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1 CHAPTER 1 
 

Representation of Signals 
 

 

1.1  Introduction 
 The process of (electronic) communication involves the generation, 

transmission and reception of various types of signals. The communication 

process becomes fairly difficult, because: 

a) the transmitted signals may have to travel long distances (there by 

undergoing severe attenuation) before they can reach the destination i.e., 

the receiver. 

b) of imperfections of the channel over which the signals have to travel 

c) of interference due to other signals sharing the same channel and 

d) of noise at the receiver input1. 

 

In quite a few situations, the desired signal strength at the receiver input 

may not be significantly stronger than the disturbance component present at that 

point in the communication chain. (But for the above causes, the process of 

communication would have been quite easy, if not trivial). In order to come up 

with appropriate signal processing techniques, which enable us to extract the 

desired signal from a distorted and noisy version of the transmitted signal, we 

must clearly understand the nature and properties of the desired and undesired 

signals present at various stages of a communication system. In this lesson, we 

begin our study of this aspect of communication theory. 

 

                                                 
1 Complete statistical characterization of the noise will be given in chapter 3, namely, Random 

Signals and Noise. 
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Signals physically exist in the time domain and are usually expressed as a 

function of the time parameter1. Because of this feature, it is not too difficult, at 

least in the majority of the situations of interest to us, to visualize the signal 

behavior in the Time Domain. In fact, it may even be possible to view the signals 

on an oscilloscope. But equally important is the characterization of the signals in 

the Frequency Domain or Spectral Domain. That is, we characterize the signal 

in terms of its various frequency components (or its spectrum). Fourier analysis 

(Fourier Series and Fourier Transform) helps us in arriving at the spectral 

description of the pertinent signals. 

 

 

1.2 Periodic Signals and Fourier Series 
Signals can be classified in various ways such as: 

a) Power or Energy 

b) Deterministic or Random 

c) Real or Complex 

d) Periodic or Aperiodic etc. 

 

Our immediate concern is with periodic signals. In this section we shall 

develop the spectral description of these signals. 

 

1.2.1  Periodic signals 
Def. 1.1: A signal ( )px t  is said to be periodic if 

     ( ) ( )p px t x t + T= ,             (1.1) 

   for all t  and some T .  
�

 

   ( � denotes the end of definition, example, etc.) 

 

                                                 
1 We will not discuss the multi-dimensional signals such as picture signals, video signals, etc. 
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Let T0  be the smallest value of T  for which this is possible. We call T0  as 

the period of ( )px t .  

 

Fig. 1.1 shows a few examples of periodic signals. 

 

 
Fig. 1.1: Some examples of periodic signals 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.4

The basic building block of Fourier analysis is the complex exponential, 

namely, ( )j f tA e 2π + ϕ  or ( )A j f t +exp 2π ϕ⎡ ⎤⎣ ⎦ , where 

A  : Amplitude (in Volts or Amperes) 

f  : Cyclical frequency (in Hz) 

ϕ  : Phase angle at t 0=  (either in radians or degrees) 

 

Both A  and f  are real and non-negative. As the radian frequency, ω  (in 

units of radians/ sec), is equal to 2 fπ , the complex exponential can also written 

as ( )j tA e ω + ϕ . We use subscripts on A , f  (or ω) and ϕ  to denote the specific 

values of these parameters. 

 

Fourier analysis uses tcosω  or sin cos
2

t t⎡ π ⎤⎛ ⎞ω = ω −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 in the represen-

tation of real signals. From Euler’s relation, we have, cos sinj te t j tω = ω + ω . 

 

As  tcosω  is the Re j te ω⎡ ⎤
⎣ ⎦ , where [ ]xRe  denotes the real part of x , we 

have 

( )
cos

2

j t j te e
t

∗ω ω
+

ω =  (∗denotes the complex conjugate) 

       
2

j t j te eω − ω
+

=  

The term j te− ω  or 2j f te− π  is referred to as the complex exponential at 

the negative frequency ω−  (or f− ). 

 

1.2.2  Fourier series 
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Let ( )px t  be a periodic signal with period T0 . Then 0
0

1f
T

=  is called the 

fundamental frequency and 0n f  is called the thn  harmonic, where n  is an 

integer (for 0n = ,  we have the DC component and for the DC singal,   

 T0    is not defined;  1n =  results in the fundamental). Fourier series 

decomposes ( )px t  in to DC, fundamental and its various higher harmonics, 

namely, 

( ) 0j 2 nf t
p nn

x t x e
∞ π

= − ∞
= ∑                     (1.2a) 

The coefficients { }nx  constitute the Fourier series and are related to 

( )px t  as 

( ) 0

00

j 2 nf t
n p

     T

1x x t e dt
T

− π= ∫                   (1.2b) 

where 
0     T

∫ denotes the integral over any one period of ( )px t . Most often, we 

use the interval 0 0,
2 2

T T⎛ ⎞−⎜ ⎟
⎝ ⎠

 or ( )00 , T . Eq. 1.2(a) is referred to as the 

Exponential form of the Fourier series. 

 

The coefficients { }nx  are in general complex; hence  

nj
n nx x e ϕ=            (1.3) 

where nx  denotes the magnitude of the complex number and nϕ , the argument 

(or the angle). Using Eq. 1.3 in Eq. 1.2(a), we have, 

( ) ( )nj n f t
p nn

x t x e 02∞ π + ϕ

= − ∞
= ∑  

 

Eq. 1.2(a) states that ( )px t , in general, is composed of the frequency 

components at DC, fundamental and its higher harmonics. nx  is the magnitude 
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of the component in ( )px t  at frequency 0n f  and nϕ , its phase. The plot of nx  

vs. n  (or 0n f ) is called the magnitude spectrum, and nϕ  vs. n  (or 0n f ) is called 

the phase spectrum. It is important to note that the spectrum of a periodic signal 

exists only at discrete frequencies, namely, at 0n f , n 0, 1, 2,= ± ± ⋅ ⋅ ⋅ , etc. 

 Let ( )px t  be real; then  

( ) j n f t
n p

T
x x t e d t

T
0

0

2

0

1 π
=− ∫  

                 nx∗=  

That is, for a real periodic signal, we have the two symmetry properties, namely,  

n nx x− =                       (1.4a) 

- n nϕ = − ϕ                     (1.4b) 

 

Properties of Eq. 1.4 are part of an if and only if (iff) relationship. That is, if 

( )px t  is real, then Eq. 1.4 holds and if Eq. 1.4 holds, then ( )px t  has to be real. 

This is because the complex exponentials at ( )0n f  and ( )0n f−  can be combined 

into a cosine term. As an example, let the only nonzero coefficients of a periodic 

signal be x , x , x2 1 0± ± . *X 0=x0   implies, x0  is real and let  

2 2
j
4

2x e x
π

∗
− = =  and 

j
3x e x1 13
π

∗
− = =  and 0 1x = . Then, 

( ) 0 0 0 04 2 2 43 34 43 1 3 2
j jj jj f t j f t j f t j f t

px t 2 e e e e e e e e
π ππ π− −− π − π π π

+ + + +=

 

Combining the appropriate terms results in, 

( )px t f t f t0 04 cos 4 6 cos 2 1
4 3
π π⎛ ⎞ ⎛ ⎞= π − + π − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

which is a real signal. The above form of representing ( )px t , in terms of cosines 

is called the Trigonometric form of the Fourier series. 
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We shall illustrate the calculation of the Fourier coefficients using the 

periodic rectangular pulse train (This example is to be found in almost all the 

textbooks on communication theory). 

 

Example 1.1 
 For the unit amplitude rectangular pulse train shown in Fig. 1.2, let us 

compute the Fourier series coefficients. 

 

 
Fig. 1.2: Periodic rectangular pulse train 

 

( )px t  has a period 0 4T =  milliseconds and is ON for half the period and 

OFF during the remaining half. The fundamental frequency 0f  = 250 Hz. 

From Eq. 1.2(b), we have 
T

j n f  t
n

T
x e dt

T

0

0

0

2
2

0
2

1 −

−

= ∫ π  

       

0

0

0

4
2

0
4

1
T

j nf t

T
e dt

T
−

− π= ∫  

                
0 0

2
sin1

n

T n f

π⎛ ⎞
⎜ ⎟
⎝ ⎠=
π
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sin

2
n

n

π⎛ ⎞
⎜ ⎟
⎝ ⎠=
π

 

As can be seen from the equation for nx , all the Fourier coefficients are 

real but could be bipolar (+ve or –ve). Hence nϕ  is either zero or ± π  for all n . 

Fig. 1.3 shows the plots of magnitude and phase spectrum. 

 
Fig. 1.3: Magnitude and phase spectra for the px (t)  of example 1.1 

 

From Fig. 1.3, we observe:  



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.9

i) 0x , the average or the DC value of the pulse train is 1
2

. For any periodic 

signal, the average value is ( )
0

0

2

0
2

1
T

p
T

x t dt
T

−

∫ . 

ii) spectrum exists only at discrete frequencies, namely, 0f n f= , with 

0 250f Hz= . Such a spectrum is called the discrete spectrum (or line 

spectrum). 
iii) the curve drawn with broken line in Fig. 1.3(a) is the envelope of the 

magnitude spectrum. The envelope consists of several lobes and the 

maximum value of each lobe keeps decreasing with increase in frequency. 
 

iv) the plot of nx  vs. frequency is symmetric and the plot of nϕ  vs. frequency is  

anti-symmetric. This is because ( )px t  is real. 

 

v) nϕ  at n , 2 4= ± ±  etc. is undefined as 0nx =  for these n . This is indicated 

with a cross on the phase spectrum plot.        
�

 

 

One of the functions that is useful in the study of Fourier analysis is the 

( )sinc  function defined by 

( ) ( )sin
sin sinc c

πλ
= λ =

πλ
λ                      (1.5) 

 

A plot of the sinc λ  vs. λ  along with a table of values are given in 

appendix A1.1, at the end of the chapter. 
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In terms of ( )sinc λ , the Fourier coefficient of example 1.1 can be written 

as, 1 sin
2 2n

nx  c ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 

 

 

 

 

 

 

 

 

 

 
 

Spectrum analyzer is an important laboratory instrument, which can be 

used to obtain the magnitude spectrum of periodic signals (frequency resolution, 

frequency range over which the spectrum can be measured etc. depend on that 

particular instrument). We have given below a set of four waveforms (output of a 

function generator) and their line spectra, as indicated by a spectrum analyzer. 

 

The spectral plots 1 to 4 give the values of 10
1

20 log nx
x

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 for the 

waveforms 1 to 4 respectively. The units for the above quantities are in decibels 

(dB). 

 

 

Exercise 1.1 

 For the ( )px t  of Fig .1.4, show that ( )nx  c n f
T 0

0
sin

⎛ ⎞τ
= τ⎜ ⎟
⎝ ⎠

 

 

 
Fig. 1.4: ( )px t  of Exercise 1.1 
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1.  

 

Waveform 1 

 

Spectral Plot 1 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras
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Waveform 1: A cosine signal (frequency 10 kHz).  

Comments on spectral plot 1: Waveform 1 has only two Fourier coefficients, 

namely, 1x−  and 1x . Also, we have 1 1x x− = . Hence the spectral plot has only 

two lines, namely at 10±  kHz, and their values are 
x
x

1
10

1
20 log 0=  dB. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

2. 

 

Waveform 2 
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Waveform 2: Periodic square wave with 
T0

1
5

τ
= ; T0 0.1=  msec. 

Comments on Spectral Plot 2: Values of various spectral components are: 

i) fundamental: 0 dB 

ii) second harmonic: ( )
( )10

sin 0.4
20 log

sin 0.2
c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

          1020 log 0.809 0.924 dB= = −  

iii) third harmonic:    ( )
( )10

sin 0.6
20 log

sin 0.2
c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

                             10
0.50420 log
0.935
⎡ ⎤= ⎢ ⎥⎣ ⎦

 

         1020 log (0.539) dB=  

          5.362= −  

iv) fourth Harmonic:  ( )
( )10

sin 0.8
20 log

sin 0.2
c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   12.04 dB= −  

v) fifth harmonic: ( )
( )10

sin 1
20 log

sin 0.2
c

c
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

          ( )1020 log 0= = −∞  

 

because of the limitations of the instrument, we see a small spike at 60−  dB. 

Similarly, the values of other components can be calculated. 
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3. 

 
Waveform 3 

 
Values of Spectral Components: Exercise 
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4. 

 
Waveform 4 

 
Values of Spectral Components: Exercise 
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The Example 1.1 and the periodic waveforms 1 to 4 all have fundamental 

as part of their spectra. Based on this, we should not surmise that every periodic 

signal must necessarily have a nonzero value for its fundamental. As a counter to 

the conjuncture, let ( ) ( ) ( )px t t tcos 20 cos 2000= π π . 

 

This is periodic with period 100 msec. However, the only spectral 

components that have nonzero magnitudes are at 990 Hz and 1010 Hz. That is, 

the first 99 spectral components (inclusive of DC) are zero! 

 

Let ( )px t  be a periodic voltage waveform across a 1 Ω  resistor or a 

current waveform flowing in a 1 Ω  resistor. We now define its (normalized) 

average power, denoted by 
pxP , as 

 ( )
px p

T

P x t d t
T

0

2

0

1
= ∫  

Parseval’s (Power) Theorem relates 
pxP  to nx  as follows: 

px n
n

P x 2∞

= − ∞
= ∑  

(The proof of this relation is left as an exercise.) 

 

 If ( )px t  consists of a single complex exponential, ie, 
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( ) ( )j n f t
p nx t x e 02π +ϕ=  

then, 
px nP x2=  

In other words, Parseval’s power theorem implies that the total average power in 

( )px t  is superposition of the average powers of the complex exponentials 

present in it. 

 

When the periodic signal exhibits certain symmetries, Fourier coefficients 

take special forms. Let us first define some of these symmetries (We assume 

( )px t  to be real). 

 

Def. 1.2(a):     A periodic signal ( )px t  is even, if ( ) ( )− =p px t x t               (1.6a) 

Def. 1.2(b):     A periodic signal ( )px t  is odd, if ( ) ( )− = −p px t x t              (1.6b) 

Def. 1.2(c):     A periodic signal ( )px t  has half-wave symmetry, if 

 ( )⎛ ⎞± = −⎜ ⎟
⎝ ⎠

p p
Tx t x t0
2

  
�

               (1.6c) 

 

With respect to the symmetries defined by Eq. 1.6, we have the following 

special forms for the coefficients nx : 

( )px t  even: nx ’s are purely real and even with respect to n  

( )px t  odd: nx ’s are purely imaginary and odd with respect to n  

( )px t  half-wave symmetric: nx ’s are zero for n even. 

 

A proof of these properties is as follows: 

i) ( )px t  even: 
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  ( )
T

j n f t
n p

T
x x t e d t

T

0
0

0

2

2

2

0

1 − π

−

= ∫  

             ( )
T

j n f t j n f t
p p

T
x t e d t x (t)e d t

T

0
0 0

0

2

2

0
2 2

0 0

1 − π − π

−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∫ ∫  

Changing t  to - t  in the first integral, and noting ( ) ( )p px t x t− = , 

               ( ) ( )
T T

j n f t j n f t
p px t e d t x t e d t

T

0 0
0 0

2 2
2 2

0 0 0

1 π − π
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∫ ∫  

            ( ) ( )
T

px t n f t d t
T

0 / 2

0
0 0

2 cos 2
⎡ ⎤
⎢ ⎥= π
⎢ ⎥⎣ ⎦
∫  

The above integral is real and as ( )n f t n f t0 0cos 2 cos(2 )⎡ ⎤π − = π⎣ ⎦ , 

n nx x− = . 

 

ii) ( )px t  odd: 

( ) ( )
T

j n f t j n f t
n p p

T
x x t e d t x t e d t

T

0
0 0

0

2

2

0
2 2

0 0

1 − π − π

−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∫ ∫  

Changing t  to - t , in the first integral and noting that ( ) ( )p px t x t− = − , 

we have 

            ( ) ( )
T T

j n f t j n f t
p px t e d t x t e d t

T

0 0
0 0

2 2
2 2

0 0 0

1 −π π
⎡ ⎤
⎢ ⎥= − +
⎢ ⎥⎣ ⎦
∫ ∫  

             ( )
T

j n f t j n f t
px t e e d t

T

0
0 0

2
2 2

0 0

1 − π π⎡ ⎤= −⎣ ⎦∫  

            ( ) ( )
T

p
j x t n f t d t

T

0 2

0
0 0

2 sin 2= − π∫  

Hence the result. 

 

iii) ( )px t  has half-wave symmetry: 
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( ) ( )
T

j n f t j n f t
n p p

T
x x t e d t x t e d t

T

0
0 0

0

0

0

/ 2
2 2

0 / 2

1 −− π π

−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∫ ∫  

In the first integral, replace t  by 0t + T /2 . 

( ) ( )0
T T

j n t n j n t
n p p0x x (t + T /2) e d t x t e d t

T
0

0 0

0

/ 2 / 2

0 0

1 − + − ω
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∫ ∫ω π  

The result follows from the relation 

1,
1,

j n n odd
e

n even
− π −⎧

= ⎨
⎩

 

 

1.2.3  Convergence of Fourier series and Gibbs phenomenon 

As seen from Eq. 1.2, the representation of a periodic function in terms of 

Fourier series involves, in general, an infinite summation. As such, the issue of 

convergence of the series is to be given some consideration. 

 

 There is a set of conditions, known as Dirichlet conditions that guarantee 

convergence. These are stated below. 

 

i) ( )p
T

x t
0

< ∞∫  

That is, the function is absolutely integrable over any period. It is easy to 

verify that the above condition results in nx < ∞  for any n . 

ii) ( )px t  has only a finite number of maxima and minima over any period 0T . 

iii) There are only finite number of finite discontinuities over any period1.  

 

Let ( )
M

j n f t
M n

n M
x t x e 02π

= −

= ∑                    (1.7) 

                                                 
1 For examples of periodic signals that do not satisfy one or more of the conditions i) to iii), the 

reader is referred to [1, 2] listed at the end of this chapter. 
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and ( ) ( ) ( )M p Me t x t x t= −  

then ( )MM
x tlim

→ ∞
 converges uniformly to ( )px t  wherever ( )px t  is continuous; 

that is ( )MM
e tlim 0

→ ∞
=  for all t. 

Dirichlet conditions are sufficient but not necessary. Later on, we shall 

have examples of Fourier series for functions that voilate some of the Dirichet 

conditions. 

 

If ( )px t  is not absolutely integrable but square integrable, that is, 

( )p
T

x t dt
0

2
< ∞∫ , then the series converges in the mean. That is,  

( )MM
T

e t d t
0

2
lim 0
→ ∞

=∫              (1.8) 

 

Note that Eq. 1.8 does not imply that ( )MM
e tlim

→∞
 is zero. There could be 

nonzero values in ( )MM
e tlim

→∞
; but they occur at isolated points, resulting in the 

integral of Eq. 1.8, being equal to zero. 

 

 The limiting behavior of ( )Mx t  at the points of discontinuity in ( )px t  is 

somewhat interesting, regardless of ( )px t  being absolutely integrable or square 

integrable. This is illustrated in Fig. 1.5(a). From the figure, we see that  
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Fig. 1.5(a): Convergence behavior of ( )Mx t  at a discontinuity in ( )px t  

 

( )Mx t  passes through the mid-point of the discontinuity and has a peak 

overshoot (as well as undershoot) of amplitude 0.09A (We assume M  to be 

sufficiently large). The period of oscillations (whose amplitudes keep decreasing 

with increasing t , 0t > ) is 0

2
T
M

. These oscillations (with the peak overshoot as 

well as the undershoot of amplitude 0. 09 A) persist even as M → ∞ . In the 

limiting case, all the oscillations converge in location to the point t t1=  (the point 

of discontinuity) resulting in what is called as Gibbs ears as shown in Fig. 1.5(b). 

