Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

week 8

Week 9

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

Introduction to Tensors

Symmetry of Properties

Transport Phenomena In

Quiz : Assignment 2

Materials: Week 2 - Feedback

Material Derivative

Due on 2019-08-21, 23:59 IST.

1 point

NPTEL » Transport Phenomena In Materials

Unit 4 - Week 2

Course outline **Assignment 2** How to access the portal Week 1

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) The figures show the diagrammatic representation of \overrightarrow{P} , \overrightarrow{Q} , \overrightarrow{R} respectively. Which of the following choices is true?

Q

 $\nabla.\stackrel{\rightarrow}{P}\neq 0, \nabla\times\stackrel{\rightarrow}{Q}=0, \nabla\times\stackrel{\rightarrow}{R}\neq 0$ $\nabla.\stackrel{\rightarrow}{P}\neq 0, \nabla\times\stackrel{\rightarrow}{Q}\neq 0, \nabla\times\stackrel{\rightarrow}{R}\neq 0$ $\nabla . \overrightarrow{P} = 0, \nabla \times \overrightarrow{Q} = 0, \nabla \times \overrightarrow{R} = 0$ No, the answer is incorrect. Accepted Answers: $\nabla \cdot \overrightarrow{P} \neq 0, \nabla \times \overrightarrow{Q} \neq 0, \nabla \times \overrightarrow{R} \neq 0$

Order of tensor

A. Four B. Three

C. Two

2) If T is the transformation matrix and $b_x = T_{pi}T_{qj}T_{rk}T_{sl}a_{ijkl}$, then the indices that should be present in place of x are ○ ikjkl O pi pqrsijkl

pqrs No, the answer is incorrect. Score: 0 Accepted Answers: pqrs The dyadic product of 2 vectors results in a tensor of order.

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Numeric) 2

 The double dot product of 2 tensors results in a tensor of order. No, the answer is incorrect. Score: 0

5) Use quotient theorem, to find the maximum possible indices in the place of x in $A_{ij} = R_x B_{klm}$ ○ ij ○ijk ○ijkl ijklm

Accepted Answers: (Type: Numeric) 0

Score: 0 Accepted Answers: Match the following. **Properties** 1.Thermal Conductivity Viscosity 3. Piezoelectric coefficient

No, the answer is incorrect.

1-B,2-C,3-A 1-C,2-A,3-B 1-A,2-C,3-B No, the answer is incorrect. Score: 0 Accepted Answers: 1-C,2-A,3-B 7) The relationship which connects a cause and an effect is called as? Corollary Constitutive relation

Auxiliary relation

No, the answer is incorrect.

Identity

Score: 0

Accepted Answers: Constitutive relation \bigcirc 1,2,3 9,27,81 \bigcirc 1,1,3 2,3,4 No, the answer is incorrect. Score: 0 Accepted Answers: 1,1,3

Score: 0 Accepted Answers: (Type: Numeric) 6

No, the answer is incorrect.

 K_{22} ; K_{33} ; K_{32} ; K_{13} ; K_{23} K_{11} ; K_{31} ; K_{32} ; K_{23} No, the answer is incorrect. Score: 0 Accepted Answers: K_{11} ; K_{22} ; K_{33} ; K_{32} ; K_{23}

 $a_1 + b_1 = 0$

 $a_1+b_2=0$

 $a_2+b_2=0$

 $K_{11}; K_{22}; K_{13}; K_{23}$

 $K_{11}; K_{22}; K_{33}; K_{32}; K_{23}$

 $a_2 + b_1 = 0$ No, the answer is incorrect. Accepted Answers: $a_1 + b_2 = 0$ 38.6

55

2 K/s 5 K/s 10 K/s 14 K/s Score: 0 Accepted Answers: 10 K/s

point (2,1).

Yes ○ No \bigcirc I,II \bigcirc I

Score: 0

None

Either (a) or (b)

Accepted Answers:

Score: 0

 $\frac{\partial u_2}{\partial x_2} < 0$

Yes ○ No

Score: 0

None of the above

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers:

20) Can the set of equations represent a possible 2D incompressible flow? (use cylindrical coordinate system) $u_r = rsin\theta$, $u_\theta = 2rcos\theta$

 Rate of Translation Rate of Dilation Shear stress Rotational field No, the answer is incorrect. Score: 0 Accepted Answers: Rate of Dilation No, the answer is incorrect. Score: 0 Accepted Answers:

Score: 0 $-2\rho_{o}u_{o}e^{-3}/L$

 $-2\rho_o u_o e^{-3x/L}/L$ Accepted Answers:

17) Does the velocity field given by $\vec{u} = 15xy^2\hat{i} - 5y^3\hat{j} + t\hat{k}$ represent a possible incompressible flow of fluid?

Accepted Answers: 15) The velocity and density fields are given by $u = u_o e^{-x/L}$ and $\rho = \rho_o e^{-2x/L}$. Find the rate of change of density at x = L. $-2\rho_o e^{-2}/L$ $-2\rho_o u_o e^{-3}/L$ No, the answer is incorrect. The trace of strain rate tensor gives

8 36 No, the answer is incorrect.

18) Which of the following set of equations represent 2D incompressible flow? 1) u = x + y; v = x - yII) $u = xt^2$; $v = xt + y^2$ No, the answer is incorrect. Accepted Answers: 19) In case of incompressible fluid flow (2D) near corners, if $\frac{\partial u_1}{\partial x_1} > 0$, then $\frac{\partial u_2}{\partial x_2} < 0$

1000 1532.51 No, the answer is incorrect. Score: 0 Accepted Answers: 1532.51 13) The unsteady temperature field $T = x^2 + y^2 + 3t^2$ kelvin and unsteady velocity field is $\vec{u} = y^2\hat{i} + x\hat{j} + 5t^2\hat{k}$ Find the rate of change of temperature at a point (1,1,0) at time t=1s? Hint: Use Material derivative concept. No, the answer is incorrect. 14) A 2-D pressure field $p = 4x + 3y^2$ is associated with a velocity field given by $\vec{u} = (x^2 - y^2)\hat{i} + (2xy)\hat{j}$ Calculate the rate of change of pressure at **1** point

12) If the velocity field is given by $\vec{u} = 10x^2y\hat{i} + 15xy\hat{j} + (20t - 3xy)\hat{k}$, then find the acceleration of the fluid particle at a point (1,2,-5) at time t=1.

incompressible, which of the following statements should be true?

Given a transformation matrix, $T_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ which performs a symmetry operation and an arbitrary property tensor $K_{ij} = \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix}$ Using the transformation law and the Neumann principle ($K_{pq} = T_{pi}T_{qj}K_{ij}$), which of the following components are non-zero? 11) A two-dimensional velocity field given by $\overrightarrow{v} = (10 + a_1x + b_1y)\hat{i} + (25 + a_2x + b_2y)\hat{j}$, where a_1, a_2, b_1, b_2 are constants. For the flow to be

8) The number of independent variables needed to represent isotropic tensors of order 2, 3 and 4 respectively are The number of independent elements needed to specify the thermal conductivity tensor of a triclinic crystal is _

1 point 1 point

1 point 1 point 1 point 1 point 1 point

1 point 1 point 1 point

1 point

1 point

1 point

1 point

1 point

1 point

1 point