Announcements

Mentor

1 point

NPTEL » Transport Phenomena In Materials

Unit 8 - Week 6

Course outline

About the Course

Progress

The due date for submitting this assignment has passed.

2) Given that Density of liquid steel = $7900 \ kg \ m^{-3}$ Viscosity of liquid steel = $5 \times 10^{-3} \ kg \ m^{-1} \ s^{-1}$; Density of the inclusion = $2500 \ kg \ m^{-3}$;

3) A spherical bubble of radius r is rising upward with constant velocity U, in quiescent water of dynamic viscosity µ density of air and water is

in comparison of water density ($\rho_a << \rho_w$). Which one of the following expression is true for the density of water?

For analytical solution applicable for laminar flow over a sphere (creeping flow regime) the range of Reynold's number is

denoted by ρ_a and ρ_w respectively and g is acceleration due to gravity. Bubble motion is such that $R_e \ll 1$. The density of air can be neglected

Acceleration due to gravity = $9.81 \, m \, s^{-2}$. What can be the maximum size of the inclusion (in µm) that can float up from the bottom of a liquid steel bath of 1

Assignment 6

No, the answer is incorrect.

Accepted Answers:

600

60

6000

1920

Score: 0

266.06

53.213

Score: 0

26.606

26.606

532.126

Accepted Answers:

No, the answer is incorrect.

 $2 \mu U$

 $\rho_w = \frac{9}{2} \frac{\mu U}{r^2 g}$

 $\rho_w = \frac{9}{4} \frac{\mu U}{r^2 g}$

 $\rho_w = \frac{4}{9} \frac{\mu U}{r^2 g}$

Accepted Answers:

 $\rho_w = \frac{9}{2} \frac{\mu U}{r^2 g}$

 $R_e > 100$

 $R_e < 0.1$

 $R_e > 2000$

Score: 0

 $R_e < 0.1$

Score: 0

Score: 0

 $100 < R_e < 2000$

Accepted Answers:

No, the answer is incorrect.

Pressure and Lorentz forces

Pressure and viscous forces

Viscous and Marangoni forces

Increases with Reynold's number

Decreases with Reynold's number

Independent of Reynolds number

No, the answer is incorrect.

Pressure and viscous forces

No, the answer is incorrect.

Independent of Reynolds number

Consider the following statements

Which of the statements given above are correct?

Accepted Answers:

1, 2 and 3

1 and 3 only

2 and 3 only 1 and 2 only

Accepted Answers:

Re will be doubled

 Re need not change Re will be quadrupled

No, the answer is incorrect.

Re will be halved

Accepted Answers: Re will be halved

Total Surface Area

Lateral Surface Area

No, the answer is incorrect.

Projected Area

Wetted Area

Accepted Answers:

Projected Area

104.4 m/s

78.3 m/s

18.5 m/s

Accepted Answers:

No, the answer is incorrect.

 $V_{\infty} \, \propto \, D^{1/2} \,$ for large diameters

 $V_{\infty} \, \propto \, D^2 \,$ for small diameters

 $V_{\infty} \propto D^{1/2}$ for small diameters

 $V_{\infty} \, \propto \, D \,$ for any diameter

No, the answer is incorrect.

No, the answer is incorrect.

No, the answer is incorrect.

cannot be related to relative roughnes

will be equal for both the pipes

Fluid must be compressible

Flow must be laminar

Pipe must be rough

Accepted Answers: Flow must be laminar

No, the answer is incorrect.

No, the answer is incorrect.

No, the answer is incorrect.

Buoyancy = Weight + Drag Weight = Buoyancy + Drag

Drag = Buoyancy + Weight

Accepted Answers:

Drag = Weight

Accepted Answers:

No, the answer is incorrect.

Weight = Buoyancy + Drag

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers:

convention for friction factor as given in this course?

Accepted Answers:

Accepted Answers:

Fluid must be supersonic

No, the answer is incorrect.