 

 
Fig. 1.5(b): Gibbs ears at t = t1 
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(In 1898, Albert Michelson, a well-known name in the field of optics, 

developed an instrument called Harmonic Analyzer (HA), which was capable of 

computing the first 80 coefficients of the Fourier series. HA could also be used a 

signal synthesizer. In other words, it has the ability to self-check its calculations 

by synthesizing the signal using the computed coefficients. When Michelson tried 

this instrument on signals with discontinuities (with continuous signals, close 

agreement was found between the original signal and the synthesized signal), he 

observed a strange behavior:  synthesized signal, based on the 80 coefficients, 

exhibited ringing with an overshoot of about 9% of the discontinuity, in the vicinity 

of the discontinuity. This behavior persisted even after increasing the number of 

terms beyond 80. J. W. Gibbs, professor at Yale, investigated and clarified the 

above behavior by taking the saw-tooth wave as an example; hence the name 

Gibbs Phenomenon.) 

 

 The convergence of the Fourier series and the corresponding 

Gibbs oscillations can be seen from the animation that follows. You have been 

provided with three options with respect to the number of harmonics M  to be 

summed. These are: M 10, 25 and 75= . 

 

 

1.3 Aperiodic Signals and Fourier Transform 
Aperiodic (also called nonperiodic) signals can be of finite or infinite 

duration. A few of the aperiodic signals occur quote often in theoretical studies. 

Hence, it behooves us to introduce some notation to describe their behavior. 

i) Rectangular pulse, tga
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

1,
2

0,
2

Tttga
T Tt

⎧ <⎪⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎪ >

⎪⎩

                              (1.9a) 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.23

[Rectangular pulse is sometimes referred to as a gate pulse; hence the 

symbol ( )ga ]. In view of the above tA ga
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 refers to a rectangular pulse 

of amplitude A  and duration T , centered at 0t = . 

ii) Triangular pulse, ttri
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

t
t t Ttri TT

outside

1 ,

0 ,

⎧
− ≤⎪⎛ ⎞ = ⎨⎜ ⎟

⎝ ⎠ ⎪⎩

                          (1.9b) 

iii) One-sided (decaying) exponential pulse, 1 tex
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

: 

  

t
Te t

tex t
T

t

, 0
11 , 0
2
0 , 0

−⎧
>⎪

⎪⎪⎛ ⎞ = =⎨⎜ ⎟
⎝ ⎠ ⎪

<⎪
⎪⎩

                 (1.9c) 

iv) Two-sided (symmetrical) exponential pulse, 2 tex
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

: 

t
T

t
T

e t
tex t
T

e t

, 0
2 1 , 0

, 0

−⎧
>⎪

⎪⎛ ⎞ = =⎨⎜ ⎟
⎝ ⎠ ⎪

⎪ <⎩

                  (1.9d) 

Fig. 1.6 illustrates specific examples of these pulses. 
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Fig. 1.6: Examples of pulses defined by Eq. 1.9 

 

Let ( )x t  be any aperiodic signal. We define its normalized energy xE , as 

( )xE x t dt
2

∞

−∞

= ∫                    (1.10) 

An aperiodic signal with xE0 < < ∞  is said to be an energy signal. 

(When no specific signal is being referred to, we use the symbol E  without any 

subscript to denote the energy quantity.) 

 

1.3.1 Fourier transform 
Like periodic signals, aperiodic signals also can be represented in the 

frequency domain. However, unlike the discrete spectrum of the periodic case, 

we have a continuous spectrum for the aperiodic case; that is, the frequency 

components constituting a given signal ( )x t  lie in a continuous range (or 

ranges), and quite often this range could be ( ),−∞ ∞ . Eq. 1.2(a) expresses ( )px t  

as a sum over a discrete set of frequencies. Its counterpart for the aperiodic case 

is an integral relationship given by  
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( ) ( ) j f tx t X f e d f2
∞

π

−∞

= ∫                           (1.11a) 

where ( )X f  is the Fourier transform of  ( )x t . 

 

Eq. 1.11(a) is given the following interpretation. Let the integral be treated 

as a sum over incremental frequency ranges of width f∆ . Let ( )iX f f∆  be the 

incremental complex amplitude of 2 ij f te π  at the frequency if f= . If we sum a 

large number of such complex exponentials, the resulting signal should be a very 

good approximation to ( )x t . This argument, carried to its natural conclusion, 

leads to signal representation with a sum of complex exponentials replaced by an 

integral, where a continuous range of frequencies, with the appropriate complex 

amplitude distribution will synthesize the given signal ( )x t . 

 

          Eq. 1.11(a) is called the synthesis relation or Inverse Fourier Transform  

(IFT) relation. Quite often, we know ( )x t  and would want ( )X f . The companion 

relation to   Eq. 1.11(a) is  

( ) ( ) 2j f tX f x t e dt
−∞

− π

∞

= ∫                                             (1.11b) 

 Eq. 1.11(b) is referred to as the Fourier Transform (FT) relation or, the 

analysis equation, or forward transform relation. We use the notation 

( ) ( )X f F x t⎡ ⎤= ⎣ ⎦                                                     (1.12a) 

( ) ( )1x t F X f− ⎡ ⎤= ⎣ ⎦                                     (1.12b) 

 

Eq. 1.12(a) and Eq. 1.12(b) are combined into the abbreviated notation, namely, 

( ) ( )x t X f←⎯→ .                                     (1.12c) 

( )X f  is, in general, a complex quantity. That is, 

 ( ) ( ) ( )R IX f X f j X f= +  
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           ( ) ( )j fX f e θ=  

 ( ) ( )RX f Real part of X f= , 

 ( ) ( )IX f Imaginary part of X f=  

 ( ) ( )X f magnitude of X f=  

  ( ) ( )2 2
R IX f X f= +  

  ( ) ( ) ( )
( )

arg tan I

R

X f
f X f arc

X f
⎡ ⎤

⎡ ⎤θ = = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

 

 

Information in ( )X f  is usually displayed by means of two plots: (a) 

( ) .X f vs f , known as magnitude spectrum and (b) ( ) .f vs fθ , known as the 

phase spectrum. 

 

Example 1.2 

Let ( ) tx t A ga
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Let us compute and sketch ( )X f . 

 

( )
2

2

2

sin ( )
T

j ft

T
X f A e dt AT c f T− π

−

= =∫ , 

where 

 ( ) ( )c
sin

sin
πλ

λ =
πλ

 

Appendix A1.1 contains the tabulated values of ( )csin λ . Its behavior is shown in 

Fig. A1.1. Note that ( )c
1 , 0

sin
0 , 1, 2 etc.

λ =⎧
λ = ⎨ λ = ± ±⎩

 

Fig. 1.7(a) sketches the magnitude spectrum of the rectangular pulse for 1AT = . 

 

 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.27

 
Fig. 1.7: Spectrum of the rectangular pulse 

 

Regarding the phase plot, ( )sinc f T  is real. However it could be bipolar. 

During the interval, 1m mf
T T

+
< < , with m odd, ( )sinc f T  is negative. As the 

magnitude spectrum is always positive, negative values of ( )sinc f T  are taken 

care of by making ( ) 0180fθ = ±  for the appropriate ranges, as shown in Fig. 

1.7(b). 

   Remarkable balancing act: A serious look at the magnitude and phase plots 

reveals a very charming result. From the magnitude spectrum, we find that a 

rectangular pulse is composed of frequency components in the range 

f−∞ < < ∞ , each with its own amplitude and phase. Each of these complex 

exponentials exist for all t . But when we synthesize a signal using the complex 

exponentials with the magnitudes and phases as given in Fig. 1.7, they add up to 
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a constant for 2
Tt <  and then go to zero forever. A very fascinating result 

indeed! 

   

Fig. 1.7(a) illustrates another interesting result. From the figure, we see 

that most of the energy, (that is, the range of strong spectral components) of the 

signal lies in the interval 1f
T

< , where T is the duration of the rectangular pulse. 

Hence, if  T  is reduced, then its spectral width increases and vice versa (As we 

shall see later, this is true of other pulse types, other than the rectangular). That 

is, more compact is the signal in the time-domain, the more wide-spread it would 

be in the frequency domain and vice versa. This is called the phenomenon of 

reciprocal spreading.  
�

  

 

Example 1.3 

 Let ( ) ( )1x t ex t= . Let us find ( )X f  and sketch it. 

 

( ) 2

0

1
1 2

t j f tX f e e dt
j f

∞
− − π= =

+ π∫  

Hence,  ( )
( )2
1

1 2
X f

f
=

+ π
 

          ( ) ( )tan 2f arc fθ = − π  

A plot of the magnitude and the phase spectrum are given in Fig. 1.8. 
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Fig. 1.8:  (a) Magnitude spectrum of the decaying exponential 

           (b) Phase spectrum  
�

 

 

 1.3.2   Dirichlet conditions 
Given ( )X f , Eq. 1.11(a) enables us to synthesize the signal ( )x t . Now 

the question is: Is the synthesized signal, say ( ) ( )sx t , identical to ( )x t ? This 

leads to the topic of convergence of the Fourier Integral. Analogous to the 

Dirichlet conditions for the Fourier series, we have a set of sufficient conditions, 

(also called Dirichlet conditions) for the existence of Fourier transform, which are 

stated below: 
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(i) ( )x t  be absolutely integrable; that is, 

( )x t dt
∞

−∞

< ∞∫  

This ensures that ( )X f  is finite for all f , because 

( ) ( ) 2j f tX f x t e dt
∞

− π

−∞

= ∫  

( ) ( ) 2j f tX f x t e dt
∞

− π

−∞

= ∫  

        ( ) ( )2j f tx t e dt x t dt
∞ ∞

− π

−∞ −∞

≤ = < ∞∫ ∫  

(ii)  ( )x t is single valued and has only finite number of maxima and minima      

with in any finite interval. 

(iii)      ( )x t  has a finite number of finite discontinuities with in any finite interval. 

 

If ( ) ( ) ( ) 2lim
W

s j f t

W
W

x t X f e dfπ

→∞
−

= ∫ , then ( ) ( )sx t  converges to ( )x t   

uniformly wherever ( )x t  is continuous. 

 

If ( )x t  is not absolutely integrable but square integrable, that is, 

( ) 2
x t dt

∞

−∞

< ∞∫  (Finite energy signal), then we have the convergence in the 

mean, namely 

( ) ( ) ( )
2

0sx t x t dt
∞

−∞

− =∫  
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Regardless of whether ( )x t  is absolutely integrable or square integrable, 

( ) ( )sx t  exhibits Gibbs phenomenon at the points of discontinuity in ( )x t , always 

passing through the midpoints of the discontinuities. 

 

 

1.4  Properties of the Fourier Transform 
 Fourier Transform has a large number of properties, which are developed 

in the sequel. A thorough understanding of these properties, and the ability to 

make use of them appropriately, helps a great deal in the analysis of various 

signals and systems. 

 

P1)  Linearity  

Let ( ) ( )1 1x t X f←⎯→  and ( ) ( )2 2x t X f←⎯→ . 

Then, for all constants 1a  and 2a , we have 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2a x t a x t a X f a X f+ ←⎯→ +  

It is very easy to see the validity of the above transform relationship. This 

property will be used quite often in the development of this course material. 

 

P2a)  Area under ( )x t  

If ( ) ( )x t X f←⎯→ , then 

( ) ( )0x t dt X
∞

−∞

=∫  

The above property follows quite simply by setting 0f =  in Eq. 1.11(b). As an 

example of this property, we have the transform pair 

( )sintga T c fT
T
⎛ ⎞ ←⎯→⎜ ⎟
⎝ ⎠

 

By inspection, area of the time function is T , which is equal to ( ) 0sin | fT c f T = . 

P2b)   Area under ( )X f  
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If ( ) ( )x t X f←⎯→ , then ( ) ( )x X f df0
∞

−∞

= ∫  

 

The proof follows by making 0t =  in Eq. 1.11(a). 

As an illustration of this property, we have 

( ) ( ) ( ) 11
1 2

x t ex t X f
j f

= ←⎯→ =
+ π

 

Hence ( )
( )2

1 1 2
1 2 1 2

j fX f df df df
j f f

∞ ∞ ∞

−∞ −∞ −∞

− π
= =

+ π + π
∫ ∫ ∫  

Noting that 
( )2
2 0

1 2
f df
f

∞

−∞

π
=

+ π
∫ , we have 

( )
( )2
1 1

21 2
X f df df

f

∞ ∞

−∞ −∞

= =
+ π

∫ ∫ , which is the value of ( ) 01 |tex t =  

 

P3) Time Scaling 

  If ( ) ( )x t X f←⎯→ , then ( ) 1 fx t X ⎛ ⎞α ←⎯→ ⎜ ⎟α α⎝ ⎠
, where α  is a real 

constant. 

Proof:  Exercise  
 

 The value of α  decides the behavior of ( )x tα . If 1α = − , ( )x tα  is a time 

reversed version of ( )x t . If 1α > , ( )x tα  is a time compressed version of ( )x t , 

where as if 0 1< α < , we have a time expanded version of ( )x t . Let ( )x t  be as 

shown in Fig. 1.9(a). Then ( )2x t−  would be as shown in Fig. 1.9(b). 
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     Fig. 1.9: A triangular pulse and its time compressed and reversed version 

 

For the special case 1α = − , we have the transform pair 

( ) ( )x t X f− ←⎯→ − . That is, both the time function and its Fourier transform 

undergo reversal. As an example, we know that  

( ) 11
1 2

ex t
j f

←⎯→
+ π

 

Hence ( ) 11
1 2

ex t
j f

− ←⎯→
− π

 

( ) ( ) ( )1 1 2ex t ex t ex t+ − =  

   

Using the linearity property of the Fourier transform, we obtain the 

transform pair 

  ( ) ( ) 1 12 exp
1 2 1 2

ex t t
j f j f

= − ←⎯→ +
+ π − π

 

   
( )2
2

1 2 f
=

+ π
 

Consider ( )x tα  with 2α = . Then, 

( ) 12
2 2

fx t X ⎛ ⎞←⎯→ ⎜ ⎟
⎝ ⎠
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Let us compare ( )X f  with 1
2 2

fX ⎛ ⎞
⎜ ⎟
⎝ ⎠

 by taking ( ) ( )1x t ex t= , and 

( ) ( )1 2y t ex t= . That is, 

( )

2 , 0
1 , 0
2
0 , 0

te t

y t t

t

−⎧ >
⎪
⎪= =⎨
⎪

<⎪⎩

 

( ) ( )
1 1
2 1 2 2

Y f
j f

⎡ ⎤
= ⎢ ⎥

+ π⎢ ⎥⎣ ⎦
 

                   1
2 2j f

=
+ π

 

 

Let ( ) ( ) ( )x fX f X f eθ=  and 

      ( ) ( ) ( )y fY f Y f eθ= , where ( )
2 2

1

2 1
Y f

f
=

+ π
 

      ( ) ( )tany f arc fθ = − π  

 

Fig. 1.10 gives the plots of ( )X f  and ( )Y f . In Fig. 1.10(a), we have the 

plots ( ) .X f vs f  and ( ) .Y f vs f . In Fig. 1.10(b), we have the plot of ( )Y f  

normalized to have the maximum value of unity. This plot is denoted by ( )NY f .  

Fig. 1.10(c) gives the plots of ( )x fθ  and ( )y fθ . From Fig. 1.10(b), we see that 

i) ( ) ( )2y t x t=  has a much wider spectral width as compared to the spectrum 

of the original signal. (In fact, if ( )X f  is band limited to W Hz, then 
2
fX ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

will be band limited to W2  Hz.) 
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Fig 1.10: Spectral plots of ( )1ex t  and ( )1 2ex t  
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(ii) Let ( ) ( ) ( )E f X f Y f= − . Then the value of ( )E f  is dependent on f ; that 

is, the original spectral magnitudes are modified by different amounts at 

different frequencies (Note that ( ) ( )Y f k X f≠  where k  is a constant). 

In other words, ( )Y f  is a distorted version of ( )X f . 

(iii)  From Fig. 1.10(c), we observe that ( ) ( )y xf fθ ≠ θ  and their difference is a 

function of frequency; that is ( )y fθ  is a distorted version of ( )x fθ . 

 

In summary, time compression would result either in the introduction of 

new, higher frequency components (if the original signal is band limited) or 

making the latter part of the original spectrum much more significant; the 

remaining spectral components are distorted (both in amplitude and phase). On 

the other hand, time expansion would result either in the loss or attenuation of 

higher frequency components, and distortion of the remaining spectrum.  

 

Let ( )x t represent an audio signal band limited to 10 kHz. Then ( )2x t  will 

have a spectral components upto 20 kHz. These higher frequency components 

will impart shrillness to the audio, besides distorting the original signal. Similarly, 

if the audio is compressed, we have loss of “sharpness” in the resulting signal 

and severe distortion. This property of the FT will now be demonstrated with the 

help of a recorded audio signal. 

 
P4a)  Time shift 

If ( ) ( )x t X f←⎯→  then, 

              ( ) ( )02
0

j f tx t t e X f− π− ←⎯→  

If 0t  is positive, then ( )0x t t− is a delayed version of ( )x t  and if 0t  is 

negative, the ( )0x t t−  is an advanced version of ( )x t . In any case, time shifting 
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will simply result in the multiplication of ( )X f  by a linear phase factor. This 

implies that ( )x t  and ( )0x t t−  have the same magnitude spectrum. 

Proof: Let ( )0t tλ = − . Then, 

( ) ( ) ( )02
0

j f tF x t t x e d
∞

− π λ +

−∞

⎡ ⎤− = λ λ⎣ ⎦ ∫  

                  ( )02 2j f t j fe x e d
∞

− π − π λ

−∞

= λ λ∫  

                    ( )02j f te X f− π=      
�

 

 

P4b)  Frequency Shift 

If ( ) ( )x t X f←⎯→ , then 

              ( ) ( )2 cj f t
ce x t X f f± π ←⎯→ ∓  

where cf  is a real constant. (This property is also known as modulation theorem). 

Proof: Exercise 
As an application of the above result, let us consider the spectrum of 

( ) ( ) ( )2 cos 2 cy t f t x t= π ; that is, we want the Fourier transform of 

( )2 2c cj f t j f te e x tπ − π⎡ ⎤+⎣ ⎦ . From the frequency shift theorem, we have 

( ) ( ) ( ) ( ) ( ) ( )2 cos 2 c c cy t f t x t Y f X f f X f f= π ←⎯→ = − + + .  If ( )X f  is as shown 

in Fig. 1.11(a), then ( )Y f  will be as shown in Fig. 1.11(b) for cf W= . 

 

  
Fig.1.11: Illustration of modulation theorem 
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P5) Duality 
If we look fairly closely at the two equations constituting the Fourier 

transform pair, we find that there is a great deal of similarity between them. In 

Eq.1.11a, ' 'f  is the variable of integration where as in Eq. 1.11b, it is the variable 

' 't . The sign of the exponent is positive in Eq. 1.11a where as it is negative in 

Eq. 1.11b. Both t  and f  are variables of the continuous type. This results in an 

interesting property, namely, the duality property, which is stated below. 

  

If ( ) ( )x t X f←⎯→ , then 

   ( ) ( )X t x f←⎯→ −  and ( ) ( )X t x f− ←⎯→  

Note: This is one instance, where the variable t is associated with a function 

denoted using the upper case letter and the variable f  is associated with a 

function denoted using a lower case letter. 

