

reviewer2@nptel.iitm.ac.in ▼

Courses » Compliant Mechanisms: Principles and Design

Progress

Announcements

Course

Ask a Question

Unit 4 - Week 2:

1 point

Modeling of flexures and finite element analysis

Course outline

How to access the home page?

Assignment 0

Week 1: Overview of compliant mechanisms; mobility analysis.

Week 2: Modeling of flexures and finite element analysis

- O Lec 7: Empirical formula for flexure joints
- O Lec 8: Types of elastic pairs (flexures)
- O Lec 9: Linear finite element analysis of compliant mechanisms with beam elements
- O Lec 10: A compliant mechanism kit
- Lec 11: Linear and nonlinear finite element analyses using continuum elements
- Lec 12: Subtleties in finite element analysis aeometric nonlinearity and contact

Assignment Week 2

The due date for submitting this assignment has passed. Due on 2018-02-07, 23:59 IS As per our records you have not submitted this assignment.

- 1) Precision flexure mechanism has

 - Discrete compliance. Distributed compliance.
 - Both.
 - None.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Discrete compliance.

- 2) The right order to be followed while formulating a beam finite element model of a compliant 1 point mechanism is
 - 1. Determining beam cross-sections
 - 2. Implement the FEA code
 - 3. Identifying the nodes
 - 4. Identifying the elastic segments
 - 1-2-3-4
 - 4-3-1-2
 - 3-4-1-2
 - 4-1-3-2

No, the answer is incorrect.

Score: 0

Accepted Answers:

3) Nonlinearity in elastic bodies cannot arise solely due to

1 point

- Contact
- Large rotations
- Initial geometry of the elastic member
- Large strains

No, the answer is incorrect.

Score: 0

Accepted Answers:

Initial geometry of the elastic member

4) A good compliant revolute joint is expected to have the following primary characteristic?

1 point

Quiz : Assignment Week 2

Solutions

Week 3: Largedisplacement analysis of a cantilever beam and pseudo rigid-body modeling

Week 4: Analysis and synthesis using pseudo rigid-body models

Week 5: Structural optimization approach to "design for deflection" of compliant mechanisms

Week 6: Designing compliant mechanisms using continuum topology optimization; distributed compliance

Week 7: Springlever (SL) and spring-masslever (SML) models for compliant mechanisms, and selection maps

Week 8: Nondimensional analysis of compliant mechanisms and kinetoelastic maps

Week 9: Instant centre and building-block methods for designing compliant mechanisms

Week 10: Bistable compliant mechanisms and static balancing of compliant mechanisms

- Low axis-drift
- Large range of motion
- Low stress concentrations
- High ratio of on-axis to off-axis stiffness

No, the answer is incorrect.

Score: 0

Accepted Answers:

High ratio of on-axis to off-axis stiffness

- 5) Multi-axis compliance matrix of a compliant mechanism is a
 - Triangular matrix
 - Diagonal matrix
 - Symmetric matrix
 - Skew symmetric matrix

No, the answer is incorrect.

Score: 0

Accepted Answers:

Symmetric matrix

6) If you were to assemble the compliant crimper shown in the figure with the compliant mechanism kit, the minimum number of semi-rigid connectors you would need is

- 8
- 9
- 0 10
- 0 11

No, the answer is incorrect.

Score: 0

Accepted Answers:

10

7) During nonlinear deformation of a cantilever beam with an end load, stress stiffening can occur due to

- 1. Axial deformation.
- 2. Large transverse deformation.
 - Only 1.
 - Only 2.
 - Both 1 and 2
 - Neither 1 nor 2.

No, the answer is incorrect.

Score: 0

1 point

Week 11: Compliant mechanisms and microsystems; materials and prototyping of compliant mechanisms

Week 12: Six case-studies of compliant mechanisms

MATLAB Online Access

MATLAB: Introduction to MATLAB

MATLAB: Vector and Matrix Operations

MATLAB: Advanced Topics

Accepted Answers:

Both 1 and 2

8) Identify the direction of the output for the given compliant mechanism, if the input is as shown **1** point in the figure

No, the answer is incorrect. Score: 0

Accepted Answers:

9) Which of the following is NOT a 1-DoF elastic rotational pair?

- Split-tube flexure
- Cruciform flexure
- Spherical notch joint
- Bendix joint

No, the answer is incorrect.

Score: 0

Accepted Answers:

Spherical notch joint

most 1 point

10)A circular flexure hinge undergoes a rotation of 45 degrees. Which of the following is most reliable to compute its compliance?

- Mitosis method
- Nonlinear finite element analysis.
- Paros and Weisbord's empirical relations.
- Smith et al.'s empirical rotational compliance equation.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Nonlinear finite element analysis.

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

