X

NIPTEL

reviewer4@nptel.iitm.ac.in ▼

Courses » Parallel Algorithms

Announcements

Course

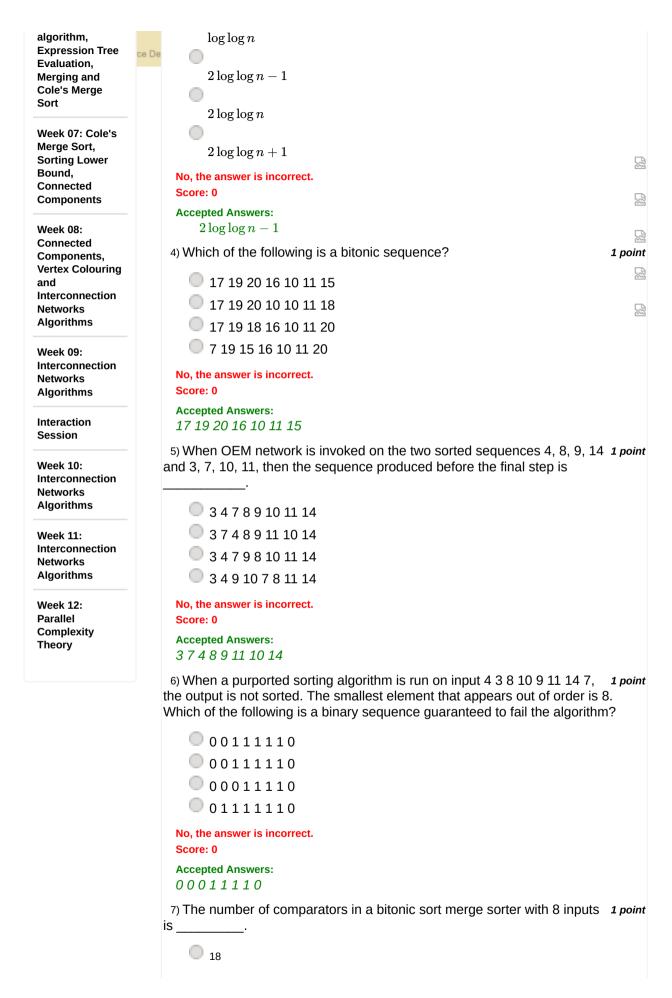
Ask a Question

Progress

FAQ

Unit 5 - Week 04: Comparator Networks; List Colouring

Register for Certification exam	Assessment 4
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2019-02-27, 23:59 IST.
How to access the portal	1) The number of comparators in an odd even merge sorter with 16 inputs 1 point is
Week 01: Models of Computation	
Week 02: Performance of parallel algorithms,Basic techniques	63 79 95
Week 03: Basic Techniques	No, the answer is incorrect. Score: 0 Accepted Answers:
Week 04: Comparator Networks; List Colouring	2) The time taken by an odd even merge network that merges two sorted <i>1 point</i> arrays of size 64 each is
Lecture 1: Odd Even Merge Sort (OEMS)	6 7
Lecture 2: OEMS, Bitonic- Sort-Merge Sort (BSMS)	No, the answer is incorrect.
Lecture 3: BSMS, Optimal List Colouring	Score: 0 Accepted Answers: 7
Quiz : Assessment 4	3) A 2-D array of $\log\log n$ rows and $n/\log\log n$ columns have processors marching down the columns, one position per step. Each array
Week 05: An Optimal List	element holds an integer in $[1, \log \log n]$.


 $\ensuremath{\mathbb{C}}$ 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

Funded by

19	
O 23	
24	
No, the answer is incorrect. Score: 0	
Accepted Answers: 24	2
8) The time taken by a bitonic sort merge network that merges two sorted arrays of size 64 each is	nt E
	2
0 8 0 9	£
0 12	
No, the answer is incorrect.	2
Score: 0	
Accepted Answers: 7	
9) A comparator network that has a depth of d and cost of c can be simulated on a p processor PRAM in time.	nt
$\Theta(d)$	
$\Theta(c/p)$	
$\Theta(d+c/p)$	
$\Theta(c+d/p)$	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: $\Theta(d+c/p)$	
10)When a bitonic sequence 20 30 40 50 60 55 45 35 is subjected to compare-exchange of diametrically opposite elements, the lower-higher sides are defined using a diameter passing between 20 and 30. If the lower-higher sides were defined using a diameter passing between 30 and 40 instead, which two elements swap places?	
20 and 60	
50 and 35	
40 and 45	
30 and 55	
No, the answer is incorrect. Score: 0	
Accepted Answers: 30 and 55	

Previous Page

End