X

reviewer3@nptel.iitm.ac.in ▼

Courses » Modern Optics Announcements Course Ask a Question Progress Mentor FAQ

Unit 4 - Week 3

Friday 09 November 2018 03:42 PM

Powered by

eek 6	Read the following paragraph and answer the questions? (Q3-Q7)
	A plane light wave travelling in xz —plane in glass (RI: $n_1=1.5$) hits the glass-air interface
eek 7	(yz -plane). The incident plane light wave is given by the equation:
eek 8	$\vec{E}_{inc} = 2.0 \hat{y} exp [i(\omega t - \frac{1}{2} k_1 x - \frac{\sqrt{3}}{2} k_1 z)] V/m$
9	The free space wavelength of this light is $\lambda_0=0.6 imes 10^{-6}~meter$. The free space propagation
10	constant is $oldsymbol{k_0}$. Take RI of air $oldsymbol{n_2}=1,0.$
	For the incident light wave (a) the angle of incidence at glass-air interface and (b) the polarization
	respectively
ideos	(A) (i) 30 ° (ii) p -wave
	(B) (i) 30 ° (ii) <i>s</i> -wave
Assignment Solution	(C) (i) 60 ° (ii) p -wave
	(i) 60 ° (ii) <i>s</i> -wave
	No, the answer is incorrect.
	Score: 0
	Accepted Answers: (D) (i) 60° (ii) s -wave
	4) At the glass-air interface, the light wave 1 point
	(A) has decaying transmitted field amplitude
	(B) has decaying reflected field amplitude
	(C) undergoes complete transmission
	(b) undergoes total internal reflection
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	(A) has decaying transmitted field amplitude (D) undergoes total internal reflection
	5) Equation of the transmitted electric field takes the form (<i>t</i> is the amplitude transmission coefficient) 1 <i>point</i>
	(c) $\vec{E}_{tr} = 2.0 \ t \ \hat{x} \ e^{-\frac{\sqrt{3}}{2}k_0 x} \ e^{i\left(\omega t + \frac{3\sqrt{3}}{4}k_0 z\right)}$
	$ \bigcirc (5/2t) = 2.0 \ t \ \hat{z} \ e^{\frac{2}{\sqrt{11}}k_0 x} \ e^{i\left(\omega t - \frac{3\sqrt{3}}{4}k_0 z\right)} $
	No, the answer is incorrect.
	Score: 0
	Accepted Answers: $(A) \vec{E}_{tr} = 2.0 t \hat{y} e^{-\frac{\sqrt{11}}{4}k_0 x} e^{i\left(\omega t - \frac{3\sqrt{3}}{4}k_0 x\right)}$
	6) 1 point
	The depth of penetration of light wave into air region is approximately (use $\lambda_0=0.6 imes10^{-6}~m_0$
	(A) zero
	(B) 0.115 μm

(D) 2.611 μm

No, the answer is incorrect.

Score: 0

Accepted Answers:

(B) **0**.**115** µm

The direction of incident wave (y —polarised) is **reversed**, i.e., from air to glass at same angle of incidence, keeping everything same, then which of the following represent/represents the equation incident electric field?

(c)
$$\vec{E}_{inc} = 2.0 \ \hat{y} \ e^{i\left(\omega t - \frac{\sqrt{3}}{2}k_0x - \frac{1}{2}k_0x\right)}$$

$$\square \text{ (D)} \overrightarrow{E}_{inc} = 2.0 \widehat{y} e^{i\left(\omega t + \frac{\sqrt{3}}{2}k_0x + \frac{1}{2}k_0z\right)}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

(A)
$$\overrightarrow{E}_{inc} = 2.0 \ \widehat{y} \ e^{i\left(\omega t + \frac{1}{2}k_0 x - \frac{\sqrt{3}}{2}k_0 z\right)}$$

(B)
$$\overrightarrow{E}_{inc} = 2.0 \ \hat{y} \ e^{i\left(\omega t + \frac{1}{2}k_0x + \frac{\sqrt{3}}{2}k_0z\right)}$$

8)

Read the following paragraph and answer the questions?(Q8-Q12)

Consider a thin uniform glass sheet of RI n_3 . An antireflection coating has to be deposited on it. TI RI of the coating material is n_2 and the thickness is d_2 . Outside medium is air $n_1=1.0$. Assume $d_2=(2m+1)\frac{\lambda_0}{4n_2}$ where m is an integer and λ_0 is the wavelength of light.

For this two-layer sheet, light falling from air normally on the coated surface will have reflectivity (energy reflection coefficient)

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

$$R = \left(\frac{n_3 - n_1}{n_3 + n_2}\right)^2$$

(C)
$$R = \left(\frac{n_1 n_2 - n_3^2}{n_1 n_2 + n_3^2}\right)^2$$

(b)
$$R = \left(\frac{n_1 n_3 - n_2^2}{n_1 n_3 + n_2^2}\right)^2$$

No, the answer is incorrect. Score: 0

Accepted Answers:

(D)
$$R = \left(\frac{n_1 n_3 - n_2^2}{n_1 n_3 + n_2^2}\right)^2$$

9) 1 point

For the above coated glass sheet, if $n_3 = 1.62$ (RI of glass sheet), then the required value of n_2 (the coating material) for minimum reflection is (choose the best value from the following)

(A)
$$n_2 \approx 1.732$$

(B)
$$n_2 \approx 1.437$$

1 point

(C)
$$n_2$$
 = 1.273

(D) n_2 = 1.132

No, the answer is incorrect. Score: 0

Accepted Answers: (C) n_2 = 1.273

10For the best value of n_2 chosen from above, obtain a thickness of the coating thickness so that the 1 point coated glass sheet acts as an antireflection element for light of wavelength λ_0 = 0.55 μm . Which of the following values of thickness d_2 gives minimum reflection?

(A) d_2 = 0.3240 μm

(B) d_2 = 0.432 μm

(C) d_2 = 0.864 μm

(D) d_2 = 1.296 μm

No, the answer is incorrect. Score: 0

Accepted Answers: (A) d_2 = 0.3240 μm

11For the best value of n_2 chosen from above for the coated glass sheet, if a light of 1 point wavelength λ_0 = 0.65 μm is used, then the minimum possible thickness and corresponding reflectivity are wavelength λ_0 = 0.0127 μm and R = 0.1889

(C) d_2 = 0.046 μm and R = 0.0889

(C) d_2 = 0.046 μm and R = 0.0034

No, the answer is incorrect. Score: 0

Accepted Answers: (D) d_2 = 0.1277 μm and R = 0.0034

12)

1 point for this two-layer sheet, if we choose the thickness of the film as d_2 = $\frac{\lambda_0}{2n_2}$, then the reflectivity of element becomes

$$R = \left(\frac{n_3 - n_1}{n_3 + n_1}\right)^2$$
(A)
$$R = \left(\frac{n_3 - n_2}{n_3 + n_2}\right)^2$$
(B)
$$R = \left(\frac{n_3 - n_2}{n_3 + n_2}\right)^2$$
(C)
(D) independent of coating RI

No, the answer is incorrect.

Accepted Answers:

Score: 0

 $R = \left(\frac{n_3 - n_1}{n_3 + n_1}\right)^2$ (A)
(D) independent of coating RI

Previous Page

End