NPTEL » Transport Phenomena In Materials Unit 3 - Week 1 Course outline How to access the portal Week 1 Subscript Notation – Part 1 of Subscript Notation – Part 2 of Coordinate Rotation Week 1 Feedback : Transport Phenomena In Materials Quiz : Assignment 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 week 8 Week 9 Week 10 Week 11 Week 12 DOWNLOAD VIDEOS

Assignment 1 The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Lecture -1 (Subscript notations -I) 1) The number of free subscripts in A_{ijkl} is/are 01 2 ○ 3 **4** No, the answer is incorrect. Score: 0 Accepted Answers: 2) The maximum number of components possible for A_{ijkl} are

27

81

9

4

Score: 0

81

 p_i

 p_{ii}

 p_{i}

 p_i ,

Score: 0

 p_{i}

1 **2 3**

6

Score: 0

Score: 0

Score: 0

No, the answer is incorrect.

Accepted Answers: (Type: Numeric) 0

[4 8 12]

5 10 15

6 12 18

 $[-3 \ 6 \ -3]$

Accepted Answers: 4 5 6

8 10 12

12 15 18

No, the answer is incorrect.

No, the answer is incorrect.

Lecture -2 (Subscript notation II):

 $i.\,\epsilon_{123}+\epsilon_{231}+\epsilon_{312}=3$ $ii.\,\epsilon_{321}+\epsilon_{312}+\epsilon_{322}=0$ $iii. \epsilon_{111} + \epsilon_{222} + \epsilon_{333} = 3$

No, the answer is incorrect.

 $(\vec{f} \cdot \vec{g})\vec{g} - (\vec{g} \cdot \vec{f})\vec{f}$ $(\vec{f} \times \vec{f})\vec{g} - (\vec{g} \times \vec{g})\vec{f}$ $(\vec{f} \cdot \vec{g})^2 - |\vec{f}|^2|g|^2$

 $|f|^2|g|^2 - (\vec{f} \cdot \vec{g})^2$

Accepted Answers: $|f|^2|g|^2-\left(\vec{f}\cdot\vec{g}\right)^2$

Score: 0

Score: 0

No, the answer is incorrect.

 $\frac{1}{\mu} \left(\nabla \left(\nabla . \vec{A} \right) - \nabla^2 \vec{A} \right)$

 $\bigcirc \frac{1}{\mu} \left(\nabla^2 \vec{A} - \nabla \left(\nabla \cdot \vec{A} \right) \right) \\
\bigcirc 0$

 $\frac{1}{u}((\nabla \cdot \vec{A})\vec{A} - \nabla(\nabla \cdot \vec{A}))$

No, the answer is incorrect.

Accepted Answers: $\frac{1}{\mu} \left(\nabla \left(\nabla \cdot \vec{A} \right) - \nabla^2 \vec{A} \right)$

 $\varphi(\vec{\triangledown}\psi) + \psi(\vec{\triangledown}\varphi)$

 $\varphi(\nabla^2\psi) + \psi(\nabla^2\varphi)$

Accepted Answers:

(Hint : Substitute I=i)

Score: 0

13)

 $2\delta_{kn}$

Score: 0

 $\delta_{jm}\delta_{in} - \delta_{im}\delta_{jn}$

Accepted Answers: $\delta_{jm}\delta_{kn}-\delta_{km}\delta_{jn}$

 $2\delta_{kn}$

 $-2\delta_{kn}$

Score: 0

 $2\delta_{kn}$

○ 3

6

O7

Score: 0

 $2\delta_{kn} - \delta_{jk}\delta_{in}$

Accepted Answers:

No, the answer is incorrect.

No, the answer is incorrect.

 $\theta = \cos^{-1}\left(\frac{1}{2}Trace(T)\right)$

 $\theta = \cos^{-1}\left(\frac{Trace(T)-1}{2}\right)$

 $\theta = \frac{1}{2}\cos^{-1}\left(Trace(T)\right)$

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers:

Accepted Answers:

 $\theta = \cos^{-1}\left(\frac{Trace(T)-1}{2}\right)$

Score: 0

0 01

90

Score: 0

 $\sqrt{2}\,\hat{j} + \hat{k}$

 $\sqrt{2}\,\hat{\imath} + \hat{k}$

 $\hat{j} + \sqrt{2} \hat{k}$

 $\sqrt{2}\,\hat{\mathbf{i}} + \hat{\mathbf{j}}$

Score: 0

 $\sqrt{2}\,\hat{\mathbf{j}} + \hat{\mathbf{k}}$

○ i,ii ◯ i,iii ○ iii

○ i,ii,iii

Score: 0

i,ii,iii

No, the answer is incorrect.

ii. Inverse(T)= Transpose (T)

iii. Trace(T) is an invariant

No, the answer is incorrect.

