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@ Phase locked loop (PLL) requirements
@ PLL frequency multiplier

@ Derivation
@ Phase model

@ Type | PLL

@ Practical phase detectors
@ Type | PLL limitations

@ Type Il PLL

o Feedback systems and stability
e Type Il PLL

@ LC oscillator
@ Programmable frequency divider
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Phase locked loops

@ Frequency synthesizers in radios for local oscillators
@ Frequency multiplication for reference clock generation
@ Phase alignment
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Local oscillator requirements
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@ Tuned to the desired channel frequency plus an
intermediate frequency (IF)

@ Generate equally spaced frequencies from a reference
frequency

@ Waveform shape not very important

@ Spurious output and noise must be sufficiently low
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Frequency divider

Vref
R(N-1
( ) fref ° fref/N
Vref/N - ° N —
R frequency
divider

Digital frequency divider can generate multiple frequencies

°
@ Frequencies not equally spaced
@ Reference frequency higher than output frequencies
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Voltage multiplier

voltage difference
zero, at steady state

Ve \ KiVertVs Vo
K, \ dt ’

VN ]
- R(N-1)

Vo.u/N = V¢ at steady state =

@ A controlled source to generate the output voltage

@ Divided output voltage subtracted from the reference to
generate error

@ Output source controlled by the integral of the error
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Frequency multiplier

frequency difference
zero, at steady state

cos(2mhet)  [frequency fo \
measure [+ Ko \at

KieoVarrtfo

cos(27f o) slope = K¢,

fout
T

o

frequency .
measure N v

ctl

cos(2nfy, /N t)

fou/N = o at steady state
@ A controlled source to generate the output frequency
@ A voltage controlled oscillator
@ Divided output frequency subtracted from the reference
frequency to generate error

@ Output source controlled by the integral of the frequency
error
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Phase and frequency

@ Sinusoid: cos(6(t))

@ Phase: (1)

@ Instantaneous frequency: f; = ;—WdBT(t’)
@ Typically expressed as fj = fp + fo(t)

@ f,: average frequency
@ fo: instantaneous frequency error

@ Phase 0(t) = 2nfot + o + ¢(t)

@ ®,: phase offset-ideal ramp versus time
@ ¢(t): instantaneous phase
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Phase error
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Frequency multiplier

phase difference

f
cos(2mfet)  [frequency| ™ \1 \2 vacchﬂ"'fo
y cOS(2mf oyt
et . 7@? Y (@)
S
C—
3
fou/N = fo at steady state f,/N
frequency =N
measure *

cos(2nf,,/N t)
@ Integration before subtraction
@ Integral of the frequency is phase

@ Integrator+subtractor measures phase difference between
the reference input and the divided output (feedback)
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Frequency multiplie—Phase locked loop

Vctl = Kpd(¢ref'¢out/N)

COS(27tfreft+¢ref)—’_ Vctl vcovctl+fo

phase K
detector @ cos(2lout)

\ N

cos(2nfo /N t + 0g/N)

fou/N = fof at steady state

@ Use a phase detector to generate the control voltage
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Voltage controlled oscillator

slope = K,
fou‘[ \
Vctl fout=chchtI"'fo fo
Vctl
2mnf t
Vctl + * evco
— 21K, \ dt

° fvco = fo + cho Vct/

@ f,: Free running frequency
o avco = 27Tfot + 27TKVCO f Vcﬂdt
@ Kyco: VCO gain in Hz/V
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Phase detector

0
0P

— phase
detector

Kpd(¢1 '¢2)

——

Koq: Phase detector gain

@ Kpg: Phase detector gain in V/radian
@ |deal phase detector: assumed to have an output

Vipd = Kpa(d1 — ¢2)

Nagendra Krishnapura Phase locked loop frequency synthesizers



Phase locked loop model

2nf it
2rfroit+ Drey =\ | Ve + ;l\ 2nfou Doy
~(x | Kog 2nKVCOSdt O

27t /N t+Dy /N |
1/N |

Vcﬂ = 2ﬂ:(fref'fout/N)t + q:'ref - q:'out/N
At steady state, fo=fou/N;  Vey = Pref - Pou/N
@ Modelled in terms of phases of signals
@ At steady state (lock), Vy is a constant = fof = fout/N

