
Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture32/32_1.htm[8/18/2014 4:03:32 PM]

  Module 7: Micromechanics
  Lecture 32: CCA Model: Effective Axial Shear Modulus

 

Introduction

In the previous lectures we have introduced the concept of CCA model and then used those concepts
to derive the expressions for effective axial modulus and Poisson’s ratio.

In this lecture, we continue with the CCA model to derive the expressions for effective axial shear
modulus.

The Lecture Contains

Effective Axial Shear Modulus
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References

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture31/31_6.htm


Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture32/32_2.htm[8/18/2014 4:03:32 PM]

  Module 7: Micromechanics
  Lecture 32: CCA Model: Effective Axial Shear Modulus

 
Effective Axial Shear Modulus

The effective axial shear modulus is obtained by subjecting the concentric cylinders and equivalent
homogeneous single cylinder to pure axial shear loading. Consider the concentric cylinders as shown
in Figure 7.11. The outer surface of the cylinder in     plane is subjected to a displacement

field such that the overall strain produced in this plane is equal to  , that is,

(7.240)

The displacement components on the boundary of the cylinder then becomes

(7.241)

Let us assume that both fibre and matrix materials are transversely isotropic in nature. Further,
assume that they experience only shear strains. Under these assumptions, it can be shown that the
each component of the displacement in either of the phase is governed by Laplace equation. For the
details of the derivation one can see work by Chou and Pagano [7]. For the present case of
deformations, the strains are not the function of   . The displacement components in each
constituent are then given with corresponding simplification in the general solution as

(7.242)
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Here,   and  are the unknown constants. Further, it should be noted that for
the axisymmetric problem the displacement in fibre must be bounded. This poses a condition that
the constant  as in Equation (7.178). The continuity of the displacement components at the

interface may be written as

(7.243)

Figure 7.11: Undeformed and deformed concentric cylinders
under shear  

The first continuity condition of the above equation gives the relation

(7.244)

which is same as the first of Equation (7.180). The remaining two displacement continuity conditions
give

(7.245)
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The non-zero stresses resulting from the displacement field in Equation (7.242) are

(7.246)

The continuity of the stresses in radial direction leads the continuity of the stress  at the interface.
This condition becomes

(7.247)

Now, at the outer boundary of the concentric cylinders the displacements must match the following
boundary conditions.

(7.248)

Note that from the second and the third of the above condition, we get

(7.249)
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The constants  and  can be determined in terms of    by solving Equations (7.244), (7.247), the first
of Equations(7.248) and (7.249). These are

(7.250)

At last, at the outer boundary the shear stress  must match the shear stress    in coordinate system. Thus, at 

, the shear stress then becomes

(7.251)

The right hand side of above equation can be written as

(7.252)

Thus, the equivalent axial shear modulus can be given combining Equation (7.251) and Equation (7.252). Then
values of constants   and   are substituted from Equation (7.250). Thus, we get the result

(7.253)
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Home Work:

1. Write a short note on the deformation or the loads to be imposed on the concentric cylinders
to determine the effective axial shear modulus.

2. Derive the expression for the effective axial shear modulus of the composite using CCA
model.
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