Proof: ( ) ( ) 2j f tx t X f e df
∞

π

−∞

= ∫  

( ) ( ) 2j f tx t X f e df
∞

− π

−∞

− = ∫  

  

The result follows by interchanging the variables t  and f . The proof of the 

second part of the property is similar.  
�

 

 

Duality theorem helps us in creating additional transform pairs, from the 

given set. We shall illustrate the duality property with the help of a few examples. 

 

Example 1.4 

 If ( ) sin 2z t A c W t= , let us use duality to find ( )Z f . 
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 We look for a transform pair, ( ) ( )x t X f←⎯→  where in ( )X f , if we 

replace f  by t , we have ( ) sin 2z t A c W t= . 

We know that if ( )
2 2
A tx t ga
W W

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, then, 

( ) ( )sin 2X f A c W f=  and 

( ) ( ) ( )sin 2X t A c W t z t= = ⇒  

 ( ) ( )
2 2
A fZ f x f ga
W W

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

As ( ) ( )ga f ga f− = , we have 

 ( )
2 2
A fZ f ga
W W

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  
�

 

 

Example 1.5 

 Find the Fourier transform of ( ) 2
2

1
z t

t
=

+
. 

 

 We know that if ( ) ty t e−= , then ( )
( )2

2
1 2

Y f
f

=
+ π

 

Let ( ) ( )x t y t= α , with 2α = π . 

Then ( ) 1
2 2

fX f Y ⎛ ⎞
= ⎜ ⎟π π⎝ ⎠

 

        2
1 2

2 1 f
=

π +
 

or ( ) 2
22

1
X f

f
π =

+
 

As ( ) 2
2

1
z t

f
=

+
 with f  being replaced by t , we have  

( ) ( )2Z f x f= π −  

        22 fe− π= π  
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Hence 2
2

2 2
1

fe
t

− π←⎯→ π
+

   
� 

 

P6) Conjugate functions 

If ( ) ( )x t X f←⎯→ , then ( ) ( )x t X f∗ ∗←⎯→ −  

Proof: ( ) ( ) 2j f tX f x t e dt
∞

− π

−∞

= ∫  

 ( ) ( ) 2j f tX f x t e dt
∞

∗ ∗ π

−∞

= ∫  

 ( ) ( ) 2j f tX f x t e dt
∞

∗ ∗ − π

−∞

− = ∫  

Hence the result.  
�

 

  

From the time reversal property, we get the additional relation, namely 

( ) ( )x t X f∗ ∗− ←⎯→  

 

 

 

 

          

 

 

 

 
 
 

Def. 1.3(a): A signal ( )x t  is called conjugate symmetric, if ( ) ( )x t x t∗− = . 

       If ( )x t  is real, then ( )x t  is even if ( ) ( )x t x t− = . 

Exercise 1.2: Let ( ) ( ) ( )R Ix t x t j x t= +  

 where ( )Rx t  is the real part and ( )Ix t  is the imaginary part of ( )x t . Show 

that 

 

( ) ( ) ( )1
2Rx t X f X f∗⎡ ⎤←⎯→ + −⎣ ⎦  

( ) ( ) ( )1
2Ix t X f X f

j
∗⎡ ⎤←⎯→ − −⎣ ⎦  
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Def. 1.3(b): A signal ( )x t  is said to be conjugate anti-symmetric if 

        ( ) ( )x t x t∗− = − . 

If ( )x t  is real, then ( )x t  is odd if ( ) ( )x t x t− = − .  
�

 

 

If ( )x t  is real, then ( ) ( )x t x t∗= . 

As a result, ( ) ( )X f X f∗= −  or ( ) ( )X f X f∗ = − . 

Hence, the spectrum for the negative frequencies is the complex conjugate of the 

positive part of the spectrum. This implies, that for real signals, 

( ) ( )X f X f− =  

( ) ( )f fθ − = − θ  

 

 Going one step ahead, we can show that if ( )x t  is real and even, then 

( )X f  is also real and even. (Example: 
( )2
2

1 2
te

f
− ←⎯→

+ π
). Similarly, if ( )x t  

is real and odd, its transform is purely  imaginary and  odd (See Example 1.7). 

 

P7a)  Multiplication in the time domain 

If ( ) ( )1 1x t X f←⎯→  

   ( ) ( )2 2x t X f←⎯→  

then, ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1x t x t X X f d X X f d
∞ ∞

−∞ −∞

←⎯→ λ −λ λ = λ − λ λ∫ ∫  

The integrals on the R.H.S represent the convolution of ( )1X f  and ( )2X f . We 

denote the convolution of ( )1X f  and ( )2X f  by ( ) ( )1 2X f X f∗ . 

(Note that ∗  in between two functions represents the convolution of the two 

quantities where as a superscript, it denotes the complex conjugate) 
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Proof: Exercise 

 

P7b) Multiplication of Fourier transforms 

Let ( ) ( )1 1x t X f←⎯→  

 ( ) ( )2 2x t X f←⎯→  

then, ( ) ( ) ( ) ( )1
1 2 1 2F X f X f x x t d

∞
−

−∞

⎡ ⎤ = λ −λ λ⎣ ⎦ ∫  

          ( ) ( )2 1x x t d
∞

−∞

= λ −λ λ∫   

As any one of the above integrals represent the convolution of ( )1x t  and ( )2x t , 

we have 

( ) ( ) ( ) ( )1 2 1 2x t x t X f X f∗ ←⎯→  

Proof: Let ( ) ( ) ( )3 1 2x t x t x t= ∗  

That is, ( ) ( ) ( )3 1 2x t x x t d
∞

−∞

= λ −λ λ∫  

      ( ) ( ) ( ) ( ) ( )j f t j f tX f F x t x t e dt x x t d e dt2 2
3 3 3 1 2

∞ ∞ ∞
− π − π

−∞ −∞ −∞

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = = λ − λ λ⎣ ⎦ ⎢ ⎥⎣ ⎦

∫ ∫ ∫  

 

Rearranging the integrals, 

( ) ( ) ( ) j f tX f x x t e dt d2
3 1 2

∞ ∞
− π

−∞ −∞

⎡ ⎤
⎢ ⎥= λ − λ λ
⎢ ⎥⎣ ⎦

∫ ∫  

 

But the bracketed quantity is the Fourier transform of ( )2x t −λ . From the 

property P4(a), we have  

( ) ( )j fx t e X f2
2 2

− π λ− λ ←⎯→  

Hence, 
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( ) ( ) ( ) 2
3 1 2

j fX f x X f e d
∞

− π λ

−∞

= λ λ∫  

                   ( ) ( ) 2
2 1

j fX f x e d
∞

− π λ

−∞

= λ λ∫  

                     ( ) ( )1 2X f X f=    
�

 

 

Property P7(b), known as the Convolution theorem, is one of the very useful 

properties of the Fourier transform. 

 

 The concept of convolution is very basic in the theory of signals and 

systems. As will be shown later, the input and output of a linear, time- invariant 

system are related by the convolution integral. For a fairly detailed treatment of 

the properties of systems, convolution integral etc. the student is advised to refer 

to [1 - 3]. 

 

Example 1.6 

 In this example, we will find the Fourier transform of  tT tri
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

 tT tri
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 can be obtained as the convolution of tga
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

 with itself. That is, 

t t tga ga T tri
T T T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

As ( )sintga T c f T
T
⎛ ⎞ ←⎯→⎜ ⎟
⎝ ⎠

, we have 

 ( ) 2
sintT tri T c f T

T
⎛ ⎞ ⎡ ⎤←⎯→⎜ ⎟ ⎣ ⎦⎝ ⎠

   
�
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P8) Differentiation 
P8a) Differentiation in the time domain 

 Let ( ) ( )x t X f←⎯→ , 

then, ( ) ( )2d x t j f X f
dt

⎡ ⎤ ⎡ ⎤←⎯→ π⎣ ⎦ ⎣ ⎦  

Generalizing, ( ) ( ) ( )2
n

n
n

d x t
j f X f

dt
←⎯→ π  

Proof: We shall prove the first part; generalization follows as a consequence 

this. We have, 

( ) ( ) 2j f tx t X f e df
∞

π

−∞

= ∫  

( ) ( ) 2j f td dx t X f e df
dt dt

∞
π

−∞

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥⎣ ⎦

∫  

Interchanging the order of differentiation and integration on the RHS, 

( ) ( ) 2j f td dx t X f e df
dt dt

∞
π

−∞

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦∫  

         ( ) 22 j f tj f X f e df
∞

π

−∞

⎡ ⎤= π⎣ ⎦∫  

From the above, we see that ( )1 2F j f X f− ⎡ ⎤π⎣ ⎦  is ( )d x t
dt

. Hence the property. 
�

  
 
Example 1.7 

Let us find the FT of the doublet pulse ( )x t  shown in Fig. 1.12 below. 
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Fig 1.12: ( )x t  of Example 1.7 

 

( ) d tx t T tri
dt T

⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. Hence, 

( ) 2 tX f j f F T tri
T

⎡ ⎤⎛ ⎞= π ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

         ( ) ( )2 22 sinj f T c f T= π , (using the result of example 1.6) 

         ( ) ( )
( )( )

2
2 sin

2
fT

j f T
fT fT

π
= π

π π
 

         ( )
( ) ( )sin

2 sin
fT

j T fT
fT
π

= π
π

 

         ( ) ( )2 sin sinj T c fT fT= π π             
�

  

 

As a consequence of property P8(a), we have the following interesting result. 

 

Let ( ) ( ) ( )3 1 2x t x t x t= ∗  

Then ( ) ( ) ( )3 1 2X f X f X f=  

( ) ( ) ( ) ( ) ( )3 1 22 2j f X f j f X f X f⎡ ⎤π = π⎣ ⎦  

            ( ) ( )1 22X f j f X f⎡ ⎤= π⎣ ⎦  

That is,  
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( ) ( ) ( ) ( )1 2 1 2
d dx t x t x t x t
dt dt

⎡ ⎤ ⎡ ⎤∗ = ∗⎣ ⎦ ⎣ ⎦  

                  ( ) ( )1 2
dx t x t
dt

⎡ ⎤= ∗ ⎣ ⎦  

 

P8b) Differentiation in the frequency domain 

Let ( ) ( )x t X f←⎯→ . 

Then, ( ) ( ) ( )2
d X f

j t x t
df

⎡ ⎤− π ←⎯→⎣ ⎦  

Generalizing, ( ) ( ) ( )2
n

n
n

d X f
j t x t

df
⎡ ⎤− π ←⎯→
⎣ ⎦

 

Proof: Exercise 

The generalized property can also be written as 

( ) ( )
2

n n
n

n

d X fjt x t
df

⎛ ⎞
←⎯→ ⎜ ⎟π⎝ ⎠

 

 

Example 1.8 

 Find the Fourier transform of ( ) 1 tx t t ex
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 

We have, ( ) 11
1 2

ex t
j f

←⎯→
+ π

 

Hence,    11
1 2

tex T
T j fT
⎛ ⎞ ←⎯→⎜ ⎟ + π⎝ ⎠

 

    1
2 1 2

t j d Tt ex
T df j fT

⎡ ⎤⎛ ⎞ ←⎯→⎜ ⎟ ⎢ ⎥π + π⎝ ⎠ ⎣ ⎦
 

                  ( )
( )2

2
2 1 2

j Tj T
j fT

− π
←⎯→

π + π
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( )

2

21 2
T
j f T

⎡ ⎤
⎢ ⎥←⎯→
⎢ ⎥+ π⎣ ⎦

  
�

 

 

P9) Integration in time domain 
This property will be developed subsequently. 

 

P10) Rayleigh’s energy theorem 

This theorem states that, xE , energy of the signal ( )x t , is 

( )xE X f df
2

∞

−∞

= ∫  

This result follows from the more general relationship, namely, 

( ) ( ) ( ) ( )1 2 1 2x t x t dt X f X f df
∞ ∞

∗ ∗

−∞ −∞

=∫ ∫  

 
Proof: We have 

( ) ( ) ( ) ( ) 2
1 2 1 2

j f tx t x t dt x t X f e df dt
∗

∞ ∞ ∞
∗ π

−∞ −∞ −∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∫ ∫ ∫   

          ( ) ( ) 2
2 1

j f tX f x t e dt df
∞ ∞

∗ − π

−∞ −∞

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∫ ∫  

          ( ) ( )2 1X f X f df
∞

∗

−∞

= ∫  

 

If ( ) ( ) ( )1 2x t x t x t= = , then 

( ) ( )xx t dt E X f df2 2
∞ ∞

−∞ −∞

= =∫ ∫   
�

 

 

Note: If ( )1x t  and ( )2x t  are real, then, 
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( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1x t x t d t X f X f d f X f X f d f
∞ ∞ ∞

− ∞ − ∞ − ∞

= − = −∫ ∫ ∫  

 

Property P10 enables us to compute the energy of a signal from its 

magnitude spectrum. In a few situations, this may be easier than computing the 

energy in the time domain. (Some authors refer to this result as Parseval’s 

theorem) 

 

Example 1.9 

 Let us find the energy of the signal ( ) ( )2 sin 2x t AW c W t= . 

 

( )xE AW c W t d t
2

2 sin 2
∞

−∞

⎡ ⎤= ⎣ ⎦∫  

In this case, it would be easier to compute xE  based on ( )X f . From Example 

1.4, ( )
2

fX f A ga
W

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. Hence,  

 
W

x
W

E A df W A2 22
−

= =∫    
�

 

 

More important than the calculation of the energy of the signal, Rayleigh’s 

energy theorem enables to treat ( ) 2
X f  as the energy spectral density of ( )x t . 

That is, ( ) 2
1X f df  is the energy in the incremental frequency interval d f , 

centered at 1f f= . Let ( )
W

x
W

X f df E
2

0.9
−

=∫ . Then, 90 percent of the energy of 

signal is confined to the interval f W≤ . Consider the rectangular pulse tga
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

The first nulls of the magnitude spectrum occur at 1f
T

= ± . The evaluation of 
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( ) ( )
1 1

2 2

1 1
sin

T T

T T

X f df T c f T df
− −

=∫ ∫  will yield the value 0.92 T , which is 92 

percent of the total energy of tga
T
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Hence, the frequency range 1 1,
T T

⎛ ⎞−⎜ ⎟
⎝ ⎠

 can 

be taken to be the spectral width of the rectangular pulse. [The interval 2 2,
T T

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

may result in about 95 percent of the total energy]. 

 

 

1. 5 Unified Approach to Fourier Transform 
So far, we have represented the periodic functions by Fourier series and 

the aperiodic functions by Fourier transform. The question arises: is it possible to 

unify these two approaches and talk only in terms of say, Fourier transform? The 

answer is yes provided we are willing to introduce Impulse Functions both in 

time and frequency domains. This would also enable us to have Fourier 

transforms for signals that do not satisfy one or more of the Dirichlet’s conditions 

(for the existence of the Fourier transform). 

 

1.5.1 Unit impulse (Dirac delta function) 
Impulse function is not a function in its strict sense [Note that a function 

( )f , takes a number y  and a produces another number, ( )f y ]. It is a 

distribution or generalized function. A distribution is defined in terms of its effect 

on another function. The symbol ( )tδ  is fairly common in the technical literature 

to denote the unit impulse. We define the unit impulse as any (generalized) 

function that satisfies the following conditions: 

(i) ( ) 0, 0t tδ = ≠                               (1.13a) 

(ii) ( )t t, 0δ = ∞ =                          (1.13b) 

(iii)  Let ( )p t  be any ordinary function, then 
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( ) ( ) ( ) ( ) ( )0 , 0p t t dt p t t dt p
∞ ε

−∞ −ε

δ = δ = ε >∫ ∫              (1.13c) 

( ε  could be infinitesimally small)                        

 

If ( )p t t1, for= ≤ ε ,  then we have 

( ) ( )t d t t d t 1
ε ∞

−ε −∞

δ = δ =∫ ∫                          (1.13d)  

 

From Eq. 1.13(c), we see that ( )tδ  operates on a function such as ( )p t  

and produces the number, namely, ( )0p . As such ( )tδ  falls between a function 

and a transform (A transform operates on a function and produces a function). 

 

A number of conventional functions have a limiting behavior that 

approaches ( )tδ . We cite a few such functions below: 

Let    

(a) ( )1
1 tp t ga ⎛ ⎞= ⎜ ⎟ε ε⎝ ⎠

       (b) ( )2
1 tp t tri ⎛ ⎞= ⎜ ⎟ε ε⎝ ⎠

      (c) ( )3
1 sin tp t c ⎛ ⎞= ⎜ ⎟ε ε⎝ ⎠

 

Then, ( ) ( )
0

lim ip t t
ε→

= δ , 1, 2, 3i = . ( )3p t  is shown below in Fig. 1.13.   
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Fig. 1.13: ( )sinc  with the limiting behavior of ( )tδ  

 

( )tc ga f1Note that sin . Hence the area under the time function 1.⎛ ⎞⎛ ⎞ ←⎯→ ε =⎜ ⎟⎜ ⎟ε ε⎝ ⎠⎝ ⎠
 

From the above examples, we see that the shape of the function is not 

very critical; its area should remain at 1 in order to approach ( )tδ  in the limit. 

 

By delaying ( )tδ  by 0t  and scaling it by A , we have ( )0A t tδ − . This is 

normally shown as a spear (Fig. 1.14) with the weight or area of the impulse 

shown in parentheses very close to it. 
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Fig. 1.14: Symbol for ( )0A t tδ −  

 
Some properties of unit impulse 
P1)    Sampling (or sifting) property 

Let ( )p t  be any ordinary function. Then for 0a t b< < , 

( ) ( ) ( )0 0

b

a

p t t t dt p tδ − =∫  

(This is generalization of condition (iii)). Proof follows from making the 

change of variable 0t t− = τ  and noting ( )δ τ  is zero for 0τ ≠ . Note that 

for the sampling property, the values of ( )p t , 0t t≠  are of no 

consequence. 

P2)    Replication property 

 Let ( )p t  be any ordinary function. Then, 

( ) ( ) ( )0 0p t t t p t t∗ δ − = −  

 

The proof of this property follows from the fact, that in the process of 

convolution, every value of ( )p t  will be sampled and shifted by 0t  

resulting in ( )0p t t− . 

(Note: Some authors use this property as the operational definition of 

impulse function.) 
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P3)    Scaling Property 

 ( ) ( )1 , 0t tδ α = δ α ≠
α

 

Proof:   (i) Let , 0tα = τ α >  

( ) ( )1 1t dt d
∞ ∞

−∞ −∞

δ α = δ τ τ =
α α∫ ∫  

           ( )1 t dt
∞

−∞

= δ
α ∫  

             ( )1 t dt
∞

−∞

= δ
α ∫  

(ii) Let 0α < ; that is α = − α , and let t− α = τ . 

( ) ( )1 1t dt d
∞ ∞

−∞ −∞

δ α = δ τ τ =
α α∫ ∫  

( )1 t dt
∞

−∞

= δ
α ∫    

�
   

It is easy to show that ( ) ( )0 0
1t t t t⎡ ⎤δ α − = δ −⎣ ⎦ α

.      

       

Special Case: If 1α = − , we have the result ( ) ( )t tδ − = δ . 

 The above result is not surprising, especially if we look at the examples 

( )1p t  to ( )3p t , which are all even functions of t . Hence some authors call this 

as the even sided delta function. It is also possible to come up with delta 

functions as a limiting case of functions that are not even; that is, as a limiting 

case of one-sided functions. In such a situation we have a left-sided delta 

function or right-sided delta function etc. Left-sided delta function will prove to be 

useful in the context of probability density functions of certain random variables, 

subject matter of chapter 2. 
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Example 1.10 

 Find the value of 

 (a)  ( )
4

3

4

5t t dt
−

δ −∫  

 (b)  ( )
5.1

3

4.9

5t t dtδ −∫  

 

(a) ( )5tδ −  is nonzero only at 5t = . The range of integration does not include         

the impulse. Hence the integral is zero. 