@ The loop locks with
VCt/ — Kpd(q)ref — d)out/N) = (foef - fO)/KVCO_ThIS |S the
“operating point” of the circuit

Nagendra Krishnapura Phase locked loop frequency synthesizers



Phase locked loop model

2nf,t
2nfre1t+q)ref+¢ref ~ | Vc1l+vct| i J\ 27tfout t+¢‘out+¢om
=z IKy 21K, \ dit (X)

1N |
2tf, /N tr Py, N+0g,/N |

@ An increment ¢, in the input phase causes increments
Gouts Vol
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Phase locked loop model—incremental picture

¢OU'[

@ An increment ¢, in the input phase causes increments
bouts Vol

@ Type-l loop—One integrator in the loop

@ “Phase model” of the PLL
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Phase locked loop model—frequency domain

Dout(S)

@ Loop gain L(s) = 27KpgKyco/Ns
@ Transfer function

bout(8)/bref(s) = N/(1 + Ns/(2mKpaKveo))
@ Type-l loop—One integrator in the loop

@ Closed loop bandwidth (= unity loop gain frequency)
= 2mKpgKvco/Nrad/s
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Type-lI PLL—limitations

@ Phase error when locked (four = Nfref):

® o — oyt /N = (Nfrer — £5) /Kieo pd

@ dc value of K,y matters; We have a constant Ky
%] ‘Q),ef — ¢0u1‘/N| < 27T = ’fout — fo’ < 27TKdeVCO
@ Lock range limited by periodicity of phase detector

@ Period of all phase detectors not necessarily +27
@ Commonly used three state phase detector periodic with
+27

@ KyaKyco large for wide lock range
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Phase detector

@ Frequency divider output has a varying duty cycle
@ Phase detector should sensitive to duty cycle
@ XOR gate etc. are not preferable

@ Phase detector should be sensitive only to rising edges (or
only to falling edges) of inputs
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Tri state phase detector

At At TP a =
“ r:f_>RST
offoforti==
E?_>RST
Bt Bt dw1—D Q =

output=Q,-Qp

@ Output +1,—-1,0
o +1 if reference leads divider output
o —1 if reference lags divider output
o 0 if reference coincides with divider output

Phase locked loop frequency synthesizers
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Tri state phase detector-waveforms

Tt

D —— 1 k1
P AL
-1 L 1 [ -1
A N e N B g+ 1
STHT O [P [ S S
QA +1 | | QA +1
+] +1 1 1
Q Q
Bﬁ I& Bﬁ I&
q)re("bdiv q)d\v'q>ref
A leading B A lagging B

@ Flip flops assumed to be reset instantaneously
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Tri state phase detector-frequency difference between
inputs

At At 1D a 9
AL
ref RST
() @ G o
B >RST
div
Bt Bt 1 @ =

output=Q-Qp

@ fa > fg: Eventually get two consecutive edges of A
@ Circulates between 0 and +1 states: Average output > 0
@ Similarly, average output > 0 for f4 < fg

This detector is a phase/frequency detector (PFD)
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Tri state phase detector output

Tref

+1 A
reference
-1
reference Tri-state | pdout
- +1 phase —
divider o/p b dvidaroTp ] detector
pdout +J]] M 1 Average value = AD/nt
Tret Output periodic at
AP = cI)ref q)dlv
AP & nA®
Vour(f sinc [ —— | 6(f — nf,
out() 271- Z o ( ref)
Nn=—o00
AP A & nA®
V. + — sinc | ——— ) cos(2mnf.get
out( ) 27r T - or ( ref )
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Tri state phase detector

@ Output average value = Ad /27
] Kpd = 1/27T
@ Phase detector offset =0
@ Loop locks with Ad = & — dp; /N = 0 for Nfes = 1,
@ Input range = 27
@ PLL lock range = f, — 27 KpgKuco < fout < fo + 2 KpdKuco

@ Output contains f,o and its harmonics
@ Output =1/27 (AP + >, ancos(2mnft))
@ Periodic signal in addition to Kpg A®

