Announcements

NPTEL » Transport Phenomena In Materials

Unit 10 - week 8 Course outline How to access the portal Week 1 Week 2 Linear Week 3 Exponential Sinusoidal Week 4 Logarithmic No, the answer is incorrect. Week 5 Score: 0 Accepted Answers: Week 6 Exponential Week 7 2) In the non-dimensional parameter named Biot number, the characteristics length defined as a the ratio of ... week 8 Perimeter to surface area of solid Surface area to diameter of solid Conduction cases – transient Surface area to volume of solid state Volume of solid to its surface area Convective heat transfer No, the answer is incorrect. Score: 0 Quiz : Assignment 8 Accepted Answers: Transport Phenomena In Volume of solid to its surface area Materials: Week 8 - Feedback 3) During heat treatment, cylindrical pieces of 25 mm diameter, 30 mm height and at 30 °C are placed in a furnace at 750 °C with convective Week 9 coefficient

226 480

126 800

Score: 0

○t/4 ○ t/3

○t/2

 \bigcirc t

Score: 0

8.7

13.9 17.3

27.7

Score: 0

2.48

24.8 248

Score: 0

0.0248

Score: 0

15 mm

5 mm

10 mm

0 mm

Score: 0

539 4311

1078

3233

Score: 0

1078

height and

O 1.14 0.87

1.31

0.76

Score: 0

1.31

casting,

5 mm

kept

0.0248

17.3

t/2

480

No, the answer is incorrect.

Half of the original value

No, the answer is incorrect.

Double of the original value

No, the answer is incorrect.

temperature of the ball after the next 10 seconds?

Accepted Answers:

Accepted Answers:

will be

10 20

24

Score: 0

300 °C

320°C

350°C

 $400 \, {}^{o}C$

Score: 0

350 °C

11/48 48/11 24/11 11/24

Score: 0

48/11

is at

water

 -2×10^{4}

 0.5×10^4

 2×10^{4}

No, the answer is incorrect.

No, the answer is incorrect.

 $\int_{0}^{R} u(r)T(r)r^{2}dr$ $\frac{2}{u_{m}R^{2}} \int_{0}^{R} u(r)T(r)rdr$ $\int_{0}^{R} u(r)T(r)rdr$

 $\frac{2}{u_m R^2} \int_0^R u(r) T(r) r^2 dr$

No, the answer is incorrect.

Depends on geometry of problem

No, the answer is incorrect.

Accepted Answers:

solidify will be

No, the answer is incorrect.

temperature is smallest for

Equal for all the three

No, the answer is incorrect.

Accepted Answers:

Accepted Answers:

Under same condition the ratio of Nusselt number to Biot number is

Thermal conductivity of fluid / Thermal conductivity of solid

Thermal conductivity of solid / Thermal conductivity of fluid

Thermal conductivity of solid / Thermal conductivity of fluid

Accepted Answers:

Score: 0

01

Score: 0

experience.

casting to

40

 \bigcirc 4

0.04

400

change of

 Cylinder Sphere

Cube

Score: 0

Cube

temperature at that section is

Accepted Answers:

coefficient for uniform heat flux condition is

Accepted Answers:

0.0

Score: 0

 0.5×10^4

4.364

43.64 36.57 3.657

Score: 0

43.64

transfer

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers:

Nusselt number

Prandtl number

Accepted Answers: Prandtl number

Grashoff number

Reynolds number

No, the answer is incorrect.

Water

Glass

y

40°C

Accepted Answers:

Accepted Answers:

Accepted Answers:

Same as before

Accepted Answers:

Double of the original value

Four times of the original value

halved, the heat transfer coefficient will be

temperature within the plate from its left face is

Accepted Answers:

Accepted Answers:

Accepted Answers:

The characteristics length is equal to

Accepted Answers:

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

Assignment 8 The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. In the lumped heat capacity model, what is the nature of variation of temperature with time?