Accepted Answers:

Match the following.

A-1,B-3,C-2,D-4

A-4,B-3,C-2,D-1 A-1,B-2,C-3,D-4 A-4,B-3,C-4,D-2

Accepted Answers: A-4,B-3,C-2,D-1

Score: 0

No, the answer is incorrect.

B. Invariant under rotation

A. Right handed-co-ordinate system

C. Changes according to $a_i = T_{ij}a_j$

D. Product of transformation matrix $T_{im}T_{ni}$

Accepted Answers:

Det(T)=1

0.707

 $\theta = \frac{1}{2}\cos^{-1}\left(Trace(T) - 1\right)$

Accepted Answers:

Lecture -3 (Co-ordinate transformations)

No, the answer is incorrect.

 $\varphi(\nabla^2\psi) + \psi(\nabla^2\varphi) + 2\vec{\nabla}$

No, the answer is incorrect.

 $\varphi(\nabla^2 \psi) + \psi(\nabla^2 \varphi) + 2 \nabla \psi \cdot \nabla \varphi$

 $\varphi(\bigtriangledown^2\psi) + \psi(\bigtriangledown^2\varphi) + 2\vec{\bigtriangledown}\psi.\,\vec{\bigtriangledown}\varphi$

10) Using subscript notations, find $(\vec{f} \times \vec{g})$. $(\vec{f} \times \vec{g}) =$

11) if $\vec{B} = \mu \vec{H}$ and $\vec{B} = \vec{\nabla} \times \vec{A}$,then find $\vec{\nabla} \times \vec{H}$ in terms of \vec{A} ,

12) if ψ and φ are scalar fields, then $\nabla^2(\varphi\psi)$ is given by

The relationship between Levi-civita symbol and Kronecker delta is given by $\varepsilon_{ijk}\varepsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \end{vmatrix}$ The expression for $\varepsilon_{ijk}\varepsilon_{imn}$ is given as

The relationship between Levi-civita symbol and Kronecker delta is given by $\epsilon_{ijk}\epsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$ Find the value of $\epsilon_{ijk}\epsilon_{ijn}$

A tensor $[D] = \begin{bmatrix} 6 & 6 & 4 \\ 7 & 2 & 8 \\ 1 & 3 & 3 \end{bmatrix}$ where it is arbitrarily rotated about an axis to get $[D^{'}] = \begin{bmatrix} 3 & 1 & 9 \\ q & p & 6 \\ 8 & 7 & 2 \end{bmatrix}$. Find the value of p.

17) If a vector is rotated '90 'degrees counter-clockwise direction around z-axis, the T₁₁ of transformation matrix will be

18) If a vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ is rotated 45° counter-clockwise direction around z-axis, the resultant vector obtained is

1. δ_{mn}

2. Vector

Scalar

 $4.\hat{x}_1.(\hat{x}_2 \times \hat{x}_3) = 1$

If 'T' is the transformation matrix under rotation, which of the following statements are true.

16) If a vector is rotated 'θ' degrees counter-clockwise direction around z- axis, then the relation between 'θ' and transformation matrix 'T' is given by 1 point

Accepted Answers:

Accepted Answers: (Type: Numeric) 32

32

Score: 0

Score: 0

○ i,ii ○ ii,iii

○ i,iii

Score: 0

 \bigcirc i

Accepted Answers: (Type: Numeric) 58

Accepted Answers:

Accepted Answers:

 $\frac{\partial p}{\partial x_i}$ can be written in subscript notation as,

4) The tensorial order of the quantity $S_{ijkl}\delta_{ij}$ is

5) Consider $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. If $C_{ij} = A_{ik}B_{kj}$, find $\delta_{ij}C_{ij}$

6) Consider $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 6 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. If $C_{ij} = A_{ik}B_{kj}$, find C_{21}

7) if $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 4\hat{i} + 5\hat{j} + 6\hat{k}$ are 2 vectors, then the dyadic product $\vec{a} \otimes \vec{b}$ is given by

8) if $a_i = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $b_j = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$, then the inner product given by $a_i b_i = \dots$

Levi-Civita symbol is written as ε_{ijk}. Which of the following expressions are true.

Accepted Answers:

Progress

Due on 2019-08-14, 23:59 IST.

Mentor

1 point

1 point