

NPTEIN

reviewer2@nptel.iitm.ac.in ▼

Courses » Compliant Mechanisms : Principles and Design

Announcements

Course

Ask a Question

Progress

Unit 3 - Week 1:

Overview of compliant mechanisms; mobility analysis.

1 point

Course

How to access the home page?

Assignment 0

Week 1: Overview of compliant mechanisms; mobility analysis.

- Lec 1: Overview
- Lec 2: Spirit of compliant design.
- Lec 3: A glimpse of applications
- Lec 4: Mobility and degrees of freedom in compliant mechanisms
- Lec 5: Grübler's formula and its case studies
- Lec 6:
 Maxwell's rule, compatibility and force equilibrium matrices
- Quiz : Assignment Week 1
- Solutions

Week 2: Modeling of flexures and finite element analysis

Assignment Week 1

The due date for submitting this assignment has passed. Due on 2018-02-05, 23:59 IS

As per our records you have not submitted this assignment.

- 1) In a 6×6 compliance matrix, how many entries would be zero for an ideal spherical ball joint? 1 point
 - 33
 - 32
 - 31
 - 30

No, the answer is incorrect.

Score: 0

Accepted Answers:

33

- 2) Can a helical spring be called a compliant mechanism? If so, what is it best used for?
 - No
 - Yes; to transmit motion
 - Yes; to transform energy
 - Yes; to transmit motion and to transform energy

No, the answer is incorrect.

Score: 0

Accepted Answers:

Yes; to transmit motion and to transform energy

- 3) Mark the following statements as A if true and B if false. If flexibility is a matter of design, then one can build a compliant mechanism with granite.
 - A
 - ОВ

No, the answer is incorrect.

Score: 0

Accepted Answers:

Α

- 4) In which one of the following does a rigid-body mechanism fare better than a complaint mechanism, in general?
 - Simplified assembly
 - Mechanical advantage
 - Minimizing backlash
 - Economy of material

1 point

Week 3: Largedisplacement analysis of a cantilever beam and pseudo rigid-body modeling

Week 4: Analysis and synthesis using pseudo rigid-body models

Week 5: Structural optimization approach to "design for deflection" of compliant mechanisms

Week 6: Designing compliant mechanisms using continuum topology optimization; distributed compliance

Week 7: Springlever (SL) and spring-masslever (SML) models for compliant mechanisms, and selection maps

Week 8: Nondimensional analysis of compliant mechanisms and kinetoelastic maps

Week 9: Instant centre and building-block methods for designing compliant mechanisms

Week 10: Bistable compliant mechanisms and static balancing of compliant mechanisms

Week 11: Compliant mechanisms and microsystems; materials and No, the answer is incorrect.

Score: 0

Accepted Answers:

Mechanical advantage

- 5) Assertion: Extended Grübler's formula predicts the upper limit of the degrees of freedom. **1 point** Reasoning: Number of degrees of freedom of a compliant mechanism is always uncertain.
 - Assertion is correct but not the reasoning.
 - Assertion is incorrect, but the reasoning is correct.
 - Assertion and reasoning are both correct.
 - Neither the assertion nor the reasoning is correct.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Assertion is correct but not the reasoning.

6) What is the state of self-stress of the following truss?

- 0
- 0 1
- 2
- 3

No, the answer is incorrect.

Score: 0

Accepted Answers:

1

7) Which one of the following identifies the difference between Grübler's formula (A) and extended Grübler's formula (B)?

1 point

- A never gives negative DoF whereas B does.
- A correctly predicts DoF of symmetric/special linkages whereas B doesn't.
- A predicts the upper limit of DoF whereas B predicts the lower limit of DoF.
- None of the above.

No, the answer is incorrect.

Score: 0

Accepted Answers:

None of the above.

8) Match the following

I Null space of the compliance matrix indicates

II Null space of the equilibrium matrix indicates

III Rank-deficiency of the compliance matrix indicates

C c) Rigid-body modes

I-A, II-C, II-B

1 point

prototyping of compliant mechanisms

Week 12: Six case-studies of compliant mechanisms

MATLAB Online Access

MATLAB: Introduction to MATLAB

MATLAB: Vector and Matrix Operations

MATLAB: Advanced Topics

- I-C, II-B, III-A
- I-C, II-A, III-B
- I-A, II-B, III-C

No, the answer is incorrect.

Score: 0

Accepted Answers:

I-C, II-B, III-A

9) What kind of applications usually prefer rigid-body mechanisms over compliant mechanisms?1 pd

- MEMS applications
- Applications requiring minimal backlash error
- Applications demanding high mechanical efficiency
- None of the above

No, the answer is incorrect.

Score: 0

Accepted Answers:

Applications demanding high mechanical efficiency

1 point

- Better material utilization
- No localized stress concentrations
- Both A and B
- Neither A nor B

No, the answer is incorrect.

Score: 0

Accepted Answers:

Both A and B

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

