Х

reviewer6@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Basic Electrical Circuits (course)

Announcements (announcements)

About the Course (preview)

Ask a Question (forum)

Progress (student/home)

Mentor (student/mentor)

Unit 12 - Week 10: First order circuits with time-varying inputs

Course outline

How does an NPTEL online course work?

Week 0

Week 1: Preliminaries: Current and voltage: Electrical elements and circuits: Kirchhoff's laws: Basic elements; Linearity

Week 2: Elements in series and parallel: Controlled sources

Week 3: Power and energy in electrical elements; Circuit analysis methods

Week 4: Nodal analysis

Week 5 : Mesh analysis; Circuit theorems

Week 6: More circuit theorems; Two port parameters

Week 7: Two port parameters continued: Reciprocity in resistive networks

Week 8: Opamp and negative feedback: Example circuits and additional topics

Week 9 : First Order Circuits

Week 10: First order circuits with time-varying inputs

- First order RC circuit with an exponential input (unit? unit=21&lesson=155)
- First order RC response to its own natural response (unit? unit=21&lesson=153)
- First order RC response to a sinusoidal input (unit? unit=21&lesson=154)
- First order RC response to a sinusoidal input-via the complex exponential (unit? unit=21&lesson=156)
- Summary: Linear circuit response to sinusoidal input

Assignment 10

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2020-11-25, 23:59 IST.

In the circuit above, $v_c(0^-) = 1 \text{ V}$. $v_s(t) = 2 \exp(-t/1 \,\mu\text{s}) \text{ V}$. The output for t > 0 is of the following form:

$$v_o(t) = \underbrace{V_1 \exp(-t/\tau_1)}_{\text{Exceed response}} + \underbrace{V_2 \exp(-t/\tau_2)}_{\text{Natural response}}$$

Determine V_1, τ_1, V_2, τ_2 .

Value of V₁

(The answer must be in volts (V). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect Accepted Answers:

(Type: Range) 3.9,4.1

2) Value of τ_1

(The answer must be in microseconds (µs). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers:

(Type: Numeric) 1

1 point

via the complex exponential (unit?unit=21&lesson=157)

- Three methods of calculating the sinusoidal steady state response (unit? unit=21&lesson=158)
- Calculating the total response including initial conditions (unit? unit=21&lesson=159)
- Why are sinusoids used in measurement? (unit? unit=21&lesson=160)
- Basic Electrical Circuits : Week 10 Feedback Form (unit?unit=21&lesson=203)
- Quiz : Assignment 10 (assessment?name=226)
- Week 10 Lecture materials (unit?unit=21&lesson=228)
- Assignment 10 solutions (unit?unit=21&lesson=234)

Week 11: Second order system response

Week 12: Direct calculation of steady state response from equivalent components

Text Transcripts

Download Videos

3) Value of V_2

(The answer must be in volts (V). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) -3.1,-2.9

4) Value of τ_2

(The answer must be in microseconds (µs). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Numeric) 2

5)

In the circuit above, $v_c(0^-) = -1 \text{ V}$. $v_s(t) = 3 \exp(-t/2 \,\mu\text{s}) \text{ V}$. The output for t > 0 is of the following form:

$$v_o(t) = (V_1 + V_2 t/\tau) \exp(-t/\tau)$$

Determine V_1 and V_2 .

Value of V_1

(The answer must be in volts (V). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) 3.9,4.1

6) Value of V_2

(The answer must be in volts (V). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) -3.1,-2.9

1 point

1 point

1 point

 v_s v_s v_o v_o v_o

In the circuit above, $i_L(0^-) = 1$ mA. $v_s(t) = 2\cos(5\cdot 10^5 t)$ V. The output for t > 0 is of the following form:

$$v_o(t) = V_1 \cos(\omega_0 t + \phi_0) + V_2 \exp(-t/\tau)$$

Determine V_1 , V_2 , ϕ_0 , ω_0 .

Value of V_1

(The answer must be **in volts (V)**. Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 1.3,1.5

8) Value of V_2

(The answer must be **in volts (V)**. Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 0

9) Value of ϕ_0

(The answer must be **in degrees** (°). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) -46,-44

10) Value of ω_0

(The answer must be in kiloradians per second (krad/s). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Numeric) 500 1 point

1 poin

1 point

In the circuit above, $v_s(t) = \sin(10^5 t)$ V. The forced response is $V_p \cos(10^5 t + \phi)$. Determine V_p and ϕ .

Value of V_p

(The answer must be in millivolts (mV). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 789,792

12) Value of ϕ

(The answer must be **in degrees** (°). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Range*) -110,-107

1 point

1 point

In the circuit above, $v_s(t) = \cos(10^6 t)$ V. The forced response is $V_p \cos(10^6 t + \phi)$. Determine V_p and ϕ .

Value of V_p

(The answer must be **in millivolts (mV)**. Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers: (Type: Range) 199,201

1 point

14) Value of ϕ

(The answer must be in degrees (°). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0 Accepted Answers:

(Type: Numeric) 0

1 point

In the circuit above, $v_s(t) = \cos(10^5 t)$ V. The forced response is $V_p \cos(10^5 t + \phi)$. Determine V_p and ϕ .

Value of V_p

(The answer must be in millivolts (mV). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers:

(Type: Range) 199,201

1 point

16) Value of ϕ

(The answer must be in degrees (°). Round off fractional answers to 1 decimal place.)

No, the answer is incorrect. Score: 0

Accepted Answers: (Type: Numeric) 0