(b) As the range of integration includes the impulse, we have a nonzero value for 

the product ( )3 5t tδ − . As ( )5tδ −  occurs at 5t = , we can write 

( ) ( )3 35 5 5t t tδ − = δ − . 

Hence, 

( ) ( )
5.1 5.1

3 3

4.9 4.9

5 5 5 125t t dt t dtδ − = δ − =∫ ∫    
�

 

 
Example 1.11 

 Let ( )
4
tp t tri ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. Find ( ) ( )2 1p t t⎡ ⎤∗ δ −⎣ ⎦ . 

 

 ( ) 1 1 12 1 2
2 2 2

t t t⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞δ − = δ − = δ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

 ( ) 1 1 1 1 1 1 2
2 2 2 2 2 4

tp t t p t tri⎡ ⎤ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞∗ δ − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
   

�
 

 

Let us now compute the Fourier transform of ( )tδ . From Eq. 1.11(b), we 

have, 

( ) ( ) 2 1j f tF t t e dt
∞

− π

−∞

⎡ ⎤δ = δ =⎣ ⎦ ∫                (1.14a)              
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How do we interpret this result? The spectrum of the unit impulse consists 

of frequency components in the range ( ),− ∞ ∞ , all with unity magnitude and 

zero phase shift, a fascinating result indeed! Hence exciting any electric network 

or system with a unit impulse is equivalent to exciting the network simultaneously 

with complex exponentials of all possible frequencies, all with the same 

magnitude (unity in this case) and zero phase shift. That is, the unit impulse 

response of a linear network is the synthesis of responses to the individual 

complex exponentials and we intuitively feel that the impulse response of a 

network should be able to characterize the system in the time domain. (We shall 

see a little later that if the network is linear and time invariant, a simple relation 

exists between the input to the network, its impulse response and the output). 

 

The dual of the Fourier transform pair of Eq. 1.14(a) gives us 

( ) ( )1 f f←⎯→ δ − = δ                            (1.14b) 

 

Based on Eq. 1.14(a) and Eq. 1.14(b), we make the following observation: 

a constant in one domain will transform into an impulse in the other domain. 

 

Eq. 1.14(b) is intuitively satisfying; a constant signal has no time variations 

and hence its spectral content ought to be confined to 0f = ; ( )fδ  is the proper 

quantity for the transform because it is zero for 0f ≠  and its inverse transform 

yields the required constant in time (note that only an impulse can yield a 

nonzero value when integrated over zero width). 

Because of the transform pair, 

( )1 f←⎯→ δ , 

we obtain another transform pair (from modulation theorem) 

( )02
0

j f te f fπ ←⎯→ δ −                           (1.15a) 

( )02
0

j f te f f− π ←⎯→ δ +                           (1.15b) 
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As 
0 02 2

0cos
2

j f t j f te et
π − π+

ω = , we have,  

( ) ( )0 0 0
1cos
2

t f f f f⎡ ⎤ω ←⎯→ δ − + δ +⎣ ⎦                (1.16) 

 

Similarly, 

( ) ( )0 0 0
1sin
2

t f f f f
j
⎡ ⎤ω ←⎯→ δ − − δ +⎣ ⎦                  (1.17) 

 

0cosF t⎡ ⎤ω⎣ ⎦  and [ ]0sinF tω  are shown in Fig. 1.15. 

 

 
Fig. 1.15: Fourier transforms of (a) 0cos tω  and (b) 0sin tω  

 

Note that the impulses in Fig. 1.15(b) have weights that are complex. It is 

fairly conventional to show the spectrum of 0sin tω  as depicted in Fig. 1.15(b); or 

else we can make two separate plots, one for magnitude and the other for phase, 

where the magnitude plot is identical to that shown in Fig. 1.15(a) and the phase 

plot has values of 
2
π

−  at 0f f=  and 
2
π

+  at 0f f= − . 

 

In summary, we have found the Fourier transform of  ( )tδ  (a time function 

with a discontinuity that is not finite), and using impulses in the frequency 

domain, we have developed the Fourier transforms of the periodic signals such 
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as 02j f te± π , 0cos tω  and 0sin tω , which are neither absolutely integrable nor 

square integrable. 

 

  We are now in a position to present both Fourier series and Fourier 

transform in a unified framework and talk only of Fourier transform whether the 

signal is aperiodic or not. This is because, for a periodic signal ( )px t , we have 

the Fourier series relation, 

( ) 02j n f t
p n

n
x t x e

∞
π

= −∞

= ∑  

Taking the Fourier transform on both the sides, 

( ) ( ) 02j n f t
p p n

n
F x t X f F x e

∞
π

= −∞

⎡ ⎤
⎡ ⎤ = = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑  

                      02j n f t
n

n
x F e

∞
π

= −∞

⎡ ⎤= ⎣ ⎦∑  

                      ( )0n
n

x f nf
∞

= −∞

= δ −∑       (1.18) 

  

 FT of ( )px t  is a function of the continuous variable f , whereas, in the FS 

representation of ( )px t , nx  is a function of the discrete variable n . However, as 

( )pX f  is purely impulsive, spectral components exist only at 0f n f= , with 

complex weights nx . As inversion of ( )pX f  requires integration, we require 

impulses in the spectrum. As such, the differences between the line spectrum of 

sec. 1.1 and spectral representation given by Eq. 1.18 are only minor in nature. 

They both provide the same information, differing essentially only in notation. 

 

 There is an interesting relation between nx  and the Fourier transform of 

one period of a periodic signal. Let, 
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( ) ( ) 0 0,
2 2

0 ,

p
T Tx t t

x t
outside

⎧ − < <⎪= ⎨
⎪⎩

 

     ( )
0

0

0

2
2

0
2

1
T

j n f t
n p

T
x x t e dt

T
− π

−

= ∫  

        ( )
0

0

0

2
2

0
2

1
T

j n f t

T
x t e dt

T
− π

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫  

                   ( ) ( ) 00
2

2

0 0

1 1
nj t

Tj n f tx t e dt x t e dt
T T

⎛ ⎞∞ ∞ − π⎜ ⎟
− π ⎝ ⎠

−∞ −∞

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦
∫ ∫  

The bracketed quantity is ( )
0

nf
T

X f
=

 

Hence, 
0 0

1
n

nx X
T T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
          (1.19) 

 

Example 1.12 
 Find the Fourier transform of the uniform impulse train 

( ) ( )0p
n

x t t nT
∞

= −∞

= δ −∑  shown in Fig 1.16 below. 

 

 
Fig. 1.16: Uniform impulse train 
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 Let ( )x t  be one period of ( )px t  in the interval, 0 0

2 2
T Tt− < < . Then, 

( ) ( )x t t= δ  for this example. But as ( ) 1tδ ←⎯→ , from Eq. (1.19) we have,  

0

1
nx

T
=  for all n . Hence,  

( ) ( )0
0

1
p

n
X f f n f

T

∞

= −∞

= δ −∑    
�

      (1.20) 

From Eq. 1.20, we have another interesting result: 

 A uniform periodic impulse train in either domain will transform into 

another uniform impulse train in the other domain. 

 

From the transform pair, ( ) 1tδ ←⎯→ , we have 

[ ] ( )1 21 j f tF e df t
∞

− π

− ∞

= = δ∫  

As ( ) ( )t tδ − = δ , we have, ( )2j f te df t
∞

− π

− ∞

= δ∫  

That is, ( )2j f te df t
∞

± π

− ∞

= δ∫         (1.21)   

Using Eq. 1.21, we show that ( )x t  and ( )X f  constitute a transform pair. 

Let ( ) ( ) 2ˆ j f tx t X f e df
∞

π

− ∞

= ∫  

    ( ) 2 2j f j f tx e d e df
∞ ∞

− π λ π

− ∞ − ∞

⎡ ⎤
⎢ ⎥= λ λ
⎢ ⎥⎣ ⎦

∫ ∫  

    ( ) ( )2j f tx e df d
∞ ∞

π − λ

− ∞ − ∞

= λ λ∫ ∫  

    ( ) ( )2j f tx e df d
∞ ∞

π − λ

− ∞ − ∞

⎡ ⎤
⎢ ⎥= λ λ
⎢ ⎥⎣ ⎦

∫ ∫  
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    ( ) ( ) ( )x t d x t
∞

− ∞

= λ δ − λ λ =∫  

As ( ) ( )x̂ t x t= , we have ( )X f  uniquely representing ( )x t . 

 

1.5.2 Impulse response and convolution 

Let ( )x t  be the input to a Linear, Time-Invariant (LTI) system resulting in 

the output, ( )y t . We shall now establish a relation between ( )x t  and ( )y t . 

 

From the replication property of the impulse, we have,  

( ) ( ) ( ) ( ) ( )x t x t t x t d
∞

− ∞

= ∗ δ = τ δ − τ τ∫  

Let ( )t⎡ ⎤δ⎣ ⎦R  denote the output (response) of the LTI system, when the 

input is exited by the unit impulse ( )tδ . This is generally denoted by the symbol 

( )h t  and is called the impulse response of the system. That is, when ( )tδ  is 

input to an LTI system, its output ( ) ( ) ( )y t t h t⎡ ⎤= δ =⎣ ⎦R . As the system is time 

invariant, ( ) ( )t h t⎡ ⎤δ − τ = −τ⎣ ⎦R . 

 

As the system is linear, ( ) ( ) ( ) ( )x t x h t⎡ ⎤τ δ − τ = τ − τ⎣ ⎦R  

and ( ) ( ) ( ) ( ) ( ) ( )x t y t x t d x h t d
∞ ∞

− ∞ − ∞

⎡ ⎤
⎡ ⎤ ⎢ ⎥= τ δ − τ τ = τ − τ τ⎣ ⎦ ⎢ ⎥⎣ ⎦

∫ ∫=R R  

That is, ( ) ( ) ( )y t x t h t= ∗          (1.22) 

 

The following properties of convolution can be established: 

Convolution operation 

P1) is commutative 

P2) is associative 
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P3)  distributes over addition 

 

P1) implies that ( ) ( ) ( ) ( )1 2 2 1x t x t x t x t∗ = ∗  

That is, ( ) ( ) ( ) ( )1 2 2 1x x t d x x t d
∞ ∞

− ∞ − ∞

τ − τ τ = τ − τ τ∫ ∫ . 

P2) implies that ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3x t x t x t x t x t x t⎡ ⎤ ⎡ ⎤∗ ∗ = ∗ ∗⎣ ⎦ ⎣ ⎦ , where the 

bracketed convolution is performed first. Of course, we assume that every 

convolution pair gives rise to bounded output. 

P3) implies that ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 1 3x t x t x t x t x t x t x t⎡ ⎤∗ + = ∗ + ∗⎣ ⎦ . 

 

Note that the properties P1) to P3) are valid even if the independent variable is 

other than t . 

 

Taking the Fourier transform on both sides of Eq. 1.22, we have, 

( ) ( ) ( )Y f X f H f=          (1.23) 

where ( ) ( )h t H f←⎯→ .  The quantity ( )H f  is referred to (quite obviously) as 

the frequency response of the system and describes the frequency domain 

behavior of the system. (As ( ) ( )
( )

Y f
H f

X f
= , it is also referred to as the transfer 

function of the LTI system). As ( )H f  is, in general, complex, it is normally shown 

as two different plots, namely, the magnitude response: ( ) .H f vs f  and the 

phase response: ( )arg .H f vs f⎡ ⎤⎣ ⎦ . 

 

If ( ) ( )1 2H f H f≠ , we then have ( ) ( )1 1
1 2F H f F H f− −⎡ ⎤ ⎡ ⎤≠⎣ ⎦ ⎣ ⎦ . That is, 

( ) ( )1 2h t h t≠ . In other words, the impulse response of any LTI system can be 

used to uniquely characterize the system in the time domain. 
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Example 1.13 
 RC-lowpass filter (RC-LPF) is one among the quite often used LTI 

systems in the study of communication theory. This network is shown in Fig. 

1.17. Let us find its frequency response as well as the impulse response. 

 

 
Fig. 1.17: The RC-lowpass filter 

  

One of the important properties of any LTI system is: if the input 

( ) 02j f tx t e π= , then the output ( )y t  is also a complex exponential given by 

( ) ( ) π= j f ty t H f e 02
0 . 

 

But, ( ) 020

0

1
2

1
2

j f tj f Cy t e
R

j f C

ππ
=

+
π

 

or ( ) 02

0

1
1 2

j f ty t e
j f RC

π=
+ π

, when ( ) 02j f tx t e π=  

Generalizing this result, we obtain, 

( ) 1
1 2

H f
j f RC

=
+ π

        (1.24) 

That is, 

 ( )
( )2

1
1 2

H f
f RC

=
+ π

                (1.25a) 

( ) ( ) ( )arg tan 2f H f arc f RC⎡ ⎤θ = = − π⎣ ⎦               (1.25b) 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.63

Let 1
2

F
RC

=
π

. Then,    

 ( ) 2
1

1
H f

f
F

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

                 (1.26) 

 

 A plot of ( ) .H f vs f  and ( )arg .H f vs f⎡ ⎤⎣ ⎦  is shown in Fig. 1.18. 

 

 
Fig. 1.18 RC-LPF: (a) Magnitude response 

           (b) Phase response 
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 Let us now compute ( ) ( )1h t F H f− ⎡ ⎤= ⎣ ⎦ . We have the transform pair 

 ( )ex t
j f
11

1 2
←⎯→

+ π
 

Hence, tex
RC RC j f RC

1 11
1 2

⎛ ⎞
←⎯→⎜ ⎟ + π⎝ ⎠

 

That is, 

 ( ) RC LPF

th t ex
RC RC

1 1
−

⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦

⎝ ⎠
       (1.27) 

This is shown in Fig. 1.19. 

 

 
Fig. 1.19: Impulse response of an RC-LPF 

         
�

 

 
Example 1.14 

 The input ( )x t  and the impulse response ( )h t  of an LTI system are as 

shown in Fig. 1.20. Let us find the output ( )y t  of the system. 
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Fig. 1.20: The input ( )x t  and the impulse response ( )h t  of an LTI system 

 

 Let ( ) ( ) ( )y t h x t d
∞

− ∞

= τ − τ τ∫  

To compute ( )h t  we have to perform the following three steps: 

i) Obtain ( )h τ  and ( )x t − τ  for a given 1t t= . 

ii) Take the product of the quantities in (i). 

iii) Integrate the result of (ii) to obtain ( )1y t . 

 ( )h τ is the same as ( )h t  with the change of variable from t  to τ .  Note 

that τ  is the variable of integration. ( )x t⎡ ⎤− τ⎣ ⎦  is actually ( )x t⎡ ⎤− τ −⎣ ⎦ ; that is, 

we first reverse ( )x τ  to get ( )x − τ and then shift by t , the time instant for which 

( )y t  is desired. This completes the operations in step (i). The operations 

involved in steps (ii) and (iii) are quite easy to understand. 

 

In quite a few situations, where convolution is to be performed, it would be 

of great help to have the plots of the quantities in step (i). These have been 
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shown in Fig. 1.21 for three different values of t , namely 0t = , 1t = −  and 

2t = . 

 

From Fig.1.21(c), we see that if 1t < − , then ( )τh  and ( )x t − τ  do not 

overlap; that ( ) 0y t = , for 1t < − . For 1 0t− < ≤ , overlap of ( )h τ  and 

( )x t − τ  increases as t  increases and the integral of the product (which is 

positive) increases linearly reaching a value of 1 for 0t = . For 0 2t< ≤ , net 

area of the product ( ) ( )τ − τh x t , keeps decreasing and at 2t = , we have, 

( ) ( ) 0h x t d
∞

− ∞

τ − τ τ =∫ . 
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Fig. 1.21: A few plots to implement step (i) of convolution: 

       (a): ( )h τ  

                (b), (c), (d): ( )x t − τ  for 0t = , 1t = −  and 2t =  respectively. 
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Using the similar arguments, ( )y t  can be computed for 2t > . The result 

of the convolution is indicated in Fig.1.22. 

 

 

Fig. 1.22: Complete output ( )y t  of Example 1.14 

 

(Sometimes, computing ( ) ( ) ( )y t x t h t= ∗ , could be very tricky and might 

even be sticky1.)  
�

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Some people claim that convolution has driven many electrical engineering students to 
contemplate theology either for salvation or as an alternative career (IEEE Spectrum, March 
1991, page 60). For an interesting cartoon expressing the student reaction to the convolution 
operation, see [3]. 

Exercise 1.3 

 Let  ( ) , 0
0 ,

te tx t
otherwise

− α⎧ ≥⎪= ⎨
⎪⎩

 

          
( ) , 0

0 ,

te th t
otherwise

− β⎧ ≥⎪= ⎨
⎪⎩  

where , 0α β > . Find ( ) ( ) ( )y t x t h t= ∗  for  

(i) α = βand (ii) α ≠ β  
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1.5.3 Signum function and unit step function 
Def. 1.4:    Signum Function 

We denote the signum function by ( )sgn t  and define it as, 

( )
1 , 0

sgn 0 , 0
1, 0

t
t t

t

>⎧
⎪= =⎨
⎪− <⎩

  
�

      (1.28) 

 

Def. 1.5:    Unit Step Function 

We denote the unit step function by ( )u t , and define it as, 

Exercise 1.4 

 Find ( ) ( ) ( )y t x t h t= ∗  where 

( ) 2 , 2
0 ,

t
x t

outside
⎧ <

= ⎨
⎩  

( ) 2 , 0
0 ,

te th t
outside

−⎧ ≥⎪= ⎨
⎪⎩

 

 

Exercise 1.5 

 Let ( )

1 , 950 1050
5
1 , 1050 950

10
0 ,

f Hz

X f f Hz

elsewhere

⎧ < <⎪
⎪
⎪= − < < −⎨
⎪
⎪
⎪⎩

 

(a) Compute and sketch ( ) ( ) ( )Y f X f X f= ∗  

(b) Let 1 50f Hz= , 2 2050f Hz=  and 3 20f Hz=  

Verify that ( ) ( ) ( )1 2 32 and 1Y f Y f Y f= = = . 
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( )

1 , 0
1 , 0
2
0 , 0

t

u t t

t

>⎧
⎪⎪= =⎨
⎪

<⎪⎩

   
�

        (1.29) 

We shall now develop the Fourier transforms of ( )sgn t  and ( )u t . 

 

( )⎡ ⎤⎣ ⎦sgnF t :  

Let ( ) ( ) ( )t tx t e u t e u t− α α= − −           (1.30) 

where α  is a positive constant. Then ( ) ( )
0

sgn limt x t
α →

= , as can be seen from 

Fig. 1.23. 

 

 

Fig. 1.23: ( )sgn t  as a limiting case of ( )x t  of Eq. 1.30 

 

( )
( )22

1 1 4
2 2 2

j fX f
j f j f f

− π
= − =

α + π α − π α + π
 

( ) ( )
0

1sgn limF t X f
j fα →

⎡ ⎤ = =⎣ ⎦ π
       (1.31) 

 

( )⎡ ⎤⎣ ⎦F u t  

As ( ) ( )1 1 sgn
2

u t t⎡ ⎤= +⎣ ⎦ , we have 
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( ) ( )1 1
2 2

U f f
j f

= δ +
π

        (1.32) 

 

 We shall now state and prove the FT of the integral of a function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Let ( ) tp t ga1
1 ⎛ ⎞= ⎜ ⎟ε ε⎝ ⎠

. Then, we know that ( ) ( )10
lim p t t
ε →

= δ . 

