

Unit 12 - Week 11

Government of India Course outline **Assignment 11** The due date for submitting this assignment has passed. Due on 2018-10-17, 23:59 IST. How to access the As per our records you have not submitted this assignment. portal Week 1 Questions 1 - 4 are based on the following paragraph regarding small Bragg angle diffraction. Week 2 Assume the following parameters related to a small Bragg angle diffraction: acoustic power = I_a , acoustic velocity = v_a , optical frequency = ω , the RI of medium = n, density of the medium = ρ , the Week 3 Bragg angle = θ_B , the strain-optic coefficient = \overline{p} , the strain coefficient = \overline{S} and speed of light in free-Week 4 space = C . The coupling coefficient κ measures the strength of coupling optical power between 0^{th} order and the +order. α 's represent the x -components of propagation constant, β 's represent the Week 5 z -components of propagation constant of respective optical beams and K is that of acoustic wave along z. Week 6 Week 7 Small angle Bragg diffraction corresponds to Week 8 (A) the light wave travels almost parallel to the direction of acoustic wave (B) $\beta_+ = \beta + K$ or $\beta_- = \beta - K$ as the Bragg condition (+/- corresponds to respective orders) Week 9 (C) optical power in the + order diffracted beam is a \sin^2 function of the quantity proportional to the Week 10 interaction length of optical beam with the acoustic wave Week 11 (D) the total diffracted optical power (0th order and + order) is the same as incident power Lecture 50 : Acousto-optic Effect (Contd.) Lecture 51 · Acousto-optic Effect (Contd.) Lecture 52 : Acousto-ontic No, the answer is incorrect. Effect (Contd.) Lecture 53: **Accepted Answers:** Acousto-optic R Effect (Contd.) С Quiz : Assignment D 1 point Lecture Materials Under the small angle Bragg diffraction of optical beam Feedback For Week 11 (A) non-Bragg condition corresponds to $\Delta \alpha = 0$ (B) Bragg condition corresponds to $\Delta \alpha = 2\kappa$ Week 12 (C) optical power in the 0^{th} order optical beam is a purely \sin^2 function of the product of coupling Download Videos constant and interaction length of optical beam with the acoustic wave Assignment (D) at non-Bragg condition, optical power can be completely transferred from **0**th order to the **+**order Solution diffracted beam No, the answer is incorrect. Accepted Answers: 1 point 3)

	Which of the following relations is/are correct?
	(A) the change in dielectric permittivity can be represented by $\Delta\epsilon=rac{1}{2}\epsilon_0 n^3 \overline{p} \overline{S}$
	(B) the coupling coefficient can be represented by $\kappa=rac{\omega}{4c}rac{n^3\overline{p}\overline{s}}{\cos\theta_B}$
	(C) the coupling coefficient can be represented by $\kappa = \frac{k_0}{4} \frac{n^3 \overline{p} \overline{s}}{\cos \theta_B}$
	(D) the acoustic power can be expressed in terms of $I_a=rac{1}{2} ho v_a^3 \overline{S}^2$
	□ A
	В
	С
	D D
No	o, the answer is incorrect.
	core: 0
Ac B	ccepted Answers:
С	
D	
4)	1 point
	To quantify the performance of Bragg angle diffraction, a figure of merit is defined as $M_2 = \frac{n^6 \bar{p}^2}{\rho v_a^3}$.
	(A) In terms of M_2 , the coupling coefficient between the undiffracted and diffracted wave can be expressed as $\kappa = \frac{\pi}{\sqrt{2\lambda cos\theta_B}} \sqrt{M_2 I_a}$
	(B) A large value of M_2 implies large acoustic power
	(C) A large figure of merit requires high RI of the medium in which acoustic wave is travelling
	(D) A large figure of merit requires low value of photoelectric coefficient
	□ A
Ne	o, the answer is incorrect.
	ore: 0
Ac	ccepted Answers:
A C	
5)	1 point
-,	Questions 5 - 8 are based on Large Bragg angle diffraction. Assume that the parameters, direction of waves associated with this diffraction are the same as mentioned in paragraph above.
	Large Bragg angle diffraction corresponds to
	(A) the light wave travels almost perpendicular to the direction of acoustic wave
	(B) a situation where both the Bragg conditions (+/ $-$ corresponds to respective orders) $\beta_+ = \beta$ and $\beta = \beta K$ cannot be satisfied simultaneously
	(C) a situation where one may neglect the $m{x}$ dependence of field amplitudes ($m{x}$ is along the width acoustic wave)
	(D) the light wave travels almost along the same direction as that of acoustic wave
	B B
	D

