3. Define volume and mass fractions for fibre and matrix and derive expressions for them.

4. Derive an expression for density of a composite in terms of densities of its constituents.

5. Using strength of materials approach, derive expressions for effective axial modulus, Poisson’s
ratio and transverse modulus.
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