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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory

 
Introduction:

In this lecture we are going to introduce the concept of laminate and its analysis based on Classical
Laminate Theory. Further, we will introduce the notations to designate a laminate and will explain in
detail the development of the classical laminate theory.

As we have studied earlier, laminate is defined as stacking of two or more laminae with same or
different fibre orientation with respect to global direction. The laminae may be made of same or
different material and have individual thicknesses.

Stacking Sequence Notation:

A laminate is designated by using a special nomenclature. In this nomenclature, the fibre orientation
of all layers stacked in the laminate is given. In the following the main steps are given to designate a
laminate.

1. The stacking of layers starts from the top of the laminate.

2. The stacking sequence gives the orientation of fibres with respect to global axis in degrees.

3. The stacking sequence is enclosed in square brackets symbol, 

4. The distinct layers or groups of layers are separated with a slash symbol, /.

5. For repeated groups or layers, subscript n is used to designate.

6. The symmetric laminate is designated by subscript S on the square bracket, that is, by 

.

7. The total stacking sequence is designated by subscript T, that is, by . However, in

general, this is not used for denoting a complete stacking sequence.

To help the readers to understand the designation of stacking sequence of laminates, in the
following Table 5.1, some laminate sequences, their description and total number of laminae in that
laminate are given. A laminate with coordinate system and ply numbering is shown in Figure 5.1(a).

Note: In some of the books on composites and research articles the coordinate systems used have
z direction positive in upward direction. In that case the stacking of layers in a laminate starts from
the bottom. Accordingly, the ply top and bottom coordinate designation also changes. However, the
end results remain unchanged.

Table 5.1:  Sample laminate stacking sequence notations and their description

Laminate Description Layers
One layer each of  and 3

One layer of  and 2

Two layer of 2

Two layers of  (in a group of two

layers) and one layer of 

3
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Symmetric with    and    layers 4

Symmetric with   and 

 and  layers

8

Symmetric with two groups of 
 and two groups of  

 and     layers

16

Symmetric with one layer of  

and one layer of 

4

Symmetric with  

and 
layers 

12

 

Laminate Coordinate System:

The coordinate systems for global and principal material directions for laminae are same as given
earlier. Here, we introduce the coordinates in the thickness direction to get the z coordinate of the
top and bottom of each ply. For example, the bottom coordinate of the kth ply is   and the top
coordinate of the ply is . Thus, the bottom coordinate of the first ply is  and the top coordinate of top
ply is . The total thickness of the laminate is taken as 2H. Thus, the bottom most coordinate of the
laminate is –H and top most coordinate is H. The lamina thickness coordinate notations are shown
in Figure 5.1(b).

Figure 5.1: (a) Stacking of laminae in a laminate and
(b) coordinate designation for laminate
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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory8

 
Classical Laminate Theory:

 The classical laminate theory is a direct extension of the classical plate theory for isotropic and
homogeneous material as proposed by Kirchhoff –Love (see [1, 2] for details). However, the
extension of this theory to laminates requires some modifications to take into account the
inhomogeneity in thickness direction. In the following, the assumptions made in this theory along
with the assumptions made for classical plate theory are given.

Assumptions of Classical Lamination Theory:

1. The laminate consists of perfectly bonded layers. There is no slip between the adjacent
layers. In other words, it is equivalent to saying that the displacement components are
continuous through the thickness.

2. Each lamina is considered to be a homogeneous layer such that its effective properties are
known.

3. Each lamina is in a state of plane stress.

4. The individual lamina can be isotropic, orthotropic or transversely isotropic.

5. The laminate deforms according to the Kirchhoff - Love assumptions for bending and
stretching of thin plates (as assumed in classical plate theory). The assumptions are:

a. The normals to the mid-plane remain straight and normal to the midplane even after
deformation.

b. The normals to the mid-plane do not change their lengths.

The classical laminate theory is abbreviated as CLT. This theory is known as the classical laminated
plate theory and abbreviated as CLPT.
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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory

 

Displacement Field:

The strain-displacement field is derived using two approaches. In the first approach the deformation
of the laminate according to the Kirchhoff - Love assumptions for bending and stretching is used.
The undeformed and deformed geometries of laminate are used to develop the displacement field. In
the second approach the transverse strain components resulting from the above assumptions are
used. Further, using mathematical definitions of these strain components the displacement field is
obtained. Thus, from this displacement field all strain components are obtained.

First Approach:

The Figure 5.2(a) shows the geometry of a laminate in undeformed configuration and Figure 5.2(b)
shows the deformed geometry according to Kirchhoff-Love assumptions in xz plane. Any generic
normal to the undeformed mid-plane remains normal to the deformed mid-plane. This assumption
results in zero transverse shear strains, that is, . However, due to stretching action the point of
intersection of midplane and a normal moves by a distance  along x axis. Further, the same point
moves by distance  in z direction due to bending action. The second assumption that the normal to
the mid-plane does not change in length requires that the transverse normal strain, that is, . This
holds true when the transverse deflection of any point in the laminate is independent of z location,
that is, it is a function of x and y only and a constant for a given x and y location. So, we can write

(5.1)

 Now, from the figure it is easy to find the slope of the deformed mid-plane as

(5.2)

Since, the deformations in this theory considered are very small, we can write

(5.3)
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Figure 5.2: Laminate geometry (a) undeformed and (b) deformed

Now consider a generic point P on the mid-plane which is located at distance z from the mid-plane.
After deformation, the displacement of this point along x direction can be given from the Figure 5.2
as

(5.4)

Similarly, for the deformation in yz plane we can express the slope of the deformed mid-plane as .
Thus, the displacement of a generic point along y axis can be given as

(5.5)

Thus, the complete displacement field for a generic point in the laminate according to the classical
laminate theory is given below:

(5.6)

Note that the displacements ,  and  correspond to the mid-plane. Hence,
they are called mid-plane displacements.