Accepted Answers:

will be higher in the case of pipe with relative roughness of 0.0001

will be higher in the case of pipe having relative roughness of 0.01

will be higher in the case of pipe having relative roughness of 0.01

is a straight line with a negative slope. From this, one can conclude that the

density $1000 \, kg/m^3$ and viscosity $10^{-3} \, kg/ms$? (Assume $g = 10 \, m/s^2$)

18) For a particle settling in water at its terminal settling velocity, which of the following is true?

Accepted Answers:

Accepted Answers:

 $V_{\infty} \propto D^{1/2}$ for small diameters

Accepted Answers:

25 m/s

Score: 0

78.3 m/s

Score: 0

 $6a^2$

 $4a^2$

 $2a^2$

Score: 0

0.07 0.14 0.7

1.4

Score: 0

Score: 0

Score: 0

1 8/7

2

8

Score: 0

02

0.4

01

0.8

Score: 0

Score: 0

0.01

0.04

0.1

0.4

0.04

8

16 64 256

Score: 0

force?

8/7

Score: 0

Score: 0

Score: 0

1 and 3 only

No, the answer is incorrect.

Accepted Answers:

Pressure and surface tension forces

In fully turbulent flow regime, the friction factor

5) The drag force exerted by a fluid on a body immersed in the fluid is due to

Depends only upon the velocity of the fluid and increases with the velocity of the fluid

 The friction factor in laminar flow through a pipe is dependent on relative roughness of the pipe. 2. The friction factor for laminar flow through a pipe is directly proportional to Reynolds number.

8) For laminar flow over a sphere if the friction factor is doubled, how will the Reynold's number change for the given flow?

10) A parachutist has a mass of 90 kg and a projected frontal area of 0.30 m2 in free fall. The drag coefficient based on frontal area is found

11) For solid spheres falling vertically downwards under gravity in a viscous fluid, the terminal velocity, V_{∞} varies with diameter 'D' of the sphere as

12) A fluid flows past a solid cube with length a. What is the relevant area to be used to compute the friction factor for this situation?

13) Friction factor for laminar flow through porous body is found to be 3. What is the Reynold's number (redefined as Re_c)

14) Flow takes place and Reynolds Number of 105 in two different pipes with relative roughness of 0.01 and 0.0001. The friction factor ...

16) Two spherical particles have the same outer diameter but are made of different materials. The first one (with material density ρ₁) is solid,

have the same terminal velocity in a fluid that has negligible density, then the ratio of their material densities, ρ_2/ρ_1 is

whereas the second (with material density ρ_2) is a hol-low sphere with the inner shell diameter equal to half the outer diameter. If both the spheres

17) What is the terminal velocity in cm/s, calculated from Stokes law for a particle of diameter 0.1×10^{-3} m, density $2800 \, kg/m^3$ settling in water of 1 point

19) Consider creeping flow over sphere of uniform size. What will be the value of friction drag if the value of form drag is 0.02, using the same units of

20) For an internal laminar flow through a pipe, the friction factor is found to 0.25. What will be the Reynold's number for the given flow using the

15) A pipe friction test shows that, over the range of speeds used for the test, the log-log plot of non-dimensional friction factor 'f' with Reynolds Number 1 point

3. In fully turbulent flow, through a pipe, friction factor is independent of Reynolds number.

9) For an external flow, which of the following is considered for computing the friction factor?

to be 0.75. If the air density is $1.28 \, kg/m^3$, the terminal velocity of the parachutist will be

Score: 0

No, the answer is incorrect.

m

How to access the portal

Simple cases in fluid flow : spherical coordinate system

Friction factors and

Transport Phenomena In

Quiz : Assignment 6

Materials: Week 6 Feedback

correlations

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

week 8

Week 9

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

As per our records you have not submitted this assignment. 1) Deoxidation of liquid steel with ferrosilicon produces spherical silica particles. A particle of 10 µm takes 6000 minutes to float up through a 5 m height liquid steel. Assuming stokes law, for a particle of 100 µm to float up through the same height, the time required in minutes is

height in 10 minutes. Assume that stokes law is valid.

Ask a Question

Due on 2019-09-11, 23:59 IST. 1 point