
Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture12/12_1.htm[8/18/2014 12:13:04 PM]

  Module 3: 3D Constitutive Equations
  Lecture 12: Constitutive Relations for Orthotropic Materials and Stress-Strain Transformations

  

The Lecture Contains:

Engineering Constants

Constitutive Equation for an Orthotropic Material

Constraints on Engineering Constants in Orthotropic Materials

Stress and Strain Transformation about an Axis

Strain Transformation

Homework

References

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture11/11_5.htm


Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture12/12_2.htm[8/18/2014 12:13:04 PM]

  Module 3: 3D Constitutive Equations
  Lecture 12: Constitutive Relations for Orthotropic Materials and Stress-Strain Transformations

 
In the previous lecture we have seen the constitutive equations for various types of (that is, nature
of) materials. There are 81 independent elastic constants for generally anisotropic material and two
for an isotropic material. Let us summarize the reduction of elastic constants from generally
anisotropic to isotropic material.

1. For a generally anisotropic material there are 81 independent elastic constants.

2. With additional stress symmetry the number of independent elastic constants reduces to 54.

3. Further, with strain symmetry this number reduces to 36.

4. A hyperelastic material with stress and strain symmetry has 21 independent elastic constants.
The material with 21 independent elastic constants is also called as anisotropic or aelotropic
material.

5. Further reduction with one plane of material symmetry gives 13 independent elastic constants.
These materials are known as monoclinic materials.

6. Additional orthogonal plane of symmetry reduces the number of independent elastic constants
to 9. These materials are known as orthotropic materials. Further, if a material has two
orthogonal planes of symmetry then it is also symmetric about third mutually perpendicular
plane. A unidirectional lamina is orthotropic in nature.

7. For a transversely isotropic material there are 5 independent elastic constants. Plane 2-3 is
transversely isotropic for the lamina shown in Figure 3.7.

8. For an isotropic material there are only 2 independent elastic constants.

Principal Material Directions:

The interest of this course is unidirectional lamina or laminae and laminate made from stacking of
these unidirectional laminae. Hence, we will introduce the principal material directions for a
unidirectional fibrous lamina. These are denoted by 1-2-3 directions. The direction 1 is along the
fibre. The directions 2 and 3 are perpendicular to the direction 1 and mutually perpendicular to each
other. The direction 3 is along the thickness of lamina. The principal directions for a unidirectional
lamina are shown in Figure 3.7.

Engineering Constants:

The elastic constants which form the stiffness matrix are not directly measured from laboratory tests
on a material. One can measure engineering constants like Young’s modulus, shear modulus and
Poisson’s ratio from laboratory tests. The relationship between engineering constants and elastic
constants of stiffness matrix is also not straight forward. This relationship can be developed with the
help of relationship between engineering constants and compliance matrix coefficients.
In order to establish the relationship between engineering constants and the compliance coefficients,
we consider an orthotropic material in the principal material directions. If this orthotropic material is
subjected to a 3D state of stress, the resulting strains can be expressed in terms of these stress
components and engineering constants as follows:
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Figure 3.7: Unidirectional lamina with principal material directions
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(3.42)

whereas the engineering shear strain components are given as

(3.43)

Here, are the Young’s moduli in 1, 2 and 3 directions, respectively. Thus, 

  represents the axial modulus and   represent in-plane transverse and out-of-plane

transverse moduli, respectively. Note that axial direction is along the fibre direction.  

  represents the shear moduli. G12,G13 are the axial shear moduli in two orthogonal planes that

contain the fibers.G23 represents out-of-plane transverse shear modulus. Further, it should be noted

that .

The term  represents the Poisson’s ratio. It is defined as follows

(3.44)

where  represents the strain in the direction of applied stress and  represents the strain the

associated lateral direction. It should be noted that, in general .

We will mimic some (thought) experiments that we actually do in laboratory to extract these
engineering constants. For example, we find engineering constants of a transversely isotropic lamina.

Experiment 1: The lamina is loaded in traction along the axial direction as shown in Figure 3.8 (a)
and the strains in along three principal directions are recorded as the load is varied. The slope of the
axial stress versus axial strain curve yields the axial Young’s modulus . The ratios 

 give the Poisson’s ratios  respectively.

Experiment 2: The lamina is loaded in traction along direction 2. The two views of this loading
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case are shown in Figure 3.8 (b). The slope of stress-strain curve in direction 2 gives the in-plane
transverse Young’s modulus . Since, the material is isotropic in 2-3 plane,   is also equal .

The strains in all three directions are measured. The ratios    give the Poisson’s

ratios , respectively.

Experiment 3: The lamina is loaded in shear in plane 1-2 as shown in Figure 3.8 (c). The slope of
the in-plane shear stress and engineering shear strain curve gives the shear modulus . Please

note that if we load the lamina in 1-3 plane by shear then also we will get this modulus because the
behaviour of material in shear in these two planes is identical. Thus, by shear loading in plane 1-2
gives .

