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1.  

a) Prove that moving objects are shortened by a factor 
2

2

1

1
v

c

 



compared to    their 

lengths in rest frames. 

b) Prove that moving particle last longer compare to their life spans (average life time) in 

rest frames. 

c) How is “proper velocity” defined in special theory of relativity? Explain why it is called 

as “proper”? 

d) What is “proper momentum”? 

e) Which of the following two equations is correct according to special theory of relativity? 

2E mc  

and 2E mc and explain why? 

 

f) What is the relation between energy and momentum for a massless particle? 

 

2.  

a) Show that quantization in relativistic quantum mechanics would require the dynamical    

variable momentum to be replaced by the operator ,p i
ct

  
  

   

and 

,p i
ct

  
  

 
. 

b) Show that the special theory of relativity invariant 
2 2p p m c

  can be factored into two 

first order equations if the three-vector 0.p   

c) If three-vector 0,p  show that the electromagnetic relationship 
2 2 0p p m c

   can be 

factored as    0p mc p mc 

     wherein  and  must be matrices. 

d) Quantize the factor p mc

  and construct the following quantum equation 

  4 10 .i mc

      This is the famous Dirac equation. 

 

3.  

a) Quantize the equation 2 2 0p p m c


     and arrive at the Klein-Gordon equation. 

b) What are the demerits of Klein-Gordon equation? 

 

 



4.  

a) Show that the Dirac equation is very often written in the following equivalent forms 

  0P mc   i.e   0i mc   and 
2e

i c p A e mc
t c

  
   

         
 when the 

electron is in the presence of electromagnetic field described by potentials  , .A  

b) Demonstrate that the non-relativistic Hamiltonian which describes the coupling of an 

electron with electromagnetic field given by '

nr

e p
H A e

c m
   must be replaced by 

relativistic form '

relH e A e     

 

5.  

a) Starting with the four-component Dirac equation, 

2e
c p A e mc

t c
  

 

       
               

obtain the equations 

(i)    0E E e c        

(ii)    0E E e c        where 

2mc
i

h
e



 
  
 

   
   

  
 

b) Comment on the large and small part of the wavefunction and arrive at the relation 

between them 
2mc

 


 
  
 

 

c) Obtain the non-relativistic limit express by the Pauli equation

 
2

2
2 2

p e
i l s B

t m mc

 
    

  
 

d) Define the g factor; what is the value of electron g-factor according to Dirac-Pauli 

equation? 

e) Refer to B.Odom, D.Hanneke, B.D’Urso and G.Gabrielse, Phys.Rev.Lett. 97, 030801 

(2006) and acquaint yourself with the corrections to the g-factor. 

f) Refer to G.Gabrielse, D.Hanneke, T.Kinoshita, M.Nio and B.Odom, Phys.Rev.Lett. 97, 

030802(2006) and acquaint yourself with how corrections to the g-factor affect the value 

of the fine structure ‘constant’. 

g) Google the present best values of (1) g and (2) α, the fine structure constant. 

 

6. Consider the Dirac Hamiltonian for an electron in an electromagnetic field   

   , :A A H m p eA e          (we use units in which 1 and 1c  ). For the sake 

of brevity we shall use the following notation  p eA   and e  . We search for a 

unitary transformation through an operator 
iSU e (where S is a Hermition operator) such that 

the result of this transformation will eliminate the effect of all “odd” operators, such as the 

operator , which couples the large and the small component of the four-component 

bispinors. Show that as 
' iSe   , the Dirac Hamiltonian H transforms to H

’
, where 

' iS iSH e H i e
t

 
  

 
 



7. Prove that 

     
2 3

, , , , , , ..........
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iS iS i i
e He H i S H S S H S S S H               

 

8. Prove that 

1
, , , , , , ..........

2 6 24

iS iS i i
ie e S S S S S S S S S S

t
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9. Show that 

       ' 1 1
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wherein we consider the transformation operator S to be of 
1

O
m

 
 
 

 

10. We choose the transformation operator 
1

S ofO
m

  
  
  

to be given by
2

i

m


 . This is the first 

Foldy-Wouthuysen transformation, and it will be denoted by
1S . Accordingly

  
1

2 2

i p eAi
S

m m

  
    . Prove that, as a result of the first Foldy-Wouthuysen 

transformation, the transformed Dirac Hamiltonian becomes 
' ' 'H m    , 

Where 
 
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2
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 
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And   
2 4

'
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 
     
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Note that the terms 
' and 

' contain odd operators to
1

O
m

 
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 

. 

 

11. Now consider second Foldy-Wouthuysen transformation through an operator 

 
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2
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Show that, as a result of this transformation, we get 
" ' "H m      

Where "

2

1
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12. Consider now third Foldy-Wouthuysen transformation through an operator 
''

''

2

i
S

m


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Show that, as a result of this transformation, we get 

 
'' ''
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Observe that as a result of the third Foldy-Wouthuysen transformation, the Dirac equation 

acquires the following form 
'''

''' ''' i
H

t


 


 

in which we have terms which couple the large part and the small part of 
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 
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with the coupling terms restricted to
3

1
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 
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 

. 

13. By retaining terms of 
3

1
O

m

 
 
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 show that 
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14. Show that the term 
24

e
E p

m
  in 

'''H reduces to 
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