 $7850kg/m^3$ Specific heat = 480J/(kgK) Thermal conductivity = 40W/(mK)

 $80W/(m^2K)$. Pick the option closest to the time required (in seconds) to heat the pieces to $600 \, ^{\circ}C$. Assume the following property values: Density =

4) For a thin flat plate (thickness t, breadth b and height h) the heat exchange across the thickness occurs from both the faces of the plate.

5) A small copper ball of 5 mm diameter at 500 K is dropped into an oil bath whose temperature is 300K. The thermal conductivity of copper is

6) The properties of mercury at 300K are: density = $13529kg/m^3$, specific heat at constant pressure = 0.1393kJ/kgK, dynamic viscosity =

7) For the fully developed laminar flow and heat transfer in a uniformly heated long circular tube, if the flow velocity is doubled and the tube diameter is 1 point

8) Consider steady one-dimensional heat flow in a plate of 20 mm thickness with a uniform heat generation of $80MW/m^3$. The left and right faces are 1 point

at constant temperatures of 160 °C, and 120 °C respectively. The plate has a constant thermal conductivity of 200W/(mK). The location of maximum

9) With a solidification factor of $0.97 \times 106 \text{s/m}^2$, the solidification time (in seconds) for a spherical casting of 200 mm diameter is

diameter of cylinder are equal. The solidification time of sphere to that of cylinder is

10) In a sand casting process a sphere and a cylinder of equal volumes are separately cast from same molten metal under identical conditions. The

11) A cube shaped casting solidifies in 5 min. The solidification time in min for a cube of the same material, which is 8 times heavier than the original

12) A solid copper ball of mass 500 gram, when quenched in a water bath at 30 °C, cools from 530 °C to 430 °C in 10 seconds. What will be the

13) For steady, uniform flow through pipes with constant heat flux supplied to the wall, what is the value of Nusselt number?

14) Which one of the following dimensionless numbers represents the ratio of kinematic viscosity to the thermal diffusivity?

15) In the given figure below the Heat is being transferred by convection from water at 48 °C to a glass plate whose surface that is exposed to the water 1 point

 $40 \, ^{\circ}C$. The thermal conductivity of water is 0.6W/(mK) and the thermal conductivity of glass is 1.2W/(mK). The spatial gradient of temperature in the

at the water-glass interface is $dT/dy = 1 \times 10^4 \, K/m$. The value of the temperature gradient in the glass at the water-glass interface in K/m is

16) A fluid of thermal conductivity 1.0 W/(mK) flows in fully developed flow with Reynolds number of 1500 through a pipe of diameter 10 cm. The heat

17) The velocity and temperature distribution in a pipe flow is given by u(r) and T(r). If u_m is the mean velocity at any section of pipe, the bulk mean

19) In the casting of steel under certain mold conditions, the mold constant in Chvorinov's Rule is known to be 4.0min/cm2, based on previous

The casting is a flat plate whose length I= 30 cm, width w= 10 cm, and thickness h= 20 mm. Pick the option closest to the time taken (in minutes) for the

20) Three solid objects of the same material and of equal masses-a sphere, a cylinder (length = diameter) and a cube are at 500 °C initially. These are 1 point dropped in a quenching bath containing a large volume of cooling oil each attaining the bath temperature eventually. The time required for 90 percent

 $0.1523 \times 10^{-2} N$. s/m^2 and thermal conductivity = 8.540 W/mK. The Prandtl number of the mercury at 300 K is

assumed to be valid, the rate of fall of the temperature of the ball at the beginning of cooling will be, in K/s is

400W/(mK), its density $9000kg/m^3$ and its specific heat 385J/(kgK). If the heat transfer coefficient is $250W/(m^2K)$ and lumped analysis is

Ask a Question

Progress

Mentor

1 point

Due on 2019-09-25, 23:59 IST. 1 point 1 point

About the Course