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1. For a two electron system, spin exchange operator is given by  1 2

1ˆ ˆ ˆ1 4
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Where K   is the exchange integral and 1̂s and 
2ŝ are spin angular momentum operators of 

two electrons. This was first introduced by Dirac and has wide applications in Condensed 

Matter Physics. 
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Where Ŝ is total spin operator. 

b) Show that eigenvalues of 1 2
ˆ ˆs s for triplet  1S  and singlet  0S  states are 

1

4

and 
3

4
 respectively. 

c) Find the eigenvalues of exV for triplet and singlet states. 

d) Show that 
sin 2 .glet tripletV V K   

e) Which is the ground state of the system? 

 

2. Prove that the direct integral J and exchange integral K for a N electron atomic system 

are real and positive. 

 

3. For the ground state of an atom or ion having N electrons, 
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Where 1H is the sum of the N identical one-body hydrogenic Hamiltonian and 2H is the 

sum of 
 1

2

N N 
identical terms which represent the two-body interactions between each 

pair of electrons and a and b are Slater determinants, 
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where P is the permutation operator. 

 



 

Prove that: 

a) For a b  , 
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b) For a b   

( k k  and i i  for all i k ) 
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c) For a b   
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d) For a b   

(Differing in more than 2 sets of q labels.) 

1 0b aH    

2 0b aH    

 

4. Prove that the matrix , made up of Lagrange variational multipliers which constraint the 

variation in the elements of Hartree-Fock Slater determinants, is self adjoint. 

 

5.  

a) Obtain the condition that H , where H is the N-electron Hamiltonian, is an 

extremum subject to the constraint that the one-electron spin-orbitals in the 

variational N-electron antisymmetrized wave function are normalized and 

orthogonal. 

b) Express the above condition in a form in which the matrix of the Lagrange 

variational multipliers is diagonal and demonstrate that this condition is expressed 

by:  
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Where k kk    

c) Comment on the factor  ,
k js sm m in the above equation. 

d) Find the function  1 2,kU r r such that; 
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e) Show that the one-electron Hartree-Fock equation is written in a form inclusive of 

the spin variables such that the spin-orbital  kU q q k has k which represents 

a set of 4 quantum numbers including spin is given by: 
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f) Is the Hartree-Fock equation given above an eigenvalues equation? 

 

g) Can you define the Hartree-Fock potential HFV as a function of a single coordinate 

(that is, one set of 3 space coordinates and 1 spin coordinate) alone? 

 

6. Determine if the potential U in problem 5(d) is Hermitian. 

 

7.  

a) Prove that; 
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b) If kk is written as k , prove that: 
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[Ref : T.H. Koopmans Physics 1 104 (1933)]   

d) Write the Slater determinant for ground state 2 2 11 2s s S of beryllium. 



e) The Hartree-Fock potential is given by: 
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Where dV and exV are direct and exchange integrals respectively. 

Obtain the two coupled integro-differential equation: 
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8. Prove that  , 0H L  , where H is the Hamiltonian 
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And i

i

L L is the total orbital angular momentum of the electrons. 
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