But ( ) ( )
0 0

1 10
2

1lim
2

p t dt p t dt
ε →

ε − ∞−

= =∫ ∫  

Properties of FT continued... 

P9)  Integration in the time domain 

Let ( ) ( )x t X f←⎯→  

Then, ( ) ( ) ( ) ( )01
2 2

t X
x d X f f

j f− ∞

τ τ ←⎯→ + δ
π∫            (1.33) 

Proof: 

Consider ( ) ( ) ( ) ( )x t u t x u t d
∞

− ∞

∗ = τ − τ τ∫ . As ( ) 0u t − τ =  for tτ > , 

( ) ( ) ( ) ( ) ( ) ( ) ( ). But
t

x t u t x d F x t u t X f U f
− ∞

⎡ ⎤∗ = τ τ ∗ =⎣ ⎦∫ .  

Hence, ( ) ( ) ( )1
2 2

t f
x d X f

j f− ∞

⎡ ⎤δ
τ τ ←⎯→ +⎢ ⎥π⎣ ⎦

∫  

Here there are two possibilities: 

(i) ( )0 0X = ; then ( ) ( )
2

t X f
x d

j f− ∞

τ τ ←⎯→
π∫  

(ii) ( )0 0X ≠ ; then ( ) ( ) ( ) ( )0
2 2

t X f X f
x d

j f− ∞

δ
τ τ ←⎯→ +

π∫  
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and ( ) ( )
2

1 10
2

lim 1p t dt p t dt
ε

∞

ε →
ε − ∞−

= =∫ ∫ . 

That is, 

( ) ( )
t

d u t
− ∞

δ τ τ =∫                  (1.34a) 

or ( ) ( )d u t
t

d t
= δ                  (1.34b) 

 

 We shall now give an alternative proof for the FT relation,  

 ( ) ( )u t f
j f

1 1
2 2

←⎯→ δ +
π

. 

As ( ) ( )d u t
t

d t
= δ , 

 ( )j f U f2 1π =  

or ( )U f
j f

1
2

=
π

 

But this is valid only for f 0≠  because of the following argument. 

 ( ) ( )u t u t 1+ − = . Therefore, 

 ( ) ( ) ( )U f U f f+ − = δ  

As ( )fδ  is nonzero only for f 0= , we have 

 ( ) ( ) ( ) ( )U U U f0 0 2 0+ − = = δ  or 

 ( ) ( )U f10
2

= δ . Hence, 

 ( )
( )f f

U f
f

j f

1 , 0
2

1 , 0
2

⎧ δ =⎪⎪= ⎨
⎪ ≠

π⎪⎩
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Example 1.15 

(a) For the scheme shown in Fig. 1.24, find the impulse response (This system is 

referred to as Zero-Order-Hold, ZOH). 

(b) If two such systems are cascaded, what is the overall impulse response 

(cascade of two ZOHs is called a First-Order-Hold, FOH). 

 

 
Fig. 1.24: Block schematic of a ZOH 

 

a) ( )h t  of ZOH:  

When ( ) ( )x t t= δ , we have  

          ( ) ( ) ( )v t t t T= δ − δ −  

Hence ( ) ( ) ZOH
y t h t⎡ ⎤= ⎣ ⎦ , the impulse response of the ZOH, is 

( ) ( ) ( ) ( ) 2
t t

Tt
d T d u t u t T ga

T− ∞ − ∞

⎛ ⎞−⎜ ⎟
δ τ τ − δ τ − τ = − − = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∫ ∫  

b) Impulse response of two LTI systems in cascade is the convolution of the 

impulse responses of the constituents. Hence,  

( ) 2 2
FOH

T Tt t
h t ga ga

T T

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎡ ⎤ = ∗⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

       t TT tri
T
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
  

�
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 Eq. 1.34(a) can also be established by working in the frequency domain. 

From Eq. 1.33, with ( ) ( )x t t= δ  and ( ) 1X f = , 

( ) ( ) ( )1 1 . That is,
2 2

t

d f U f
j f− ∞

δ τ τ ←⎯→ + δ =
π∫

 

( ) ( )
t

d u t
− ∞

δ τ τ =∫  

Eq. 1.34(b) helps in finding the derivatives of signals with discontinuities. 

Consider the pulse ( )p t  shown in Fig. 1.25(a). 

  

 
Fig. 1.25: (a) A signal with discontinuities 

             (b) Derivative of the signal at (a) 

 

( )p t  can be written as  

( ) ( ) ( ) ( )2 2 1 3p t u t u t u t= + − + + −  
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Hence, 

( ) ( ) ( ) ( )2 2 1 3
d p t

t t t
d t

= δ + − δ + + δ −  

which is shown in Fig. 1.25(b). From this result, we note that if there is a step 

discontinuity of size A  at 1t t=  in the signal, its derivative will have an impulse 

of weight A  at 1t t= . 

 

Example 1.16 

 Let ( )x t  be the doublet pulse of Example 1.7 (Fig.1.12). We shall find 

( )X f  

from ( )d x t
dt

. 

 

( ) ( ) ( ) ( )2
d x t

t T t t T
dt

= δ + − δ + δ −  

Taking Fourier transform on both the sides, 

( ) 2 22 2j f T j f Tj f X f e eπ − ππ = − +  

                   ( )2j f T j f Te eπ − π= −  

( )
( ) ( )

2
2 2

j f T j f T j f T j f Te e e e
X f jT

j f T j

π − π π − π− −
=

π
 

                       ( ) ( )2 sin sinjT c f T f T= π   
�

 

 

 

Example 1.17 

Let ( )x t , ( )h t  and ( )y t  denote the input, impulse response and the 

output respectively of an LTI system. It is given that, 

( ) ( )2tx t t e u t−=  and ( ) ( )4 th t e u t−= . 

Find  a) ( )Y f  
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 b) ( ) ( )1y t F Y f− ⎡ ⎤= ⎣ ⎦  

 c) ( ) ( ) ( )y t x t h t= ∗  

 

a)    From Eq. 1.22, we obtain 

( ) ( ) ( )Y f X f H f=  

If ( ) ( )2tz t e u t−= , then ( ) 1
2 2

Z f
j f

=
+ π

. 

As ( ) ( )x t t z t= , we have ( ) ( )
( )2

1
2 2 2

d Z fjX f
df j f

⎛ ⎞
= =⎜ ⎟π + π⎝ ⎠

 

( ) 1
4 2

H f
j f

=
+ π

 

Hence, ( )
( )2

1 1
4 22 2

Y f
j fj f

=
+ π+ π

 

 

(b) Using partial fraction expansion, 

( )
( )

( )2
1 1 1
4 2 4

2 2 4 22 2
Y f

j f j fj f

−
= + +

+ π + π+ π
 

Hence, ( ) ( ) ( ) ( )2 2 41 1 1
4 2 4

t t ty t e u t t e u t e u t− − −⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 

 

(c) ( ) ( ) ( )y t x h t d
∞

− ∞

= τ − τ τ∫  

    ( ) ( ) ( )42 te u e u t d
∞

− − τ− τ

− ∞

= τ τ − τ τ∫  

( ) 0y t =  for 0t <  because for t  negative, ( )u t − τ  is 1 only for τ  negative; but 

then ( ) 0u τ = . As ( ) 0u t − τ =  for tτ > , we have 

( ) ( )42

0

t
ty t e e d− − τ− τ= τ τ∫  
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                 4 2

0

t
te e d− τ= τ τ∫  

                   
2 2

4

0
2 2

t
t e ee d

τ τ
− ⎡ ⎤

= τ − τ⎢ ⎥
⎣ ⎦

∫  

                   
2 2

4

0
2 4

tt
t e ee t

τ
−

⎧ ⎫⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 

                  
2 2

4 1 , 0
2 4

t t
te et e t

−
− ⎡ ⎤−

= − ≥⎢ ⎥
⎣ ⎦

 

             0=  for 0t <     
�

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 1.6 

 Let ( )
( ) 0

0

0

1 cos 2 ,
2

0 ,
2

Tf t t
x t

Tt

⎧ + π <⎪⎪= ⎨
⎪ >
⎪⎩

 

where 0T  is the period of the cosine signal and 0
0

1f
T

= . 

(a) Show that 

( ) ( ) ( )3
2 0 0

03 2
2 2

d x t d x tT Tf t t
dtd t

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= π δ + − δ − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

(b) Taking the FT of the equation in (a) above, show that 

( ) ( )0
02 2

0

sinfX f c f T
f f

=
−
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1.6 Correlation Functions 
 Two basic operations that arise in the study of communication theory are: 

(i) convolution and (ii) correlation. As we have some feel for the convolution 

operation by now, let us develop the required familiarity with the correlation 

operation. 

 

 When we say that there is some correlation between two objects, we imply 

that there is some similarity between them. We would like to quantify this intuitive 

notion and come up with a formal definition for correlation so that we have a 

mathematically consistent and physically meaningful measure for the correlation 

of the objects of interest to us. 

 

 Our interest is in electrical signals. We may like to quantify, say, the 

similarity between a transmitted signal and the received signal or between two 

different transmitted or received signals etc. We shall first introduce the cross 

correlation functions; this will be followed by the special case, namely, auto-

correlation function. 

  

 In the context of correlation functions, we have to distinguish between the 

energy signals and power signals. Accordingly, we make the following definitions. 

 

1.6.1 Cross-correlation functions (CCF) 
 Let ( )x t  and ( )y t  be signals of the energy type. We now define their 

cross-correlation functions, ( ) ( )andx y y xR Rτ τ . 

Def. 1.6(a):    The cross-correlation function ( )x yR τ  is given by 

( ) ( ) ( )x yR x t y t d t
∞

∗

− ∞

τ = − τ∫   
�

             (1.35a) 

Def. 1.6(b):     The cross-correlation function ( )y xR τ  is given by 
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( ) ( ) ( )y xR y t x t d t
∞

∗

− ∞

τ = − τ∫   
�

             (1.35b) 

In Eq. 1.35(a), ( )y t∗ − τ  is a conjugated and shifted version of ( )y t , τ  

accounting for the shift in ( )y t∗ . Note that the variable of integration in Eq. 1.35 

is t ; hence ( )x yR  as well as ( )y xR  is a function of τ , the shift parameter ( τ  is 

also called the scanning parameter or the search parameter). 

 

 Let ( )x t  and ( )y t  be the signals of the power type. 

Def. 1.7(a):    The cross-correlation function, ( )x yR τ  is given by 

( ) ( ) ( )
2

2

1lim
T

x y T T
R x t y t dt

T
∗

→ ∞
−

τ = − τ∫    
�

           (1.36a) 

Def. 1.7(b):     The cross-correlation function, ( )y xR τ  is given by 

( ) ( ) ( )
2

2

1lim
T

y x T T
R y t x t dt

T
∗

→ ∞
−

τ = − τ∫    
�

           (1.36b) 

 

The power signals that we have to deal with most often are of the periodic 

variety. For periodic signals, we have the following definitions: 

Def. 1.8(a):    ( ) ( ) ( )
0

0

2

0
2

1
p p

T

x y p p
T

R x t y t dt
T

∗

−

τ = − τ∫   
�

           (1.37a) 

Def. 1.8(b):    ( ) ( ) ( )
0

0

2

0
2

1
p p

T

y x p p
T

R y t x t dt
T

∗

−

τ = − τ∫   
�

           (1.37b) 

Let t − τ = λ  in Eq. 1.35(a). Then, t = τ + λ  and dt d= λ . Hence, 

( ) ( ) ( )x yR x y d
∞

∗

− ∞

τ = λ + τ λ λ∫  

              ( )y xR∗= − τ          (1.38) 
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As ( ) ( )x y y xR Rτ ≠ τ , cross-correlation, unlike convolution is not in 

general, commutative. To understand the significance of the parameter τ , 

consider the situation shown in Fig. 1.26. 

 

 
Fig. 1.26: Waveforms used to compute ( )y xR τ  and ( )z xR τ  

 

If we compute ( ) ( )x t y t dt
∞

− ∞
∫ , we find it to be zero as ( )x t  and ( )y t  do not 

overlap. However, if we delay ( )x t  by half a unit of time, we find that 1
2

x t⎛ ⎞−⎜ ⎟
⎝ ⎠

 

and ( )y t  start overlapping and for 1
2

τ > , we have nonzero value for the 

integral. For the value of 2.75τ � , we will have a positive value for 
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( ) ( )y t x t dt
∞

− ∞

− τ∫ , which would be about the maximum of ( )y xR τ  for any τ . 

For values of 2.75τ > , ( )y xR τ  keeps decreasing, becoming zero for 5τ > . 

Similarly, if we compute ( )z xR τ , we find that ( )
maxz xR τ  would be much smaller 

than ( )
maxy xR τ  (Note that for 2.75τ � , the product quantity, ( ) ( )y t x t − τ , is 

essentially positive for all t ). If ( )y t  is the received signal of a communication 

system, then we are willing to accept ( )x t as the likely transmitted signal (we can 

treat the received signal as a delayed and distorted version of the transmitted 

signal) whereas if ( )z t  is received, it would be difficult for us to accept that ( )x t  

could have been the transmitted signal. Thus the parameter τ  helps us to find 

time-shifted similarities present between the two signals. 

 

 From Eq. 1.35(a), we see that computing ( )x yR τ  for a given τ , involves 

the following steps: 

(i) Shift ( )y t∗  by τ  

(ii) Take the product of ( )x t  and ( )y t∗ − τ  

(iii) Integrate the product with respect to t . 

The above steps closely resemble the operations involved in convolution. It is not 

difficult to see that 

 ( ) ( ) ( )x yR x y∗τ = τ ∗ − τ , because 

( ) ( ) ( ) ( )x y x t y t dt
∞

∗ ∗

− ∞

⎡ ⎤τ ∗ − τ = − τ −⎣ ⎦∫  

   ( ) ( )x t y t dt
∞

∗

− ∞

= − τ∫ ( )x yR= τ               (1.39a) 

Let ( ) ( )x y x yE f F R⎡ ⎤= τ⎣ ⎦ .  

Then, ( ) ( ) ( )x yE f F x y∗⎡ ⎤= τ ∗ − τ⎣ ⎦ ( ) ( )X f Y f∗=              (1.39b) 
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Example 1.18 

 Let ( ) ( )exp1x t t=  and ( )
2
ty t ga ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

Let us find (a) ( )x yR τ  and (b) ( )y xR τ . 

From the results of (a) and (b) above,  let us verify Eq. 1.38. 

(a) ( )τx yR : 

( )x t  and ( )y t  are sketched below (Fig. 1.27). 

 

 
Fig. 1.27: Waveforms of Example 1.18 

 

(i) 1τ < − : 

( )x t  and ( )y t − τ  do not overlap and the product is zero. That is, 

( ) 0x yR τ =  for 1τ < − . 

ii) 1 1− ≤ τ < : 

( ) ( )
1

1

0

1t
x yR e dt e

+ τ
− + τ−τ = = −∫  
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(iii) 1τ ≥ : 

( ) ( ) ( )
1

1 1

1

t
x yR e dt e e

τ +
− τ − − τ +−

τ −

τ = = −∫  

              1e e
e

− τ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

(b) ( )τy xR : 

(i) For 1τ > , ( )y t and ( )x t − τ  do not overlap. Hence, ( ) 0y xR τ =  for 1τ > . 

(ii) For 1 1− < τ ≤ , 

( ) ( )
1

t
y xR e dt− − τ

τ

τ = ∫  

     1e e eτ − τ −⎡ ⎤= −⎣ ⎦  

     ( )11 e− − τ= −  

(iii) For 1τ ≤ − , 

( ) ( )
1

1

t
y xR e dt− − τ

−

τ = ∫  

            1e e
e

τ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 

( )x yR τ  and ( )y xR τ  are plotted in Fig. 1.28. 
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Fig. 1.28: Cross correlation functions of Example 1.18 

 

From the plots of ( )x yR τ  and ( )y xR τ , it is easy to see that  

( ) ( )y x x yR Rτ = − τ    
�

 

 

Def. 1.9:    Two signals ( )x t  and ( )y t  are said to be orthogonal if  

( ) ( ) 0x t y t dt
∞

∗

− ∞

=∫   
�

      (1.40) 

Eq. 1.41 implies that for orthogonal signals, say ( )x t  and ( )y t  

( ) 0 0x yR τ =τ =                  (1.41a) 

We have the companion relation to Eq. 1.41(a), namely  

( )0 0y xR = , if ( )x t  and ( )y t  are orthogonal.             (1.41b) 

 

Let ( )px t  and ( )py t  be periodic with period 0T . Then, from Eq. 1.37(a), 

for any integer n ,  
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( ) ( )0p p p px y x yR nT Rτ + = τ  

That is, ( )
p px yR τ  is also periodic with the same period as ( )px t  and ( )py t . 

Similarly, we find ( )
p py xR τ . Derivation of the FT of ( )

p px yR τ  is given in appendix  

A1.2. 

 

1.6.2 Autocorrelation function (ACF) 
 ACF can be treated as a special case of CCF. In Eq. 1.35(a), let 

( ) ( )x t y t= . Then, we have 

( ) ( ) ( )x xR x t x t dt
∞

∗

− ∞

τ = − τ∫                (1.42a) 

Instead of ( )x xR τ , we use somewhat simplified notation, namely, ( )xR τ  which is 

called the auto correlation function of ( )x t .  

 

ACF compares ( )x t  with a shifted and conjugated version of itself. If 

( )x t  and ( )x t∗ − τ  are quite similar, we can expect large value for ( )xR τ , 

whereas as a value of ( )xR τ  close to zero implies the orthogonality of the two 

signals. Hence ( )xR τ  can provide some information about the time variations of 

the signal. 

 

 Let ( )t − τ = λ  in Eq. 1.42(a). We then have, 

( ) ( ) ( )xR x x d
∞

∗

− ∞

τ = τ + λ λ λ∫  

  ( ) ( )x t x t dt
∞

∗

− ∞

= + τ∫                  (1.42b) 

 Eq. 1.42(b) gives another relation for ( )xR τ . This is quite meaningful 

because, assuming τ  positive, ( )x t∗ − τ  is a right shifted version of ( )x t∗ . In Eq. 
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1.42(a), we keep ( )x t  fixed and move ( )x t∗  to the right by τ  and take the 

product; in Eq. 1.42(b), we keep ( )x t∗  fixed and move ( )x t  to the left by τ . This 

does not change the integral of Eq. 1.42(a), because if we let 1t t=  and 1τ = τ , 

the product of Eq. 1.42(a) is ( ) ( )1 1 1x t x t∗ − τ . This product is obtained from Eq. 

1.42(b) for 1 1t t= − τ . For a given 1τ = τ , as t  is varied, all the product 

quantities are obtained and hence the integral for a given 1τ  remains the same. 

(Note that shifting a function does not change its area.) 

 

If ( )x t  is a power signal, then the ACF is special case of Eq. 1.36(a). That 

is, for the power signals, we have 

( ) ( ) ( )
2

2

lim
T

x T T
R x t x t dt∗

→ ∞
−

τ = − τ∫               (1.43a) 

It can easily be shown that, 

( ) ( ) ( )
2

2

lim
T

x T T
R x t x t dt∗

→ ∞
−

τ = + τ∫               (1.43b) 

 

For power signals that are periodic, we have 

 ( ) ( ) ( )
0

0

2

0
2

1
T

x p p
T

R x t x t dt
T

∗

−

τ = − τ∫               (1.44a) 

  ( ) ( )
0

0

2

0
2

1
T

p p
T

x t x t dt
T

∗

−

= + τ∫               (1.44b) 

 

Properties of ACF (energy signals) 
P1)    ACF exhibits conjugate symmetry. That is, 

 ( ) ( )x xR R∗− τ = τ                  (1.45a) 
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Proof: Exercise 

 

 Eq. 1.45(a) implies that the real part of ( )xR τ  is an even function of τ  

where as the imaginary part is an odd function of τ . 