Experiment 4: The lamina is loaded in shear in 2-3 plane as shown in Figure 3.8(d). The
corresponding shear stress and engineering shear strain curve yields the shear modulus .

Note: We will see the experimental details to measure some of these engineering constants in a
chapter on experimental characterization of lamina, laminates, fibres and matrix materials.
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Constitutive Equation for an Orthotropic Material:

Now, let us assume that we have measured all the engineering constants of an orthotropic material
along principal directions. With these engineering constants we know the relation between the strain
and stress components as given in Equation (3.42) and Equation (3.43). Thus, it is easy to see that
we can relate the strain components to stress components through compliance matrix. Let us recall
from previous lecture the stiffness matrix for orthotropic material (Equation (3.26)). The inverse of
this matrix (compliance) will have the same form as the stiffness matrix. Thus, we write the
relationship between strain and stress components using compliance matrix as follows

Figure 3.8: Experiments to extract engineering
constants for a transversely isotropic material

(3.45)

Now compare Equation (3.42) and Equation (3.43) with Equation (3.45). This gives us the
compliance coefficients in terms of engineering constants. The coefficients are given in Equation
(3.46).
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(3.46)

It should be noted that like stiffness matrix, the compliance matrix is also symmetric. The compliance
matrix given in Equation (3.45) is shown symmetric.

Note: It is known from our elementary knowledge of linear algebra that inverse of a symmetric matrix
is also a symmetric matrix. Since, the stiffness matrix, which is the inverse of compliance matrix, is
symmetric; the compliance matrix has to be symmetric.

Now, let us derive some more useful relations using the symmetry of compliance matrix. If we

compare  and  we get . Similarly, comparison of  and  and comparison of 

 and  give two more similar relations. All these relations are given in Equation (3.47).

(3.47)

or one can write this relation in index form as

(3.48)
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The relations in Equation (3.47) or Equation (3.45) are referred to as the reciprocal relations. These
relations are also written as

(3.49)

It should be noted that, in general . From Equation (3.48) we can write for    

as

(3.50)

It is known that for transversely isotropic material (in 2-3 plane)   is much greater than  and 

Thus, from the first of Equation (3.47) one can easily see that  is much smaller than 

. Further, it is clear from the relation that .

Note: Since value of    (and may be of other Poisson’s ratios) will be small, the readers are

suggested to use appropriate precision level while calculating (in examinations and writing computer
codes) any data involving these coefficients.
 
We will get the stiffness matrix by inversion of compliance matrix. Equation (3.46) is substituted in
Equation. (3.45) and the resulting equation is inverted to give the stiffness matrix of an orthotropic
material as

(3.51)

where

(3.52)

is the determinant of stiffness matrix in Equation (3.51). We can write the stiffness matrix for
transversely isotropic material with the following substitutions in the stiffness matrix.
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Further, from the resulting, one can reduce the constitutive equation for isotropic material with
following substitutions:

The readers should verify these results.
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Constraints on Engineering Constants in Orthotropic Materials

For orthotropic materials there are constraints on engineering constants. These constrains arise due
to thermodynamic admissibility. For example, in case of isotropic materials it is well known that the
Young’s modulus and shear modulus are always positive. Further, the Poisson’s ratio lager than half
are not thermodynamically admissible. If these constrains are violated then it is possible to have a
nonpositive strain energy for certain load conditions. However, for isotropic materials the strain
energy must be a positive definite quantity. 

In this section, based on the work done by Lempriere we are going to assess the implications of this
thermodynamic requirement (positive definiteness of strain energy) for orthotropic materials. 
The sum of work done by all stress components must be positive, otherwise energy will be created.
This condition imposes a thermodynamic constraint on elastic constants. This condition requires that
both compliance and stiffness matrices must be positive definite. In other words, the invariants of
these matrices should be positive.  

Let us look at this condition with physical arguments. For example, consider that only one normal
stress component is applied. Then we can find the corresponding strain component from the
corresponding diagonal entry of the compliance matrix. Thus, we can say that for the strain energy to
be positive definite the diagonal entries of the compliance matrix must be positive. Thus,

(3.53)

In a similar way, it is possible under certain conditions to have a deformation which will give rise to
only one normal strain component. We can find the corresponding stress using the corresponding
diagonal entry in stiffness matrix. For the strain energy produced by this stress component to be
positive the diagonal entry of the stiffness matrix must be positive. Thus, this condition reduces to

(3.54)

and the determinant of the compliance matrix must also be positive. That is,

(3.55)

Now, using the reciprocal relations given in Equation (3.49), the condition in Equation (3.54) can be
expressed as

(3.56)
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This condition also justifies that the Poisson’s ratio greater than unity is feasible for orthotropic
lamina. Poisson’s ratio greater than unity is sometimes observed in experiments.

