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  Module 7: Micromechanics
  Lecture 29: Background of Concentric Cylinder Assemblage Model

 

Introduction

In this lecture we are going to introduce a new micromechanics model to determine the fibrous
composite effective properties in terms of properties of its individual phases. In this model a
composite is represented as an assemblage of concentric cylinders. The core of this cylinder is a fibre
and surrounding annulus is a matrix material. This model is called concentric cylinder assemblage
(CCA) model. 

In this lecture we give the introduction and back ground of this model.
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Concentric Cylinder Assemblage (CCA) Model

As we know, the unidirectional fibrous composite has fibres embedded in matrix material. The fibres
are, in general, cylindrical in nature. Thus, Hashin and Rosen [1] introduced a micromechanical
model in which the composite is represented as an assemblage of concentric cylinders. The inner
cylinder represents the fiber and outer annulus is matrix. The fibres are considered to be infinitely
long cylinders and matrix is considered to be continuous. 

The model is shown in Figure 7.10(a). For each individual fibre of radius , there is associated an

annulus of matrix material of inner radius  and outer radius   . The individual cylinder, thus formed,
is called as a composite cylinder. This is shown in Figure 7.10 (b). It should be noted that the all
cylinders do not have the same radii. The radii of each cylinder vary in a way such that they
completely fill the composite volume. However, the ratio of the fiber cylinder to the outer radius of
matrix cylinder is same for all cylinders. This leads to the fact that all composite cylinders have the
same volume fractions. Further, the resulting material is transversely isotropic in nature.

The advantage of this model is that analysis of one composite cylinder is sufficient to determine the
four out of five effective elastic moduli of a transversely isotropic material.

Figure 7.10: (a) Concentric cylinder assemblage model (b)
composite cylinder and (c) homogeneous single cylinder
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Background of CCA Model
            
Here, we will relate five effective independent stiffness coefficients with the measurable effective
engineering constants. In the following, for a transversely isotropic material we derive relations
between the stiffness coefficients and engineering constants.

The unidirectional fibrous composite is transversely isotropic in nature in plane perpendicular to fibre
direction (or in plane perpendicular to the plane in which fibres are placed together). The stress
strain relations for the transversely isotropic material in 23 plane is written as

(7.148)

                                                
Thus, there are five constants,   and   are independent constants. These

constants define the effective properties of the composite. Note that in above relations tensorial
shear strains are used. The relation between these independent constants and effective engineering
constants can be given as follows:
            
Consider an uniaxial stress state such that  and .

. Putting this in Equation (7.148) we can solve for the normal strains. The normal strains in terms of 
  and   are given as

(7.149)

From the first of the above equation, we can write

(7.150)

We define the effective axial modulus  through following equation as

(7.151)

Comparing this equation with Equation (7.150) we can write for   as
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Similarly, we define the following the Poisson’s ratios  and  as

(7.153)

Thus, using Equation (7.149), we get

(7.154)

The other engineering constants that can be directly related to the effective stiffness coefficients are

(7.155)

Equations (7.152), (7.154) and (7.155) are four equations with five effective stiffness constants. We
need one more equation in effective stiffness constants that relates an effective engineering constant.
Then we can solve for   and  in terms of effective engineering constants.
            
We develop this equation as follows. Let us define the plane strain bulk modulus,  corresponding
to the state of strain

(7.156)

For this state of strain, from the constitutive equation in Equation (7.148) the normal stresses are
given as

(7.157)

Let us define   where

(7.158)

is defined as effective plane strain bulk modulus. 
            
Now, Equations (7.152), (7.154), (7.155) and (7.158) can be inverted to give

(7.159)

In the above exercise, the measurable properties are   and . However, one can
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measure the other engineering properties and express the effective stiffness coefficients. Let us
consider that a uniaxial tension normal to the fibre direction is applied such that   and 

. Putting this in Equation (7.148) we can solve for the normal

strains. The normal strains in terms of  and  are given as

(7.160)

From the second of the above equation, we can write

(7.161)
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Now we define the effective Poisson’s ratios  and   as

(7.162)

Thus, using Equation (7.149), we get

(7.163)

and

(7.164)

Further, from the symmetry consideration we have the following relations

(7.165)

and from the reciprocal relations

(7.166)

Thus, we can write the following useful relations as

(7.167)

Thus, if we know the effective engineering constants  and , then we can find the
effective stiffness coefficients for transversely isotropic material. Further, the remaining engineering
constants can also be determined.