P2)  ( ) ( ) 2
0x xR x t d t E

∞

− ∞

= =∫                (1.45b) 

 where xE  is the energy of the signal ( )x t  (Eq. 1.10). 

P3)  Maximum value of ( )xR τ  occurs at the origin. That is, ( ) ( )0x xR Rτ ≤ . 

Proof: The proof of the above property follows from Schwarz’s inequality; 

which is stated below. 

Let ( )1g t  and ( )2g t  be two energy signals. 

Then, ( ) ( ) ( ) ( )
2

2 2
1 2 1 2g t g t dt g t dt g t dt

∞ ∞ ∞

− ∞ − ∞ − ∞

≤∫ ∫ ∫ . 

Let ( ) ( )1g t x t=  and ( ) ( )2g t x t∗= − τ . 

From the Schwarz’s Inequality, 

( ) ( ) ( ) ( )
2

22
x t x t dt x t dt x t dt

∞ ∞ ∞
∗ ∗

− ∞ − ∞ − ∞

− τ ≤ − τ∫ ∫ ∫  

           ( ) ( )2 2
0x xR R⎡ ⎤τ ≤ ⎣ ⎦  or 

   ( ) ( )0x xR Rτ ≤   
�

                (1.45c) 

P4)  Let ( )xE f  denote the Energy Spectral Density (ESD) of the signal ( )x t . 

That is, ( )x xE f df E
∞

− ∞

=∫  

Then, ( ) ( )x xR E fτ ←⎯→  

Proof 
From Eq. 1.39(b), 

 ( ) ( ) ( )x yE f X f Y f∗=  
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Let ( ) ( )x t y t= ; then ( ) ( ) 2
x xE f X f= . That is, 

( ) ( ) 2
xR X fτ ←⎯→  

But ( ) 2
X f  is the ESD of ( )x t . That is, 

( ) ( ) ( ) 2
x x xE f E f X f= =  

Hence, 

( ) ( )x xR E fτ ←⎯→    
�

                       (1.45d) 

 

 It is to be noted that ( )xE f  depends only on the magnitude spectrum, 

( )X f . Let ( )x t  and ( )y t  be two signals such that ( ) ( )X f Y f= . Then, 

( ) ( )x yR Rτ = τ . Note that if ( ) ( )x yf fθ ≠ θ , ( )x t  may not have any 

resemblance to ( )y t ; but their ACFs will be the same. In other words, ACF does 

not provide a unique description of the signal. Given ( )x t , its ACF is unique; 

but given some ACF, we can find many signals that have the given ACF. 

P5)  Let ( ) ( ) ( )x t y t v t= + . Then, 

 ( ) ( ) ( ) ( ) ( )x y v y v v yR R R R Rτ = τ + τ + τ + τ              (1.45e) 

Proof: Exercise 

If ( ) ( ) 0y v v yR Rτ = τ ≡  (that is, ( )y t  and ( )v t∗ − τ  are orthogonal for all 

τ ), then, ( ) ( ) ( )x y vR R Rτ = τ + τ                 (1.45f) 

In such a situation, ( )xR τ is the superposition of the ACFs of the components of 

( )x t . This also leads to the superposition of the ESDs; that is 

 ( ) ( ) ( )x y vE f E f E f= +                 (1.45g) 

 

Properties of ACF (periodic signals) 
 We list below the properties of the ACF of periodic signals. Proofs of these 

properties are left as an exercise. 
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P1)  ACF exhibits conjugate symmetry 

 ( ) ( )
p px xR R∗− τ = τ                  (1.46a) 

P2)  ( ) ( )
0

0

2 2

0 0
2

1
p p

T

x p x
T

R x t d t P
Tτ =

−

τ = =∫               (1.46b) 

where 
pxP  denotes the average power of ( )px t  (Sec. 1.2.2, Pg. 1.16). 

P3) ( ) ( )0
px xR Rτ ≤                  (1.46c) 

That is, the maximum value of ( )
pxR τ  occurs at the origin. 

P4) ( ) ( )0 , 1, 2, 3, . . .
p px xR nT R nτ ± = τ =               (1.46d) 

where 0T  is the period of ( )px t . That is, the ACF of a periodic signal is also 

periodic with the same period as that of the signal. 

P5) Let ( )
pxP f  denote the Power Spectral Density (PSD) of ( )px t . That is, 

 ( )
p px xP f df P

∞

− ∞

=∫ . Then, 

 ( ) ( )
p px xR P fτ ←⎯→                 (1.46e) 

As ( )
pxR τ is periodic, we expect the PSD to be purely impulsive. 

 

 

 

 

 

 

 

 

 

Example 1.19 

a) Let ( )x t  be the signal shown in Fig. 1.29. Compute and sketch ( )xR τ . 

Exercise 1.7 

 Let ( ) ( ) 0 0,
2 2

0 ,

p
T Tx t t

x t
outside

⎧ − < <⎪= ⎨
⎪⎩

   and    ( ) ( )x t X f←⎯→ . 

Show that ( ) ( )
2

2
0 00

1
p px x

n

n nF R P f X f
T TT

∞

= − ∞

⎛ ⎞ ⎛ ⎞⎡ ⎤τ = = δ −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠
∑  
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b) ( )x t  of part (a) is given as the input to an LTI system with the impulse 

response ( )h t . If the output ( )y t  of the system is ( )3xR t − , find ( )h t . 

 

 
Fig. 1.29: ( )x t  of Example 1.19 

 

a) Computation of ( )xR τ : 

We know that the maximum value of the ACF occurs at the origin; that is, at 

0τ =  and ( )0x xR E= . 

 ( ) 10 1. 1 . 2 1.5
4xR = + =  

Consider the product ( ) ( )x t x t − τ  for 0 1< τ ≤ . As τ  increases in this range, 

the overlap between the positive parts of the pulses ( )x t  and ( )x t − τ  (and also 

between the negative parts and these pulses) decreases, which implies a 

decrease in the positive value for the integral of the product. In addition, a part of 

( )x t − τ  that is positive overlaps with the negative part of ( )x t , there by further 

reducing the positive value of the ( ) ( )x t x t − τ∫ . (The student is advised to 

make a sketch of ( )x t  and ( )x t − τ .) This decrease is linear (with a constant 

slope) until 1τ = . The value of ( )1xR  is 1
4

⎛ ⎞−⎜ ⎟
⎝ ⎠

. For 1 2< τ < , the positive part 

of ( )x t − τ  fully overlaps with the negative part of ( )x t ; this makes ( )xR τ  further 

negative and the ACF reaches its minimum value at 2τ = . As can easily be 
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checked, ( ) 12
2xR ⎛ ⎞= −⎜ ⎟

⎝ ⎠
. As τ  increases beyond 2, the ( )xR τ  becomes less 

and less negative and becomes zero at 3τ = . As ( ) ( )x xR R− τ = τ , we have all 

the information necessary to sketch ( )xR τ , which is shown in Fig. 1.30. 

 

 
Fig. 1.30: ACF of the signal of Example 1.19 

 

b) Calculating ( )h t : 

We have ( ) ( ) ( )y t x t h t= ∗  

                        ( )3xR t= −  

 ( ) ( )3xR t t= ∗ δ −  

But from Eq. 1.39(a), ( ) ( ) ( )xR t x t x t= ∗ − . 

 

Hence, ( ) ( ) ( ) ( )3y t x t x t t⎡ ⎤= ∗ − ∗ δ −⎣ ⎦  

 ( ) ( )3x t x t⎡ ⎤= ∗ − −⎣ ⎦  

That is, ( ) ( )3h t x t⎡ ⎤= − −⎣ ⎦  

which is sketched in Fig. 1.31. 
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           Fig. 1.31 Impulse response of the LTI system of Example 1.19       

�
 

 

Example 1.20 

 Let ( ) ( )0cosx t A t= ω + θ . We will find ( )xR τ . 

 

Method 1: 

 ( ) ( ) ( )
0

0

2
2

0 0
0

2

1 cos cos

T

x
T

R A t t dt
T

−

⎡ ⎤τ = ω + θ ω − τ + θ⎣ ⎦∫  

  ( ){ }
0

0

2 2

0 0 0
0

2

1 cos 2 2 cos
2

T

T

A t dt
T

−

= ω − ω τ + θ + ω τ∫  

  
2

0cos
2

A
= ω τ  

We find that:  

(i) ( )xR τ  is periodic with the same period as ( )x t . 

(ii) Its maximum value occurs at 0τ =  

(iii) The maximum value is 
2

2
A  which is the average power of the signal. 

(iv) ( )xR τ  is independent of θ . 
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Method 2: 

 ( ) ( ) ( )0 0
0cos

2 2
j t j tA AA t e eω + θ − ω + θ⎡ ⎤ω + θ = +⎢ ⎥⎣ ⎦

 

         ( ) ( )v t w t= +  

As ( ) ( ) ( )x t v t w t= + , we have 

 ( ) ( ) ( ) ( ) ( )x v w v w w vR R R R Rτ = τ + τ + τ + τ . 

It is not difficult to see that ( ) ( ) 0v w w vR Rτ = τ =  for all τ . Hence, 

 ( ) ( ) ( )x v wR R Rτ = τ + τ  

But ( ) ( )w vR R∗τ = τ . Hence, 

 ( ) ( )2 Rex vR R⎡ ⎤τ = τ⎣ ⎦  

( ) ( ) ( )
0 0

00 0

0 0

2 22 2

0 0
2 2

1
4 4

T T

j tj t j
v

T T

A AR e e dt e dt
T T

⎡ ⎤− ω − τ + θω + θ ω τ⎣ ⎦

− −

⎡ ⎤
⎢ ⎥τ = =⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫  

  0
2

4
jA e ω τ=  

Hence ( ) ( )
2

0cos
2x

AR τ = ω τ   
�

 

 

Example 1.21 

 Let ( ) ( )sin 2 , 0 2x t t t= π ≤ ≤ . Let us find its ACF and sketch it. 

 

In Fig. 1.32, we show ( )x t  and ( )x t − τ  for 0 2< τ < . Note that if 2τ > , 

( ) ( ) 0x t x t − τ =  which implies ( ) 0xR τ =  for 2τ > . 
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Fig. 1.32: (a) Sinusoidal pulse of Example 1.21 and (b) its shifted version 

 

( ) ( ) ( )
2

sin 2 sin 2xR t t dt
τ

⎡ ⎤τ = π π − τ⎣ ⎦∫  

  ( ) ( )2 cos 2 cos 4 2
2

t
dt

τ

πτ − π − πτ
= ∫  

  ( ) 22 sin 4 2cos 2
2 4

tt

τ τ

⎡ ⎤π − πτπτ⎡ ⎤= − ⎢ ⎥⎢ ⎥ π⎣ ⎦ ⎣ ⎦
 

  ( ) ( ) ( ) ( )τ πτ π − πτ − πτ
= πτ − −

π
cos 2 sin 8 2 sin 2

cos 2
2 4

 

  ( ) cos 2 sin 2cos 2 , 0 2
2 2

τ πτ πτ
= πτ − + ≤ τ ≤

π
 

As ( ) ( )x xR R− τ = τ , we have 

 ( ) ( ) ( ) ( )

,

sin 2cos 2
cos 2 , 2

2 2
0

xR
otherwise

⎧ π ττ πτ
πτ − + τ ≤⎪τ = π⎨

⎪
⎩

   

( )xR τ  is plotted in Fig. 1.33. 
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          Fig. 1.33: ( )xR τ  of Example 1.21  

�
 

 

 

1.7 Hilbert Transform 
 Let ( )x t  be the input of an LTI system with the impulse response ( )h t . 

Then, the output ( )y t  is 

 ( ) ( ) ( )y t x t h t= ∗  

or ( ) ( ) ( )Y f X f H f= ∗  

That is, ( ) ( ) ( )Y f X f H f=                 (1.47a) 

   ( ) ( ) ( )y x hf f fθ = θ + θ                 (1.47b) 

 

From Eq. 1.47 we see that an  LTI system alters, in general, both the magnitude 

spectrum and the phase spectrum of the input signal. However, there are certain 

networks, called all pass networks, which would alter only the (input) phase 

spectrum. That is, if ( )H f  is the frequency response of an all pass network, then  



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.96

 ( ) ( )Y f X f=  

 ( ) ( ) ( )y x hf f fθ = θ + θ  

An interesting case of all-pass network is the ideal delay, with the impulse 

response ( ) ( )dh t t t= δ − . Though ( ) ( )y xf fθ ≠ θ , phase shift imparted to each 

input spectral component is proportional to the frequency, the proportionality 

constant being 2 dtπ . Another interesting network is the Hilbert transformer. Its 

output is characterized by:  

 (i) ( ) ( )Y f X f= , 0f ≠  and 

 (ii) ( )
( )

( )

, 0
2

, 0
2

x

y

x

f f
f

f f

π⎧− + θ >⎪⎪θ = ⎨ π⎪ + θ <
⎪⎩

 

That is, a Hilbert transform is essentially a 
2
π⎛ ⎞±⎜ ⎟

⎝ ⎠
 phase shifter. 

      

 Hence, we define the Hilbert transformer in the frequency domain, with the 

frequency response function 

 ( ) ( )sgnH f j f= −                  (1.48a) 

where ( )
1 , 0

sgn 0 , 0
1 , 0

f
f f

f

>⎧
⎪= =⎨
⎪− <⎩

 

As ( ) 1sgnj f
t

⎡ ⎤− ←⎯→⎣ ⎦ π
, 

 ( ) 1h t
t

=
π

                  (1.48b) 

When ( )x t  is the input to a Hilbert transformer, we denote its output as ( )x̂ t  

where 

 ( ) ( ) 1x̂ t x t
t

= ∗
π
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         ( )
( )

1 x
d

t

∞

− ∞

τ
= τ

π − τ∫ 1                (1.49a) 

and   ( ) ( ) ( )ˆ sgnX f j f X f= −                 (1.49b) 

( )x̂ t  is called the Hilbert transform of ( )x t . 

Note: Unlike other transforms, both ( )x t  and ( )x̂ t  are functions of the same 

variable ( t  in our case). 

 

 Hilbert Transform (HT) will prove quite useful later on in the study of 

bandpass signals and single sideband signals. For the present, let us look at 

some examples of HT. 

 

Example 1.22 

 Hilbert transform ( )tδ . 

Let ( ) ( )x t t= δ . Let us find ( )x̂ t . 

 

 As ( ) 1tδ ←⎯→ , we have 

 ( ) ( )ˆ sgnF t j f⎡ ⎤δ = − ⇒⎣ ⎦  

 ( ) 1ˆ t
t

δ =
π

 

This also establishes the relation, ( ) 1 1 !!t
t t

⎡ ⎤
δ ∗ =⎢ ⎥π π⎣ ⎦

  
�

 

 

Example 1.23 
 HT of a cosine signal. 

Let ( ) ( )0cos 2x t f t= π . Let us find ( )x̂ t . 

 

                                                 
1 This integral is actually Cauchy’s principal value. 
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 ( ) ( ) ( )0 0
1
2

X f f f f f⎡ ⎤= δ − + δ +⎣ ⎦  

 ( ) ( ) ( )ˆ sgnX f j f X f= − . That is, 

 ( ) ( ) ( )0 0
1ˆ

2
X f f f f f

j
⎡ ⎤= δ − − δ +⎣ ⎦  

That is, ( ) ( )0ˆ sin 2x t f t= π . 

Alternatively,  

if ( ) 02
1

j f tx t e π= , then ( ) ( )02 2
1ˆ

j f t
x t e

ππ −
=  

and if ( ) 02
2

j f tx t e− π= , then ( ) ( )02 2
2ˆ

j f t
x t e

π− π −
=  

Hence, 

 ( ) ( ) ( ) ( )⎡ ⎤= π = +⎣ ⎦x t f t x t x t0 1 2
1cos 2
2

 has ( ) 0ˆ cos
2

x t t π⎛ ⎞= ω −⎜ ⎟
⎝ ⎠

 

  ( )0sin t= ω  

Similarly, we can show that if ( ) ( )0sin 2x t f t= π , then ( ) 0ˆ cosx t t= − ω .        
�

 

 

Example 1.24 

 Let ( ) 2
1

1
x t

t
=

+
. Let us find ( )x̂ t . 

 

 ( ) ( ) 1x̂ t x t
t

= ∗
π

 

  
( )( )2

1 1
1

d
t

∞

− ∞

= τ
π + τ − τ∫  

  
( )2 2

1 1
1 1

t dd
tt

∞ ∞

− ∞ − ∞

⎡ ⎤+ τ τ
⎢ ⎥= τ +

π − τ+ + τ⎢ ⎥⎣ ⎦
∫ ∫  

As 2
1 0

1
d d

t

∞ ∞

− ∞ − ∞

τ
τ = τ =

− τ+ τ∫ ∫ , we have 
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 ( ) 2 2
1 1ˆ

1 1
tx t d
t

∞

− ∞

⎡ ⎤
⎢ ⎥= τ

π + + τ⎢ ⎥⎣ ⎦
∫  

As the bracketed integral is equal to π , we have 

 ( ) 2
ˆ

1
tx t
t

=
+

  
�

 

 

 

 

 

 

 

 

 

 
Example 1.25 

 Let ( ) ( ) cos 2 cx t m t f t= π  where ( )m t  is a lowpass signal with 

( ) 0M f =  for f W>  and cf W> . We will show that 

 ( ) ( ) ( ) ( ) n ( )ˆ sin 2 cos 2c cx t m t f t m t f t= π = π . 

  

 ( ) ( ) ( )1
2 c cX f M f f M f f⎡ ⎤= − + +⎣ ⎦  

 ( ) ( ) ( ) ( )1ˆ sgn
2 c cX f M f f M f f j f⎡ ⎤ ⎡ ⎤= − + + −⎣ ⎦ ⎣ ⎦  

But ( )cM f f⎡ ⎤−⎣ ⎦  is nonzero only for 0f >  

and ( )cM f f⎡ ⎤+⎣ ⎦  is nonzero only for 0f < . 

Hence, 

 ( )
( )

( )

2

2

1 , 0
2ˆ
1 , 0
2

j
c

j
c

M f f e f
X f

M f f e f

π−

π

⎧ − >⎪⎪= ⎨
⎪ + <
⎪⎩

 

Exercise 1.8 

(a) Let ( )1
sin tx t

t
= . Show that ( )1

1 cosˆ tx t
t

−
=  

(b) Let ( ) ( )2x t ga t= . Show that ( )2

1
1 2ˆ ln 1

2

t
x t

t

−
= −

π +
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Consider ( ) ( ) ( ) ( ) ( )1sin 2
2c c cm t f t M f f f f f

j
⎡ ⎤π ←⎯→ ∗ δ − − δ +⎣ ⎦  

             ( ) ( ) ( )2 21
2

j jj
c cM f f f e e e f f

π π
− −π

⎡ ⎤
←⎯→ ∗ δ − + δ +⎢ ⎥

⎢ ⎥⎣ ⎦
 

             ( ) ( ) ( )2 21
2

j j
c cM f f f e e f f

π π
−⎡ ⎤

←⎯→ ∗ δ − + δ +⎢ ⎥
⎢ ⎥⎣ ⎦

 

That is, 

 ( ) ( )
( )

( )

2

2

1 , 0
2sin 2
1 , 0
2

j
c

c
j

c

M f f e f
F m t f t

M f f e f

π
−

π

⎧
− >⎪

⎪⎡ ⎤π = ⎨⎣ ⎦
⎪ + <⎪⎩

 

As ( ) ( )ˆsin 2 cF m t f t X f⎡ ⎤π =⎣ ⎦ , we have 

 ( ) ( ) ( ) ( ) n ( )ˆ sin 2 cos 2c cx t m t f t m t f t= π = π    
�

 

Note: It is possible to establish even a stronger result, which is stated below. 