Second Approach:

The second assumption is that the length of the normal to the mid-plane does not change even after
deformation results into zero transverse normal strain. Thus,

(5.7)
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Thus, from this expression it is clear that  is a function of    and    coordinates only. Thus, for any

given location  we can write the transverse deflection component as

(5.8)

From the first assumption of the Kirchhoff-Love theory that the normals remain straight and normal
to mid-plane even after deformation, results into zero transverse shear strains. Thus, 

. 

Using the definitions of small strain, we can write the above equation as

(5.9)

From the first of the above equation we can write

Integrating this with respect to z, we get

(5.10)

where   is a constant of integration which is function of x and y alone. Similarly, from the
second of Equation (5.9), we can get

(5.11)

Thus, Equations (5.8), (5.10) and (5.11) lead to the displacement field as in Equation (5.6).
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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory

 

Strain Displacements Relations:

The strain displacement relations for infinitesimal strains using the displacement field as in Equation
(5.6) can be given as

(5.12)

The above equation can be written as

(5.13)

where   are the midplane strains and

represents the midplane curvatures.

The terms  and    are the bending moment curvatures and    is the twisting moment

curvature.

Note: It is clear from Equation (5.6) and Equation (5.13) that the midplane strains  and the

curvatures  are independent of z location.

Note: From Equation (5.13), we see that the strains are continuous through the thickness of
laminate and they vary linearly.

State of Stress in a Laminate:

The stresses at any location can be calculated from the strains and lamina constitutive relations. It is
assumed that the lamina properties are known. Hence, the constitutive equation for a kth lamina is
known, that is, the reduced stiffness matrices (in principal material directions and global directions)

are known. Thus, the stresses in kth lamina can be given as

(5.14)

Now, using Equation (5.13), we can write the stresses as

(5.15)
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In these equations, the strains are given at a z location where the stresses are required. It should be
noted that the strains are continuous and vary linearly through the thickness. If we look at the stress
distribution through the thickness it is clear that the stresses are not continuous through the
thickness, because the stiffness is different for different laminae in thickness direction. In a lamina
the stress varies linearly. The slope of this variation in a lamina depends upon its moduli. However,
at the interface of two adjacent laminae there is a discontinuity in the stresses. The same thing is
depicted in Figure 5.3 with three layers.

Figure 5.3: Elucidation of stress discontinuity at lamina interfaces in a laminate

Note: The reduced transformed stiffness matrix  forkth lamina used in Equation (5.15) is the

same as in the chapter on Planar Constitutive Equations. There we considered the state of stress as
planar and the transverse normal strain was not zero. However, in this laminate theory we have
plane stress assumption as well as all transverse strains are zero (plane strain conditions as well).
Thus, we have an anomaly of transverse normal strains in using Equation (5.14). However, we will
use this reduced transformed stiffness for a lamina. Inspite of this anomaly, the laminate theory
works well (within its own scope). A detailed study on this issue can be seen in literature. However,
this issue is out of scope of this course and will not be dealt with here.
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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory

 
Inplane Resultant Forces:

The inplane forces per unit length are defined as

(5.16)

Or these can be written as

(5.17)

Now, using Equation (5.15) we can write

(5.18)

Now recall that the midplane strains   and the curvatures    are independent of z

location. The reduced transformed stiffness matrix   is function of thickness and constant over a

given lamina thickness. Now we can replace the integration over the laminate thickness as sum of
the integrations over individual lamina thicknesses. Thus, Equation (5.18) can be written as

(5.19)

Here,  is the total number of layers in the laminate. This equation can be written as

(5.20)

where

(5.21)

The matrix    represents the in-plane stiffness, that is, it relates the in-plane forces with mid-plane

strains and the matrix   represents the bending stiffness coupling, that is, it relates the in-plane
forces with mid-plane curvatures.

It should be noted that the matrices  and  are symmetric as the matrix   is also symmetric

for each lamina in the laminate.
The resultant in-plane forces are shown in Figure 5.4.
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Figure 5.4: In plane resultant forces per unit length on a laminate
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  Module 5: Laminate Theory
  Lecture 16: Introduction to Classical Plate Theory

 
Resultant Moments:

The resultant moments per unit length are defined as

(5.22)

Or these can be written as

(5.23)

Now, using Equation (5.15) we can write,

(5.24)

Now, with the same justification as given for Equation (5.19), we can write the above equation as

(5.25)

This can be written as

(5.26)

where

(5.27)

The matrix   represents the bending stiffness, that is, it relates resultant moments with mid-plane

curvatures. Again, the matrix    is also symmetric. Further, it is important to note that the matrix  

 relates the resultant moments with mid-plane curvatures as well.
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Figure 5.5: Resultant moments per unit length on a laminate

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture16/16_8.htm[8/18/2014 12:33:12 PM]

  Module 5: Laminate Theory

  Lecture 16: Introduction to Classical Plate Theory

 

Homework:

1. Write the key points in the designation of laminate sequence.

2. What are the assumptions in the classical laminate theory?

3. What are the assumptions in the classical laminate theory?

4. Why the stresses at the interface of two laminae are different according to the classical plate
theory? 

5. Derive the expressions for resultant inplane forces and bending moments for laminate
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