С	
_ D	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
С	
D	
Necessary conditions related to Large Bragg angle diffraction is/are	oint
(A) x dependent factors in the set of wave equations should cancel out	
(B) Bragg condition $\beta = \beta - K$ corresponds to contra-directional coupling, coupling between stravelling in opposite directions	ween
(C) in the set of wave equations, the x –components of propagation constant should satisfiand $\alpha = \alpha$ (where $+/-$ corresponds to respective orders of diffraction)	y: α ₊
(D) condition for co-directional coupling: $\beta/ \beta =1=\beta_+/ \beta_+ $, coupling between waves in same direction (β and β_+ correspond to z –components of propagation constant for the undiffracted and diffracted waves, z being the direction of acoustic wave propagation)	
■ A	
В	
С	
D D	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
В	
C D	
7) 1 pr	oint
In the co-directional coupling with Large Bragg angle diffraction	
(A) interaction is highly wavelength selective	
(B) the acousto-optic effect used for making tunable acousto-optic filters	
(C) this co-directional coupling (coupling between waves travelling in the same direction) of Bragg condition $m{eta}_+ = m{eta} - m{K}$	wes t
(D) β_+ must be greater than β (where β and β_+ are the z –components of propagation correspectively for the undiffracted and diffracted waves, z being the direction of acoustic wave propagation)	
■ A	
В	
С	
D D	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
A B	
D	
8) 1 pa	oint

	In the contra-directional coupling with Bragg diffraction,	
	(A) optical power of the diffracted wave for $\Delta \beta = \beta - \beta K$ (K being the propagation constant acoustic wave) varies as a square of tangent hyperbolic function	
	(B) establishes that a periodic RI perturbation acts as a mirror for certain wavelengths	
	(C) a forward propagating light of any wavelength will be transmitted only through such a Bragg diffraction system	
	(D) a forward propagating light of some wavelengths will be reflected like a mirror through such I diffraction	
Sc	B C D A, the answer is incorrect. Ore: 0 Cepted Answers: 1 point Questions 9-12 are based on the following paragraph and the figure showing acousto-optic Brag diffraction. Consider acousto-optic Bragg diffraction (refer to the figure). For this diffraction, assume all the unotations, and given that for the incident wave $\alpha = k \cos \theta$, $\beta = -k \sin \theta$ and those for diffraction wave $\alpha_+ = k_+ \cos \theta_+$, $\beta_+ = k_+ \sin \theta_+$.	
	acoustic wave k $incident beam$ θ_+ 0 0 0 0 0 0 0	
	For this acousto-optic Bragg diffraction, choose the correct option/s.	
	(A) The incident optical beam (electric field) can be expressed as $\overrightarrow{E}=\hat{\imath}A_0e^{i(\omega t-\alpha x-eta z)}$	
	(B) The electric field of the + order diffracted wave can be expressed as $\overrightarrow{E}_+ = \widehat{k} A_+ e^{i(\omega t - \alpha_+ x + \beta_+)}$	
	(C) The direction of incident wave (given by $m{ heta}=m{ heta}_B$) must be such that $m{\sin}m{ heta}_B=rac{K}{2k}$	
(D) The diffracted wave has a frequency $\omega_+=\omega-\Omega$, where Ω is the acoustic wave frequency		
No	A B C D t, the answer is incorrect. ore: 0	

Ac A	cepted Answers:				
10)		1 point			
	Choose the correct relation/s that correspo	nd/s to this acousto-optic Bragg diffraction.			
	(A) $k_+^2 = \alpha_+^2 + \beta_+^2$	(B) $\alpha^2 + \beta^2 = k^2$			
	(C) $k_+ \sin \theta_+ = 2k \sin \theta + K$	(D) $\vec{k} + \vec{K} = \vec{k}_+$			
	A				
	В				
	С				
	D				
	, the answer is incorrect. ore: 0				
	cepted Answers:				
Α					
B D					
11)		1 point			
	Choose the correct relation/s that correspo	nd/s to this acousto-optic Bragg diffraction			
	(A) $\beta + \alpha + K = \beta_+ + \alpha_+$	(B) $\boldsymbol{\beta}_+ - \boldsymbol{\beta} = \boldsymbol{K}$			
	(C) $2K\sin\theta'=k$, where $2\theta'=\theta+\theta_+$	(D) $2\Lambda \sin heta' = n/\lambda$, $\lambda =$ incident light wavele			
	□ A □ B				
	C C				
No	, the answer is incorrect.				
	ore: 0 cepted Answers:				
Α					
B D					
12)		1 point			
,	Consider the above Bragg angle diffraction acoustic wave as v_s . Then	in the light of Doppler frequency shift . Take velocity			
	(A) the Source moves with velocity $= 2 v_s \sin heta$				
	(B) the Doppler frequency shift of the optical	al wave of wavelength λ is $\Delta u = rac{v_{s} \sin heta}{2 \lambda}$			
	(C) the Image moves with velocity = $\frac{1}{2} v_s$ s	in $ heta$			
	(D) the Mirror moves with velocity $2 v_s$				
	O A				
	В				
	Ос				
	O D				
	, the answer is incorrect. ore: 0				
	cepted Answers:				
Α					

Previous Page

End