The effective stiffness can be determined from the composite cylinder either using the concept of
equivalence of strain energy or the basic definitions for each of the engineering property. For the
equivalence of strain energy approach the strain energy of the composite cylinder must be equal to
the strain energy of the single homogeneous cylinder. The strain energy in a given volume of the
cylinder is given as

(7.168)
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In the case of a composite cylinder, the integral over volume extends over the volume of the core
cylinder plus the volume of the annulus and in case of homogeneous cylinder it is over the one
cylinder. It should be noted that both cylinder systems are subjected to same deformations. This
approach can be complicated in the case of concentric cylinders as it involves both the geometry
and elastic properties of two cylinders.

In the following sections we derive the effective engineering constants using the CCA model and
basic definitions of engineering properties as follows. In this, the concentric cylinders are axially
loaded. The composite axial modulus can be defined as axial force divided by axial strain produced
by this axial force. Further, in this loading the assumption is that no other stresses are applied and
the cylinders are free to deform.
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Analysis of Concentric Cylinders

When the concentric cylinders are subjected to either an axial load or a uniform radial stress then
there are no shear stresses produced. Further, in an infinite cylinder away from the ends, the
stresses are independent of . For this state of stress, there will be one equilibrium equation given
as

(7.169)

where,   and  are radial and circumferential stresses, respectively. For a cylindrical coordinate
system with no shear stresses, we can write normal stresses for transversely isotropic material as

(7.170)

Similarly, for transversely isotropic fibre and isotropic matrix the normal stresses are given as

(7.171)

Now, we write the strain displacement relations in cylindrical coordinates as

(7.172)

where,   and   are axial, circumferential or tangential and radial displacements, respectively.
Further, with no shear effects and axisymmetry the tangential displacement is zero. It should be
noted that the stresses are not function of . Hence, the strains are independent of . Hence, the

displacement   can be a function of . However,   can be function of   and, at most, a linear

function of . Hence, in the expression for strain   there is partial derivative and not in the

expression for . For the expression of   we have the full derivative with respect to  .

Thus, the normal strains for the displacements in this case simplify to

When these strain-displacement relations are used in stress-strain relations then the equilibrium
equation in Equation (7.169) gives an ordinary differential equation in  as
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The solution to this equation is

(7.174)

Thus, the solution for fibre is

(7.175)

and the solution for the matrix is

(7.176)

The axial displacement in fibre and matrix can be determined by integrating the first of Equation
(7.172) with respect to . In this equation the left hand side is independent of . 
Thus,

(7.177)

It should be noted that     and    are constants and    and    are the arbitrary

constants of integration. The constants    and   and functions   and 

 are unknown. These can be determined from specific boundary conditions.

The   displacement in fibre as given in Equation (7.175) should be bounded when . This
requires the condition that

(7.178)

Further, the displacements are continuous at the interface of fibre and matrix. This results in

(7.179)

Using Equation (7.178) and Equation (7.179), the continuity conditions become
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(7.180)

On equating the terms in  and  in the second of Equation (7.180), we get

(7.181)

This means that the strains in -direction in fibre and matrix are given by same function of .

Further, the unknown constant     in fibre and matrix is same. This constant, in fact, is the axial

strain. Therefore, it is denoted as . 
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The third continuity condition required is the continuity of the stress component normal to the
interface between the fibre and matrix, that is,

(7.182)

Using, Equation (7.171) and the unknown constants in above condition, we get

(7.183)

The unknown constants    and 

(7.183)

can be determined from the first of Equation (7.180) and Equation (7.183) along with additional
equations that will result due to the application of specific load or deformation, which in turn will
depend upon which of the engineering property is to be determined.

Let us write the strain displacement relations for fibre and matrix using Equation (7.172) and
Equation (7.175) through Equation (7.177).

(7.184)

Note that the strains in the fibre are spatially uniform.
            
Using above relation in Equation (7.171) we get the stresses in fibre and matrix as

(7.185)

From the above equation, it is easy to see that like strains, the stresses are also spatially uniform in
the fibre. Further, the radial and hoop/transverse stresses are identical for this case.

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture29/29_9.html[8/18/2014 3:57:07 PM]

  Module 7: Micromechanics

  Lecture 29: Background of Concentric Cylinder Assemblage Model

 

Home Work:

1. What is a CCA model?

2. Give a brief description of the background for CCA model.
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