The condition in Equation (3.55) can be written as

The terms inside the brackets are positive. Thus, we can write

(3.57)

This condition shows that all three Poisson’s ratios cannot have large positive values and that their
product must be less than half. However, if one of them is negative no restriction is applied to
remaining two ratios.

Let us consider the transverse isotropy as a special case. Let us consider transverse isotropy in 2-3
plane. Let

(3.58)

Then, the conditions in Equation (3.56) reduce as

(3.59)

and Equation (3.57) (using reciprocal relations in Eq. (3.49)) becomes as

(3.60)

The condition posed by above equation is more stringent than that posed in Equation (3.59). Note

that the quantities   and   are both positive. Thus, the limits on Poisson’s ratio in

transverse plane are

(3.61)

Further, consider a special case of isotropic material where   and . This simplifies
Equation (3.61) to a well known condition



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture12/12_6.htm[8/18/2014 12:13:05 PM]

(3.62)
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Stress and Strain Transformation about an Axis

Often it is required to transform the stress or strain tensor from one coordinate axes system to
another. For example, if the fibres in a lamina are not oriented along direction x, then we may need
to transform the stress and strain components from principal material directions 1-2-3 to global
directions xyz or vice-a-versa. It should be noted that the stress and strain tensors are second order
tensors. Hence, they follow tensor transformation rules.

In this section we are going to introduce two notations. The subscripts 123 will denote a quantity (like
constitutive equation, engineering constants, etc.) in principal material directions, while subscripts xyz
will denote the corresponding quantity in global coordinate directions.

Figure 3.9: Unidirectional lamina with global xyz
directions and principal material 1-2-3 directions

Let us transform the stress and strain components for the case shown in Figure 3.9. Here, xy plane
is rotated about direction z to 1-2 plane. Here, direction z and direction 3 are in same directions, that
is, along the thickness direction of lamina. The direction cosines for this axes transformation are as
given in Equation (2.2). However, these are again given below.

Stress Transformation:

Let us do the stress transformation as given in Equation (2.7). In this equation the primed stress
components denote the component in 123 coordinate system. Using the expanded form of Equation
(2.7) and stress symmetry, let us obtain  component of stress
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Thus, substituting the values of direction cosines from above, we get

The remaining five stress terms (using stress symmetry) on the left hand side are also obtained in a
similar way. Let us write the final form of the relation as

(3.63)

Here,   and   and   is the

stress transformation matrix. Thus, comparing all the terms as in Equation (3.63), we can write 

 as

(3.64)

 where . It should be noted that  is not symmetric. 
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Strain Transformation:

In a similar way, we can transform the strain components from xy plane to 1-2 plane. In this
transformation we will use engineering shear strains. Let us find the   using the transformation

equation similar to stress transformation and using strain symmetry as

(3.65)

 
Substituting the direction cosines and rearranging, we get

(3.66)

We know from Equation (2.24) that the tensorial shear strains are half the engineering shear strains.
Thus, in Equation (3.53) we substitute

On simplification and putting , we get

(3.67)

The other five strain terms (using strain symmetry) on the left hand side are also obtained in a
similar way. Let us write the final form of the relation as

(3.68)

Here,  and  and   is the strain

transformation matrix. Thus, comparing all the terms as in Equation (3.68), we can write  as

(3.69)

Note: The transformation matrices,  and  differ by factors 2 in two terms.
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Note: The transformation matrices,  and  are not symmetric.

Note: The order of stress and strain components in Equatjion (3.63) and Equation (3.68) is
important. Some books and research articles follow different orders. The readers are cautioned to
take a note of it.
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Examples:

Example 1: Calculate the stiffness and compliance coefficients for transversely isotropic material
AS4/3501 Epoxy. The properties are as given below for a fibre volume fraction of 60%.

Solution:

Unit of all compliance coefficients is 1/GPa.

The corresponding stiffness coefficients are calculated by inversion of the compliance matrix.

Unit of all stiffness coefficients is GPa.

Note: Both stiffness and compliance matrices are symmetric.
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Homework:

1. Write the number of independent elastic constants for 3D hyperelastic, monoclinic, orthotropic,
transversely isotropic and isotropic materials.

2. Are the Poisson’s ratio  and  independent of each other for an orthotropic unidirectional

lamina?

3. Take the form of stiffness matrix for an orthotropic material as given in Equation (3.26). Using
any symbolic calculation software like Maple or Mathematica, obtain the inverse of this matrix
and confirm that the form of compliance matrix written in Equation (3.42) is correct. Further,
confirm that this matrix is symmetric. (One should be able to do this using the concepts of
linear algebra alone.)

4. Extend the Problem 3 to get the stiffness matrix given in Equation (3.51).
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