  

 Let ( ) ( ) ( )x t m t v t=  where ( )m t  is a lowpass signal with ( ) 0M f =  for 

f W>  and ( )v t  is a high-pass signal with ( ) 0V f =  for f W< . Then 

( ) ( ) ( )ˆ ˆx t m t v t= . [We assume that there are no impulses in either ( )M f  or 

( )V f . 

 

1.7.1 Properties of Hilbert transform 

 Our area of application of HT is real signals. Hence, we develop the 

properties of HT as applied to real signals. We assume that the signals under 

consideration have no impulses in their spectra at 0f = . 

P1)  A signal ( )x t  and its HT, ( )x̂ t , have the same energy. 

Proof: ( ) 2
xE X f d f

∞

− ∞

= ∫  
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As ( ) ( ) ( )ˆ sgnX f j f X f= −  

    ( ) ( )X̂ f X f= . Hence =x xE E ˆ .  
�

 

Note: Though ( )
0

ˆ
f

X f
=

 is zero, it will not change the value of the integral; and 

hence the energy. 

 

P2)  ( ){ } ( )ˆHT x t x t⎡ ⎤ = −⎣ ⎦  

That is, applying the HT twice on a given signal ( )x t  changes the sign of the 

signal. Intuitively, this is satisfying. Each time we perform HT, we change the 

phase of a spectral component in ( )X f  by 090 . Hence, performing the 

transformation twice results in a phase shift of 0180 . 

Proof: ( ) ( ) ( )ˆ sgnx t j f X f←⎯→ −  

 ( ) ( ) ( ) ( )ˆ sgn sgnHT x t j f j f X f⎡ ⎤ ⎡ ⎤←⎯→ − −⎣ ⎦ ⎣ ⎦  

   ( )( ) ( ) ( )2sgnj f X f X f= − = −    
�

 

 

Example 1.26 

 Let ( ) 1x t
t

= . We shall find ( )x̂ t . 

 

From Example 1.22, we have ( ) 1ˆ t
t

δ =
π

. 

Hence, 

 ( ) ( ) 1ˆHT t t HT
t

⎡ ⎤⎡ ⎤δ = − δ = ⎢ ⎥⎣ ⎦ π⎣ ⎦
. That is, 

 ( )1HT t
t
⎡ ⎤ = − πδ⎢ ⎥⎣ ⎦

   
�

 

 

P3)  A signal ( )x t  and its HT, ( )x̂ t , are orthogonal. 
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Proof: We know that 

 ( ) ( ) ( ) ( )ˆˆx t x t d t X f X f d f
∞ ∞

− ∞ − ∞

= −∫ ∫  

(See the note, property P10, Sec. 1.4). Hence, 

 ( ) ( ) ( ) ( ) ( )ˆ sgnx t x t d t X f j f X f d f
∞ ∞

− ∞ − ∞

⎡ ⎤= − − −⎣ ⎦∫ ∫  

As ( )x t  is real, ( ) ( )X f X f∗− = . Therefore, 

 ( ) ( ) ( ) ( ) 2ˆ sgnx t x t d t j f X f d f
∞ ∞

− ∞ − ∞

= − −∫ ∫  

       0=      (Note that the integrand on the RHS is odd)       
�

 

 

P4) ( )HT x t⎡ ⎤α⎣ ⎦ , where α  is a nonzero constant is ( ) ( )ˆsgn x t⎡ ⎤α α⎣ ⎦ . 

Proof: We will first establish that if ( ) ( ) ( )y t x t h t= ∗  and 

( ) ( ) ( )z t x t h t= α ∗ α , then ( ) ( )1z t y t= α
α

. 

If ( ) ( ) ( )z t x t h t= α ∗ α , then 

    ( ) 2
1 f fZ f X H

a a
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠α

 

Also,  ( ) 1 fy t Y ⎛ ⎞α ←⎯→ ⎜ ⎟α α⎝ ⎠
, where 

 f f fY X H⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟α α α⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

            ( )2 Z f= α  

Hence, ( ) ( ) ( )21y t Z f Z fα ←⎯→ α = α
α

 

That is, ( ) ( )y t
z t

α
=

α
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 ( ) ( ) 1HT x t x t
t

⎡ ⎤α = α ∗⎣ ⎦ π
 

           ( ) 1x t
t

⎛ ⎞
= α ∗ α⎜ ⎟απ⎝ ⎠

 

           ( ) 1x t
t

⎡ ⎤
= α α ∗⎢ ⎥απ⎣ ⎦

 

As ( ) ( )1 ˆx t x t
t

⎡ ⎤
∗ =⎢ ⎥π⎣ ⎦

, we have ( ) ( )ˆ1 x t
x t

t
α⎡ ⎤

α ∗ =⎢ ⎥πα α⎣ ⎦
. 

Hence ( ) ( ) ( ) ( )ˆ ˆsgnHT x t x t x tα
⎡ ⎤α = α = α α⎣ ⎦ α

.  
�

 

As a simple illustration of the property, let ( ) 2
1

1
x t

t
=

+
 and 2α = . Then 

( ) 2
1

1 4
x t

t
α =

+
. Let us obtain 2

1
1 4

HT
t

⎡ ⎤
⎢ ⎥+⎣ ⎦

 using P4. 

As ( ) 2
ˆ

1
tx t
t

=
+

, ( )
( )2 2 2

1 2 2sgn 2
1 4 1 41 2

t tHT
t tt

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥+ +⎢ ⎥+⎣ ⎦ ⎣ ⎦

 

If 2α = − , ( ) 2
1

1 4
x t

t
α =

+
 which is the same as with 2α = . 

With 2α = − , ( ) ( ) 2
2ˆsgn

1 4
tx t
t

⎛ ⎞−
α α = − ⎜ ⎟

+⎝ ⎠
 

         2
2

1 4
t
t

=
+

, as required 

 

 

 

 
 

 
 

Exercise 1.9 

 Using the result sin 1 cost tHT
t t

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 

find the ( )sinHT c t⎡ ⎤⎣ ⎦ . 
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P5)   The cross correlation function of ( )x t  and ( )x̂ t , ( )ˆx xR τ  is the negative of 

the HT of ( )ˆ
xR τ . That is, 

 ( ) ( )ˆ
ˆ

xx xR Rτ = − τ  

Proof: ( ) ( ) ( )ˆ ˆx xF R F x x⎡ ⎤ ⎡ ⎤τ = τ ∗ − τ⎣ ⎦⎣ ⎦  

                    ( ) ( ) ( )sgnX f j f X f⎡ ⎤= − − −⎣ ⎦  

                              ( ) ( ) ( ) ( )2 2
sgn sgnX f j f X f j f⎡ ⎤ ⎡ ⎤= − − =⎣ ⎦ ⎣ ⎦  

That is, 

 ( ) ( )ˆ
ˆ

xx xR Rτ = − τ    
�

 

 
 

 

 

 

 

1.8 Bandpass Signals 
 Consider a communication system that transmits the signal 

( ) ( ) cos 2 cs t m t f t= π , where ( )m t  is a (lowpass) message signal and 

( )cos 2 cf tπ  is the (high-frequency) carrier term. Then the spectrum ( )S f  of the 

transmitted signal is ( ) ( ) ( )1
2 c cS f M f f M f f⎡ ⎤= − + +⎣ ⎦ . If ( )M f  is as shown in 

Fig 1.34(a), then for a carrier frequency 100cf k Hz= , ( )S f  will be as shown in 

Fig 1.34(b). 

 

Exercise 1.10 

 Show that ( ) ( )ˆ
ˆ

xx xR Rτ = τ . 
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Fig. 1.34: A typical narrowband, bandpass spectrum 

 

 We see that the spectrum of ( )s t  is confined to the frequency interval 

95 105f k Hz≤ ≤ . Where as ( )m t  is a lowpass signal, ( )s t  is a bandpass 

signal. Moreover ( )s t  is a narrowband, bandpass signal because the spectral 

width of ( )S f , ( )105 95 10 k Hz− = , is quite small in comparison with the carrier 

frequency cf  of 100 k Hz . Hence, we call ( )s t  as a Narrowband, Bandpass 

(NBBP) signal. Fig 1.35 shows some more spectra that represent NBBP signals. 
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Fig. 1.35: A few more examples of NBBP spectra 

            

NBBP signals play an important role in the communication process. Let us 

assume that the rest of the communication system (channel, a part of the 

receiver etc.)  is also of the bandpass variety. The study of such transmission-

reception schemes becomes a little complicated because of the presence of the 

carrier term in some form or the other (The term cos ctω  in ( ) cos cm t tω  is 

meant only to “carry” the information ( )m t  and is not part of the information) If 

we develop tools to study bandpass signals and bandpass systems, independent 

of the carrier, the analysis of the communications schemes would become 

somewhat simplified. (That is, bandpass signals and bandpass systems are 

studied in terms of their lowpass equivalents.) The mathematical concepts of pre-

envelope and complex envelope have been developed for this purpose. We shall 

make use of these concepts in our studies on linear modulation and angle 

modulation. 
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1.8.1 Pre-envelope 
Def. 1.10: Let ( )x t  be any real signal with the FT, ( )X f . We define its pre-

envelope as,  

( ) ( ) ( )ˆpex t x t j x t= +   
�

                       (1.50a) 

Taking the Fourier transform of Eq. 1.54(a), we have 

 ( ) ( ) ( ) ( )sgnpeX f X f j j f X f⎡ ⎤= + −⎣ ⎦  

    ( ) ( ) ( )sgnX f f X f= +  

 

That is, 

 ( )
( )
( )

2 , 0

0 , 0
0 , 0

pe

X f f

X f X f
f

⎧ >
⎪

= =⎨
⎪ <⎩

               (1.50b) 

 

(We assume that ( )X f  has no impulse at 0f = ). That is, ( )pex t  has spectrum 

only for 0f ≥ , even though ( )X f  is two sided (As ( )pex t  has spectral 

components only for 0f ≥ , some authors use the symbol ( )x t+  to denote the 

pre-envelope of ( )x t ). Of course, ( )pex t∗  will have spectrum only for 0f ≤ ). 

Consider the signals ( )1x t  and ( )2x t  whose spectra are shown in Fig. 1.36. 
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Fig. 1.36: Typical two-sided spectra 

 

The corresponding ( )1, peX f  and ( )2, peX f  are as shown in Fig. 1.37(a) and (b) 

respectively. 

 

 
Fig. 1.37: Fourier transform of (a) ( )1, pex t  and (b) ( )2, pex t  of the signals in 
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Because of Eq. 1.50(b), we can write 

 ( ) ( ) 2

0

2 j f t
pex t X f e d f

∞
π= ∫        (1.51) 

 

Example 1.27 

 Let ( ) 2
1

1
x t

t
=

+
. Let us find ( )peX f  and ( )pex t . 

 

 First, let us compute ( )X f . From Example 1.5, we know that 

2
2

1
1

fe
t

− π←⎯→ π
+

. 

Hence ( ) ( )22 f
peX f e u f− π= π , where ( )

1 , 0
1 , 0
2
0 , 0

f

u f f

f

>⎧
⎪⎪= =⎨
⎪

<⎪⎩

. 

We require ( )1
peF X f− ⎡ ⎤⎣ ⎦ . 

As ( )ex t
j f
11

1 2
←⎯→

+ π
 

( )ex t
j f

1 11 2
2 1

π ←⎯→
π +

. 

From duality, ( ) ( )fex f e u f
j t

2 12 1 2 2
1

− ππ π = π ←⎯→
−

. 

That is, ( ) 2
1 1

1 1pe
j tx t

j t t
+

= =
− +

 

    2 2
1

1 1
tj

t t
= +

+ +
. 

Then, ( ) 2
ˆ

1
tx t
t

=
+

, which is a known result.  
�
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As can be seen from the above discussion, the spectrum of ( )pex t  is still 

bandpass (though one-sided) if ( )x t  is a bandpass signal. Let ( )x t  be a 

bandpass signal with ( )peX f  “centered” with respect to 102cf k Hz=  as shown 

in Fig. 1.38(a). 

 

 
Fig 1.38: A typical ( )peX f  and shifted version 

 

(We can treat cf  to be the center frequency in Fig. 1.38(a), by taking the 

bandpass spectrum from 94  to 110 k Hz , though the spectrum is zero for the 

frequency range 94  to100 k Hz .) From Fig 1.38(b), we see that ( )pe cX f f+  is a 

lowpass spectrum, nonzero in the frequency range ( )2−  to 8 k Hz . 
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1.8.2 Complex envelope 
 Def. 1.11: We now define the complex envelope of ( )x t , denoted ( )c ex t  as  

( ) ( ) 2 cj f t
c e pex t x t e− π=   

�
              (1.52a) 

Eq. 1.52(a) implies 

 ( ) ( )c e pe cX f X f f= +                 (1.52b) 

(We assume that we know the center frequency cf  and it is such that 

( )pe cX f f+  is lowpass in nature). 

Equation 1.52(a) also implies 

 ( ) ( ) 2 cj f t
pe c ex t x t e π=         (1.53) 

( )c ex t  is also referred to as the equivalent lowpass signal of the bandpass signal 

( )x t . In general ( )c ex t  is complex. Let ( )cx t  be the real part and ( )sx t  its 

imaginary part. Then, 

 ( ) ( ) ( )c e c sx t x t j x t= +         (1.54)  

We will show a little later that, both ( )cx t  and ( )sx t  are lowpass in nature. Using 

Eq. 1.54 in Eq. 1.53, we obtain, 

 ( ) ( ) ( ) cj f t
pe c sx t x t j x t e 2π⎡ ⎤= +⎣ ⎦  

As the real bandpass signal ( )x t  is the real part of ( )pex t , we have  

( ) ( ) ( ) ( ) ( )c c s cx t x t f t x t f tcos 2 sin 2= π − π      (1.55) 

Eq. 1.55 is referred to as the canonical representation of the bandpass signal. 

( )cx t , which is the coefficient of the cosine term, is usually referred to as the in-

phase component and ( )sx t , the coefficient of the sine term, as the quadrature 

component. Note that ( )sin 2 cf tπ  is in phase quadrature to ( )cos 2 cf tπ . (It is 

also common in the literature to use the symbol ( )Ix t  for the in-phase 

component and ( )Qx t  for the quadrature component.) 
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To express Eq. 1.54 in polar form, let 

( ) ( ) ( )c sA t x t x t2 2= +                 (1.56a) 

( ) ( )
( )

s

c

x t
t

x t
1tan− ⎡ ⎤

ϕ = ⎢ ⎥
⎢ ⎥⎣ ⎦

                (1.56b) 

Then, 

 ( ) ( ) ( )j t
cex t A t e ϕ=                  (1.56c) 

   ( ) ( ) ( ) 2Re Re cj f t
pe c ex t x t x t e π⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦                (1.57) 

  ( ) ( ) 2Re cj t j f tA t e eϕ π⎡ ⎤= ⎣ ⎦                  (1.58) 

Eq. 1.58 resembles phasor representation of a sinusoid. We know that, 

 ( ) 2cos 2 Re cj f tj
cA f t A e e πϕ⎡ ⎤π + ϕ = ⎣ ⎦       (1.59) 

jA e ϕ⎡ ⎤⎣ ⎦  is generally referred to the as the phasor associated with the sinusoidal 

signal ( )cos 2 cA f tπ + ϕ . (The phasor is a complex number providing information 

about the amplitude and phase (at 0t = ) of the sinusoid.) The quantity 

2 cj f tjA e e πϕ⎡ ⎤
⎣ ⎦  can be treated as a rotating vector as shown in Fig. 1.39(a). 

Comparing Eq. 1.58 with Eq. 1.59, we find that they have a close resemblance. 

Phasor of the monochromatic (single frequency) signal has constant amplitude 

A  and a fixed phase ϕ . In the case of the complex envelope (of a narrowband 

signal) both ( )A t  and ( )tϕ  are, (slowly) time-varying. This is shown in Fig 

1.39(b). (Note that a single frequency sinusoid is the extreme case of a 

narrowband signal with zero spectral width!) 
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          Fig. 1.39: (a) Phasor representation of ( )2 cj f tA e π + ϕ  

                          (b) Complex envelope as a (slowly) varying amplitude and phase 

  

 In other words, complex envelope can be treated as a generalization of 

the phasor representation used for single frequency sinusoids; the generalization 

permits the amplitude and phase to change as a function of time. Note, however, 

that for a given time 1t t= , ( ) ( )1
1

j tA t e ϕ  is a complex number, having the 

necessary information about the narrowband signal. As we shall see later, 

different modulation schemes are basically different methods of controlling either 

( )A t  or ( )tϕ  (or both) as a function of the message signal ( )m t . 

 

If ( )x t  is a NBBP signal with spectrum confined to the frequency range 

cf f W± ≤ , then ( )cx t  and ( )sx t  are lowpass signals with spectrum confined 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.114

to f W≤ . This is because ( ) ( )c e pe cX f X f f= +  is nonzero only for f W≤ . 

As ( )cx t  is the real part of ( )c ex t , we have  

 ( )
( ) ( )c e c e

c

x t x t
x t

2

∗⎡ ⎤+⎣ ⎦=  

or  ( ) ( ) ( ) ( )c e c e
c c

X f X f
F x t X f

2

∗+ −
⎡ ⎤ = =⎣ ⎦  

As ( )c eX f  and ( )c eX f∗ −  are zero for f W> , ( )cX f  is also zero for f W> . 

Similarly, ( )sx t  is also a lowpass signal with ( )sX f 0=  for f W> . 

 

The scheme shown below (Fig 1.40) enables us to obtain ( )cx t  and ( )sx t  

from ( )x t .        

 

 
Fig. 1.40: Scheme for the recovery of ( )cx t  and ( )sx t  from ( )x t  

 

In Fig 1.40, ( )x t  a NBBP signal, with the spectrum confined to the interval 

cf f W± ≤ , where cW f<< . 

 ( ) ( )1 2 cos cv t x t t= ω  

          ( ) ( )( )c c s c cx t t x t t t2 cos sin cos= ω − ω ω  

          ( ) ( )c c s cx t t x t t22 cos sin 2= ω − ω  
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          ( ) ( )c
c s c

tx t x t t1 cos 22 sin 2
2

+ ω⎡ ⎤= − ω⎢ ⎥⎣ ⎦
 

          ( ) ( ) ( ) ( )c c c s cx t x t t x t tcos 2 sin 2= + ω − ω     (1.60) 

 

 In Fig. 1.40, ( )l pH f  is an Ideal Lowpass Filter (ILPF) with the frequency 

response. 

 ( )
1 ,
0 ,l p

f W
H f

outside

⎧ ≤⎪= ⎨
⎪⎩

 

( )cx t  and ( )sx t  are lowpass signals, band limited to W  Hz. ( ) ( )c cx t tcos 2ω   

and ( ) ( )s cx t tsin 2ω  have bandpass spectra centered at cf± . These quantities 

will be filtered out by the ILPF and at the output of the top channel, we obtain 

( )cx t . Similar analysis will show that the output of the bottom channel is ( )sx t . 

