

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Parallel Algorithms - - Unit 14 - Week 12: Paralle...

Connected Components, ce De C(9, 10, 4)Vertex Colouring and Interconnection H(10, 4)Networks Algorithms No, the answer is incorrect. Score: 0 Week 09: **Accepted Answers:** Interconnection Networks S(7, 10)Algorithms 4) In the reduction, we studied in Lecture 35, from a string of length n, we produce a boolean **1** point circuit of size and depth in time using processors Interaction Session on a PRAM. Week 10: Interconnection $n^{O(1)}, (\log n)^{O(1)}, (\log n)^{O(1)}, n^{O(1)}$ respectively Networks Algorithms $n^{O(1)}, n^{O(1)}, (\log n)^{O(1)}, n^{O(1)}$ respectively Week 11: Interconnection $(\log n)^{O(1)}, n^{O(1)}, (\log n)^{O(1)}, n^{O(1)}$ respectively Networks Algorithms $(\log n)^{O(1)}, (\log n)^{O(1)}, (\log n)^{O(1)}, n^{O(1)}$ respectively Week 12: Parallel No, the answer is incorrect. Complexity Score: 0 Theory **Accepted Answers:** Lecture 1: $n^{O(1)}, n^{O(1)}, (\log n)^{O(1)}, n^{O(1)}$ respectively Circuit Value Problem is 5) Consider the following instance of NOR-CVP: 1 point P-complete for $\langle g_1,g_2,g_3,g_4,g_5,g_6
angle$, where $g_1=1$, $g_2=1$, $g_3=g_1$ NOR g_2 , $g_4=g_1$ NOR g_3 , NC-reductions $g_5=g_3$ NOR g_4 , and $g_6=g_4$ NOR g_5 . Then g_5 and g_6 are _ Lecture 2[.] Ordered DFS is 0 and 0 P-complete for 0 and 1 NC-reductions 1 and 0 Lecture 3: Max Flow is 1 and 1 P-complete for NC-reductions No, the answer is incorrect. Ouiz : Score: 0 Assessment 12 **Accepted Answers:** 1 and 0 6) If the graph in the reduction of Lecture 36 is constructed for the instance of NOR-CVP in **1** point Question 5, then G_3 will consist of vertices. 11 0 10 9 8 No, the answer is incorrect. Score: 0 **Accepted Answers:** 10 7) If the graph in the reduction of Lecture 36 is constructed for the instance of NOR-CVP in **1** point Question 5, then G_1 will consist of _____ vertices.

11	
0 10	
9	
0 8	
No. the answer is incorrect.	
Score: 0	
Accepted Answers:	
8	1
8) In the flow network constructed from an MCVP2 instar edge that is from an input node i to the source s is	ice in Lecture 37, the capacity of an 1 poi
	-
\mathbf{p}^i	ſ
0	
•	
i	
•	
1	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 2^i	
9) For the flow network and flow constructed from an MC	VP2 instance in Lecture 37 the only 1 no
edge that can get an odd flow is the one	
Commende 1 de ande 4	
from node 1 to node s	
from node 0 to node t	
from node 0 to node s	
No, the answer is incorrect.	
Score: 0	
from node 0 to node t	
10)For the flow network and flow constructed from an MC	VP2 instance in Lecture 27 if there 1 no
were an augmenting path in the residual network, then the edge.	first edge of that augmenting path will be a
zero capacity	
saturated	
forward	
backward	
No the answer is incorrect	
Score: 0	
Accepted Answers:	
backward	
Provious Page	End
FIEVIOUS FAYE	LIIU

R
R
Ŗ
R
R