

NPLEL

reviewer2@nptel.iitm.ac.in ▼

Courses » Compliant Mechanisms : Principles and Design

Announcements

Course

Ask a Question

Progress

y

Unit 11 - Week 9: Instant centre and building-block methods for designing compliant mechanisms

Course outline

How to access the home page?

Assignment 0

Week 1: Overview of compliant mechanisms; mobility analysis.

Week 2: Modeling of flexures and finite element analysis

Week 3: Largedisplacement analysis of a cantilever beam and pseudo rigid-body modeling

Week 4: Analysis and synthesis using pseudo rigid-body models

Week 5: Structural optimization approach to "design for deflection" of compliant mechanisms

Week 6: Designing compliant mechanisms using continuum topology

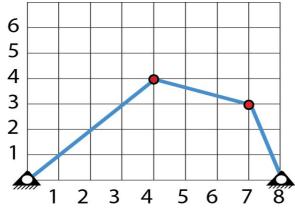
Assignment Week 9

The due date for submitting this assignment has passed. Due on 2018-03-28, 23:59 IST. As per our records you have not submitted this assignment.

1) Identify the incorrect statement.

1 point

- Instant centre with respect to a stationary reference frame has zero velocity at any instant of time.
- The location of instant centre remains the same throughout the rigid body motion.
- The rigid body appears to rotate about the instant centre at a given instant of time.
- Directions of velocities of a minimum of two points on a rigid body are required to locate the instant centre.


No, the answer is incorrect.

Score: 0

Accepted Answers:

The location of instant centre remains the same throughout the rigid body motion.

2) Locate the coordinates of the instant centre of the coupler link for the given configuration of **1 point** the four-bar mechanism.

- (4,6)
- (6,6)
- (6,7)
- (7,2)

No, the answer is incorrect.

Score: 0

Accepted Answers:

(6,6)

Week 7: Springlever (SL) and spring-masslever (SML) models for compliant mechanisms, and selection maps

Week 8: Nondimensional analysis of compliant mechanisms and kinetoelastic maps

Week 9: Instant centre and building-block methods for designing compliant mechanisms

- Lec 49: Instant centre method for designing compliant mechanisms
- Lec 50: Stiffness and compliance ellipsoids
- Lec 51: Building block method of designing compliant mechanisms
- Lec 52:
 Comparative analysis of different methods for designing compliant mechanisms.
- Lec 53: Aspects of Mechanical advantage of compliant mechanisms
- Lec 54: Mechanical advantage of rigid-body and compliant mechanisms
- Quiz : Assignment Week 9
- Solutions

Week 10: Bistable

- 3) Examine the two statements and answer.
- I. The semi-major axis of the compliance ellipsoid is the direction along which a point on the mechanism displaces with the largest magnitude under a unit load.
- II. The semi-minor axis of the stiffness ellipsoid is the direction along which a point on the mechanism displaces with the smallest magnitude under a unit load.
 - Only I is correct.
 - Only II is correct.
 - Both I and II are correct.
 - Both I and II are incorrect.

No, the answer is incorrect. Score: 0

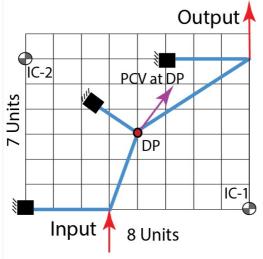
Accepted Answers:

Only I is correct.

- 4) Examine the two statements and answer.
- I. The decomposition point is the location where the output of the first building block coincides we the input of the second building block.
- II. The Principal Compliant Vectors (PCV) from both building blocks match at the decomposition point.
 - I is the assertion and II is the reason.
 - II is the assertion and I is the reason.
 - Both I and II are assumptions.
 - Both I and II are inferences of a different assumption.

No, the answer is incorrect.

Score: 0


Accepted Answers:

II is the assertion and I is the reason.

5) The Geometric Advantage of the mechanism shown is...

1 point

1 point

No, the answer is incorrect.

Score: 0

Accepted Answers:

compliant mechanisms and static balancing of compliant mechanisms

Week 11: Compliant mechanisms and microsystems; materials and prototyping of compliant mechanisms

Week 12: Six case-studies of compliant mechanisms

MATLAB Online Access

MATLAB: Introduction to **MATLAB**

MATLAB: Vector and Matrix **Operations**

MATLAB: **Advanced Topics**

8
5

- 6) A compliant dyad has two beams with lengths 4 and 8 units respectively, while the angle 1 point between them is 180 degrees. The centre of elasticity for the system is
 - 4 units.
 - 6 units.
 - 8 units.
 - Does not exist.

No, the answer is incorrect.

Score: 0

Accepted Answers:

6 units.

7) The translational and rotational stiffness of compliant dyad are decoupled at the

- Instant centre.
- Centre of elasticity.
- At the junction of attachment of two dyad arms.
- Centroid

No, the answer is incorrect.

Score: 0

Accepted Answers:

Centre of elasticity.

- 8) Mechanical advantage of a compliant mechanism can be larger than mechanism advantage 1 point of a rigid body mechanism...
 - if there is preload in any of its elastic members.
 - If there is negative stiffness.
 - Both A and B.
 - It is not possible.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Both A and B.

9) The mechanical advantage of a compliant mechanism can be computed by which of following formula?

$$MA = \frac{\Delta u_{in}}{\Delta u_{out}} - \frac{\Delta SE}{F_{in}\Delta u_{out}}$$

$$MA = MA_r \left(1 - \frac{\Delta SE}{F_{out}\Delta u_{in}}\right)$$

$$MA = \frac{\Delta u_{out}}{\Delta u_{in}} \left(1 - \frac{F_c}{F_{in}}\right)$$

All of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$MA = \frac{\Delta u_{in}}{\Delta u_{out}} - \frac{\Delta SE}{F_{in} \Delta u_{out}}$$

- 10) The centre of elasticity coincides with the free end of the dyad when the coupling vector is 1 point a...
 - unit vector.
 - null vector.
 - basis vector.

No, the answer is incorrect. Score: 0

None of the above.

Accepted Answers:

null vector.

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