 

 From Eq. 1.58, we have, 

 ( ) ( ) ( )cos cx t A t t t⎡ ⎤= ω + ϕ⎣ ⎦        (1.61) 

 Eq. 1.61 is referred to as the envelope and phase representation of ( )x t . ( )A t  

is called the natural envelope (or simply the envelope) of ( )x t  and ( )tϕ , its 

phase. As we assume that cf  is known, the information about ( )x t  is contained 

in either of the quantities ( ) ( )( )c sx t x t,  or ( ) ( ),A t t⎡ ⎤ϕ⎣ ⎦  and these are lowpass in 

nature. Note that  

( ) ( ) ( )ce peA t x t x t= =         (1.62) 

and is always non-negative. 

  

We shall now illustrate the concepts of ( )pex t , ( )cex t , ( )A t  and ( )tϕ  with 

the help of a few examples. 
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Example 1.28 

 Let ( ) [ ]cos 2 cx t f t= π . Let us find ( )pex t , ( )cex t , ( )A t  and ( )tϕ . 

 

( ) ( ) ( )1
2 c cX f f f f f⎡ ⎤= δ − + δ +⎣ ⎦  

From Eq. 1.50(b), we have 

Hence ( ) ( ) ( ) 2 cj f t
pe c peX f f f x t e π= δ − ⇒ =  

As ( ) ( )ceX f f= δ , we obtain ( ) 1cex t =  

As ( )cex t  is real and positive,  ( ) 0tϕ =  and ( ) ( ) 1ceA t x t= = .  

 
�

 

 

Example 1.29 

 Let ( ) cos c
tx t ga t
T
⎛ ⎞= ω⎜ ⎟
⎝ ⎠

. Assume that 1cf T >>  so that ( )x t  can be 

taken as a NBBP signal. We shall find ( )pex t , ( )cex t  and ( )A t . 

 

Method 1 (Frequency domain): 

 Because of the assumption 1cf T >> , we can take ( )X f  approximately as   

  ( )
( )

( )

sin , 0
2

sin , 0
2

c

c

T c f f T f
X f

T c f f T f

⎧ ⎡ ⎤− >⎣ ⎦⎪⎪
⎨
⎪ ⎡ ⎤+ <⎣ ⎦⎪⎩

�  

From Eq. 1.50(b), 

 ( ) ( )sin , 0

0 ,
c

pe
T c f f T f

X f
otherwise

⎧ ⎡ ⎤− >⎪ ⎣ ⎦= ⎨
⎪⎩

 

 

Hence, 

 ( ) 2 cj f t
pe

tx t ga e
T

π⎛ ⎞= ⎜ ⎟
⎝ ⎠
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 ( ) ( ) 2 cj f t
ce pex t x t e− π=  

  tga
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

As ( )cex t  is real, we have ( ) ( )= ⇒ ϕ =sx t t0 0 . 

 ( ) ( )ce
tA t x t g a
T
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

Note that for Examples 1.28 and 1.29, the complex envelope is real valued and is 

equal to the envelope, ( )A t .   

 

Method 2 (Time domain): 

     Comparing the given ( )x t  with Eq. 1.55, we find that it is already in the 

canonic form with ( )c
tx t ga
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

, ( )sx t 0=  

Hence, ( )ce
tx t ga
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

And ( ) ( ) 2 cj f t
pe cex t x t e π=  

         2 cj f ttga e
T

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

( ) tA t ga
T
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and ( ) 0tϕ =   
�

 

 

Example 1.30 

 ( )x t  is a NBBP signal with ( )X f  as shown in Fig 1.41. Let us find ( )cx t  

and ( )sx t . 
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Fig. 1.41: Spectrum of the NBBP signal of Example 1.30 

 

From the given spectrum, we can obtain ( )ceX f , which is shown below in  

Fig. 1.42. 

 
Fig. 1.42: Spectrum of the complex envelope of the signal of Example 1.30 

 

As shown in the Fig 1.42, we can take ( )ceX f  as the sum of A and B. 

Inverse Fourier transform of A : ( ) 100200 sin 100 j tc t e− π  

Inverse Fourier transform of B : ( ) 5050 sin 50 j tc t e π  

Hence ( ) ( ) ( )100 50200 sin 100 50 sin 50j t j t
cex t c t e c t e− π π= +  

( ) ( ) ( ) ( ) ( )cx t c t t c t t200 sin 100 cos 100 50 sin 50 cos 50= π + π  

( ) ( ) ( ) ( ) ( )= π − πsx t c t t c t t50 sin 50 sin 50 200 sin 100 sin 100        
�
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1.9 Bandpass (BP) Systems 
 Let a signal ( )x t be input to an LTI system with impulse response ( )h t . If 

( )y t  is the output, then ( ) ( ) ( )Y f X f H f=  and 

 ( ) ( ) ( )2 2
Y f X f H f

2
=  

If ( )xE f  is the energy spectral density of ( )x t , then 

 ( ) ( ) ( ) 2
y xE f E f H f=                 (1.63a) 

Let ( ) ( )2
hH f R←⎯→ τ  be the Fourier transform pair where ( )hR τ  is the ACF 

of the impulse response ( )h t . Then, 

 ( ) ( ) ( )y x hR R Rτ = τ ∗ τ  

  ( ) ( ) ( )xR h h∗⎡ ⎤= τ ∗ τ ∗ − τ⎣ ⎦                (1.63b) 

Exercise 1.11 

 Find the pre-envelope of ( ) ( )sinx t c t= . 

Hint: use the result of Exercise 1.9. 

 

Exercise 1.12 

 Let ( ) ( ) ( )cx t ex t t1 sin ⎡ ⎤= ω + ∆ω⎣ ⎦  where cω >> ∆ω . 

Find ( )cex t . 

 

Exercise 1.13 
 Find the expression for the envelope of 

( ) ( ) ( )1 cos cosm cx t k t t⎡ ⎤= + ω ω⎣ ⎦  where k  is a real constant and 

c mf f>> . Sketch it for 0.5 and 1.5k = . 
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 Let ( )x t  be a bandpass signal with ( )X f  zero for cf f W± > . A 

bandpass signal is usually processed a bandpass system; that is, a system with 

passband in the interval cf f B± <  where B W≤ . We would like to study the 

effect of a BP system on a BP input. This study is again greatly facilitated if we 

were to use complex envelopes of the signals involved. 

  

 In appendix A1.3 (Eq A1.3.8), it is shown that 

 ( ) ( ) ( )1
2ce ce cey t x t h t⎡ ⎤= ∗⎣ ⎦        (1.64) 

We shall now give an example to illustrate the use of Eq. 1.64. 

  

Example 1.31 

 Let ( )x t  be a sinusoidal pulse given by 

 ( ) ( )62 cos 2 10 , 0 1 sec

0 ,

t t m
x t

outside

⎧ ⎡ ⎤π ≤ ≤⎪ ⎣ ⎦= ⎨
⎪⎩

 

( )x t  is the input to an LTI system with impulse response ( ) ( )h t x T t= − , 

where 1 secT m= . Find ( )cey t  and ( )y t . 

 

 ( )x t  can be taken as a NBBP signal. Its complex envelope, 

( ) 2 , 0 1 seccex t t m= ≤ ≤  

( ) ( ) ( )62 cos 2 10h t T t⎡ ⎤= π −⎣ ⎦  

        ( ) ( ) ( ) ( ){ }6 6 6 62 cos 2 10 cos 2 10 sin 2 10 sin 2 10T t T t= π π + π π  

        ( ) ( ) ( ){ }3 6 3 62 cos 2 10 cos 2 10 sin 2 10 sin 2 10t t⎡ ⎤= π × π + π × π ×⎣ ⎦  

        ( )62 cos 2 10 , 0 1 sect t m⎡ ⎤= π ≤ ≤⎣ ⎦  

Again, we can treat ( )h t as a NBBP signal, with 
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 ( ) 2 , 0 1 sec
0 ,ce

t m
h t

outside
≤ ≤⎧

= ⎨
⎩

 

That is, ( ) ( ) 22ce ce

Tt
x t h t ga

T

⎛ ⎞−
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 

From Eq.1.64, 

 ( ) ( ) ( ) ( )31 2 10
2ce ce ce

t Ty t x t h t tri
T

− −⎛ ⎞⎡ ⎤= ∗ = × ⎜ ⎟⎣ ⎦ ⎝ ⎠
 

   ( ) ( ) ( )cos 2ce cy t y t f t= π  

Obtaining ( )y t  directly as ( ) ( )x t h t⎡ ⎤∗⎣ ⎦  would be quite cumbersome.       
�

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 1.14 

 Let ( ) ( ) ( )6sin 200 cos 2 10x t c t t⎡ ⎤= π⎣ ⎦  be the input to an NBBP 

system with ( ) ( ) ( )6 6
1 1

1 10 10
2

H f H f H f
j
⎡ ⎤= − − +⎣ ⎦          (1.65) 

where ( )1H f  is as shown in Fig. 1.43. 

 
Fig. 1.43: ( )1H f  of Eq. 1.65 

 

Find ( )cey t , the complex envelope of the output. 
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Appendix A1.1 

Tabulation of ( )sinc λ  

λ  ( )sin λc  λ  ( )sin λc  λ  ( )sin λc  
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.60 
1.65 

1.000000 
0.995893 
0.983631 
0.963397 
0.935489 
0.900316 
0.858393 
0.810331 
0.756826 
0.698645 
0.636619 
0.571619 
0.504550 
0.436331 
0.367882 
0.300104 
0.233871 
0.170010 
0.109291 
0.052414 
-0.000001 
-0.047424 
-0.089422 
-0.125661 
-0.155915 
-0.180064 
-0.198091 
-0.210086 
-0.216236 
-0.216821 
-0.212203 
-0.202833 
-0.189207 
-0.171888 

1.70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 
2.05 
2.10 
2.15 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 
2.60 
2.65 
2.70 
2.75 
2.80 
2.85 
2.90 
2.95 
3.00 
3.05 
3.10 
3.15 
3.20 
3.25 
3.30 
3.35 

-0.151481 
-0.128616
-0.103943 
-0.078113 
-0.051770 
-0.025536 
0.000000 
0.024290 
0.046840 
0.067214 
0.085045 
0.100035 
0.111964 
0.120688 
0.126138 
0.128323 
0.127324 
0.123291 
0.116435 
0.107025 
0.095377 
0.081847 
0.066821 
0.050705 
0.033919 
0.016880 
0.000000 
-0.016326 
-0.031730 
-0.045876 
-0.058468 
-0.069255 
-0.078036 
-0.084661 

3.40 
3.45 
3.50 
3.55 
3.60 
3.65 
3.70 
3.75 
3.80 
3.85 
3.90 
3.95 
4.00 
4.05 
4.10 
4.15 
4.20 
4.25 
4.30 
4.35 
4.40 
4.45 
4.50 
4.55 
4.60 
4.65 
4.70 
4.75 
4.80 
4.85 
4.90 
4.95 
5.00 

-0.089038 
-0.091128 
-0.090946 
-0.088561 
-0.084092 
-0.077703 
-0.069600 
-0.060021 
-0.049237 
-0.037535 
-0.025222 
-0.012607 
-0.000000 
0.012295 
0.023991 
0.034821 
0.044547 
0.052960 
0.059888 
0.065199 
0.068802 
0.070650 
0.070736 
0.069097 
0.065811 
0.060993 
0.054791 
0.047385 
0.038979 
0.029796 
0.020074 
0.010059 
0.000000 
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Fig. A1.1: Plot of ( )sinc λ  for 5λ ≤  
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Appendix A1.2 
Fourier transform of ( )

p px yR τ  

As ( )
p px yR τ  is periodic, we expect the spectrum to be purely impulsive. 

We have only to decide the weights of these impulses. 

 

( ) ( ) ( )
0

0

2

0
2

1
p p

T

x y p p
T

R x t y t dt
T

∗

−

τ = − τ∫  

 

Let  ( ) ( ) 0 0,
2 2

0 ,

p
T Tx t t

x t
outside

⎧ − < <⎪= ⎨
⎪⎩

 

then,  ( ) ( )0p
n

x t x t nT
∞

= − ∞
= −∑  

 

Similarly, ( ) ( )0p
n

y t y t nT
∞

∗ ∗

= − ∞
− τ = − τ −∑  

where ( ) ( ) 0 0,
2 2

0 ,

p
T Ty t t

y t
outside

∗
∗

⎧ − < <⎪= ⎨
⎪⎩

 

 

( ) ( ) ( )
0

0

2
*

0
0

2

1
p p

T

x y
nT

R x t y t nT dt
T

∞

= − ∞−

⎡ ⎤
τ = − τ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫  

     ( ) ( )
0

0

/ 2
*

0
0 / 2

1 T

n T

x t y t nT dt
T

∞

= −∞ −

= − τ −∑ ∫  

 

As ( ) 0x t =  for 0
2

Tt > , 



  Principles of Communication                                                                                                                                       Prof. V. Venkata Rao

 

 

 

 

 

  Indian Institute of Technology Madras

 1.125

( ) ( ) ( )0
0

1
p px y

n
R x t y t nT dt

T

∞∞
∗

= − ∞ −∞

τ = − τ −∑ ∫  

      ( )0
0

1
x y

n
R nT

T

∞

= − ∞
= τ +∑  

 

Taking the Fourier transform on both sides, 

( ) ( )0
0

1F
p px y x y

n
R F R nT

T

∞

= − ∞

⎡ ⎤
⎡ ⎤τ = τ +⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑  

As ( ) ( ) ( )x yR X f Y f∗τ ←⎯→ , 

( ) ( ) ( ) 02

0

1F
p p

j n f T
x y

n
R X f Y f e

T

∞
π∗

= − ∞

⎡ ⎤
⎡ ⎤τ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

∑  

                    ( ) ( ) 02

0

1 j n f T

n
X f Y f e

T

∞
π∗

= − ∞

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑                   (A1.2.1) 

 

But from Example 1.12, we have 

( ) ( )1
0 0

0

1

m m
t mT F f n f

T

∞ ∞
−

= − ∞ = − ∞

⎡ ⎤
δ − = δ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑           (A1.2.2) 

            02

0

1 j m f t

m
e

T

∞
π

= − ∞

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

 

Replacing t  by f , 0T  by 0f , we get the dual relation 

( ) 02
0

0

1 j m f T

m m
f mf e

f

∞ ∞
π

= − ∞ = − ∞

⎡ ⎤
δ − = ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  

As 0
0

1f
T

= , we have 

02

0 0

1 j m f T

m m

mf e
T T

∞ ∞
π

= − ∞ = − ∞

⎛ ⎞
δ − =⎜ ⎟
⎝ ⎠

∑ ∑            (A1.2.3) 
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Using Eq. A1.2.3 in Eq. A1.2.1, we obtain, 

( ) 2
0 0 00

1F
p px y

m

m m mR X Y f
T T TT

∞
∗

= − ∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤τ = δ −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑                  (A1.2.4) 

where ( )
00

mf
T

mX X f
T =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

and ( )
0

0
mf
T

mY Y f
T

∗ ∗

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 
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Appendix A1.3 
Complex envelope of the output of a BP system 
Let ( )x t , a BP signal, be applied as input to a BP system with impulse response 

( )h t . Let the resulting output be denoted ( )y t , which is also a BP signal. We 

shall derive a relation for ( )c ey t  in terms of ( )c ex t  and ( )c eh t . 

 

We know that, 

 ( ) ( ) ( )c c s cx t x t t x t tcos sin= ω − ω , 

( ) ( ) ( )ce c sx t x t j x t= + , 

( ) ( ) 2Re cj f t
cex t x t e π⎡ ⎤= ⎣ ⎦ , 

( ) ( ) ( ){ }1
2 ce c ce cX f X f f X f f∗ ⎡ ⎤= − + − +⎣ ⎦ .           (A1.3.1) 

Similarly, let 

( ) ( ) ( )ce c sh t h t j h t= + ,              (A1.3.2) 

 ( ) ( ) ( )c c s ch t h t t h t tcos sin= ω − ω ,            (A1.3.3)     

 ( ) ( ) 2Re cj f t
ceh t h t e π⎡ ⎤= ⎣ ⎦ , 

 ( ) 2 22 c cj f t j f t
ce ceh t h e h eπ − π∗= + .                   (A1.3.4) 

Taking the FT of Eq. A1.3.4, we have 

 ( ) ( ) ( )2 ce c ce cH f H f f H f f∗ ⎡ ⎤= − + − +⎣ ⎦                     (A1.3.5) 

But  ( ) ( ) 2Re cj f t
cey t y t e π⎡ ⎤= ⎣ ⎦ . 

Therefore, 

 ( ) ( ) ( ) ( ) ( )
2

ce c ce cY f f Y f f
Y f X f H f

∗ ⎡ ⎤− + − +⎣ ⎦= =                (A1.3.6) 

Because of Eq. A1.3.1 and A1.3.5, Eq. A1.3.6 becomes 

 ( ) ( ) ( ) ( ) ( ) ( ){ }1
4 ce c ce c ce c ce cX f H f H f f H f f X f f X f f∗ ∗⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= − + − + − + − +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  

Consider the product term 
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 ( ) ( )ce c ce cH f f X f f∗ ⎡ ⎤− − +⎣ ⎦  

( )ce cH f f−  has spectrum confined to the range ( ),c cf B f B− + . ( )ce cX f f∗ ⎡ ⎤− +⎣ ⎦  

has non- zero spectral components only in the range ( ) ( ){ },c cf W f W− + − − . 

That is, the spectra ( )ce cH f f−  and ( )ce cX f f∗ ⎡ ⎤− +⎣ ⎦  do not overlap; hence the 

product is zero. Similarly, ( ) ( ) 0ce c ce cH f f X f f∗ ⎡ ⎤− + − =⎣ ⎦ . Hence, 

 

( ) ( ) ( ) ( )

( ) ( )

1
2 4

1
4

ce c ce c
ce c ce c

ce c ce c

Y f f Y f f
H f f X f f

H f f X f f

∗

∗ ∗

⎡ ⎤− + − +⎣ ⎦ = − −

⎡ ⎤ ⎡ ⎤+ − + − +⎣ ⎦ ⎣ ⎦

 

( )ce cY f f−  has nonzero spectral components only in the range ( ),c cf B f B− + . 

That is, 

 ( ) ( ) ( )1 1
2 4ce c ce c ce cY f f H f f X f f⎡ ⎤− = − −⎣ ⎦ , 

and ( ) ( )( ) ( )( )1 1
2 4ce c ce c ce cY f f H f f X f f∗ ∗ ∗⎡ ⎤⎡ ⎤− + = − + − +⎣ ⎦ ⎣ ⎦ . 

In other words, 

 ( ) ( ) ( )1
2ce ce ceY f X f H f=               (A1.3.7) 

Therefore,  

 ( ) ( ) ( )1
2ce ce cey t x t h t⎡ ⎤= ∗⎣ ⎦              (A1.3.8) 

From Eq. A1.3.8, we obtain the equations for ( )cy t  and ( )sy t .

 ( ) ( ) ( ) ( ) ( ){ }ce c s c sy t x t j x t h t j h t1
2

⎡ ⎤ ⎡ ⎤= + ∗ +⎣ ⎦ ⎣ ⎦  

Therefore, 

 ( ) ( ) ( ) ( ) ( ){ }c c c s sy t x t h t x t h t1
2

= ∗ − ∗                     (A1.3.9) 

 ( ) ( ) ( ) ( ) ( ){ }s c s s cy t x t h t x t h t1
2

= ∗ + ∗                   (A1.3.10) 

and, ( ) ( ) ( )ce c sy t y t j y t= + . 
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Exercise A1.3.1 

 Given the pairs ( ) ( )( )c sx t x t,  and ( ) ( )c sh t h t,⎡ ⎤⎣ ⎦  suggest a scheme to 

recover ( )cy t  and ( )sy t . 
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