All real phase detectors have a periodic “error” in addition to the
“dc” term proportional to phase error
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Phase detector-Output spectrum
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0.4F .
¢
0
IO
02 2 s 6 8 10
AD=71/8
0.5
o T T P F 0?2 ¢ ¢ ¢ 9
0% 2 s 6 8 10

f/f

ref

Nagendra Krishnapura Phase locked loop frequency synthesizers



PLL with tri state phase detector—periodic error

¥, a,cos(2nnf ) ("error")

¢out

@ Error e(t) added to the input of the phase detector

@ Disturbances in the VCO output phase ¢o.t(t) even with a
perfect reference (¢rer(t) = 0)

@ VCO output: cos(2mNfgrt + NP of + dout(t))

@ VCO output not periodic at Nf¢f
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Phase error
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PLL with tri-state phase detector—frequency domain

E(s) E(j2nf) = T, a/2 §(fnf..,)

275cho q)out(s)

0,c1(s) = 0 for a perfectly periodic reference

@ Transfer function from the error to the output
bout(S)/E(S) = dout(S)/Prer(s) = N/(1 4+ Ns/(2mKpgKieo))

@ E(jerf) =" ,(an/2)6(f £ nfef)
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Type-l PLL

dout(S) . bout(S)
E(S) B ¢ref(s)
27 Kpg Koo/ Ns
1+ 27KpgKveo/ NS
N 1
14 sN/27KpgKico

Loop gain
21 Ko K
L(S) _ ™ K;js vco
Closed loop bandwidth (Hz)
f _ Kdevco
—8dB = T
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Type | PLL

loop gain |L|

2nKoKued/N gy

L/(1+L)
‘¢ou(/¢rel| dB

20log(N)
N ©

andechN\

(loop bandwidth)




Feedback system

In our system,

¢0Ut(s) _ 27rKdevco/NS

In general, in a feedback system with a loop gain L(s)

L(s)

Hciosedioop (s) = Higeal(s) TL(S)

Where Higea/(S) is the ideal closed loop gain (with L = o0). This
can be approximated as
Hclosed/oop(s) = Hidea/(S)L(S) ‘L‘ <1
= Higeal(S) L] > 1
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PLL with tri state phase detector—Output signal

Considering only the term at fo, and by < 1

Vout(t) = cos(2nNfest + by sin(2rfieft))
= cos(2m Nft) cos(by sin(2mfgrt))
— sin(2r Nfget) sin(bg sin(2rfreft))
cos(27 Nfgrt) — by Sin(27frgrt) Sin(27 Nfpgrt)
cos(27 Nfgt)
—by/2cos(2m(N — 1)feft)
—by/2cos(2m(N + 1)feft)

@ Spurious tones in the output at a spacing of +f,o from the
desired frequency—*“Reference feedthrough”

@ In general, spurious tones will be present at +-nf,os from the
desired PLL output
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Reference feedthrough

bi = ai|H(j2rfer)|
Kdevco/ijref
1+ Kdevco/ijref
Kdevco
ijref
Nf_sq5 . AP
—SINC—

f ref 0

= EHN’

%

31N‘

= 2A0%

@ Maximum value of by = 4KpgKyco When A =
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Reference feedthrough—example

@ To generate 1 GHz from 1 MHz reference
@ by/2 =102 (spurious tones at (N + 1)fe 40dB below the
fundamental output at Nf.)
e N=108
@ A¢ = 7 (locked with a phase shift of )
o f_3dB/fref =5x10%= f_ 308 =5Hz
@ Lock range = 27 Nf_345 = 10w kHz
@ Lock range is too small; Can’t switch to the next channel
which is 1 MHz away!
@ May not be able to lock for any value of N, unless the free
running frequency happens to be Nf. for some N
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Type | phase locked loop

In steady state, output siﬁlr;al at fou
Ve = (Four-free) K (fou=Nf at
input signal ot = (fouroo) Kuco steady state)

at f o

AP = DD, /N ‘\>

f

o [ \ v, @ \

phase VCO
detector

In steady state,
AP = (fout'ffree)/choKpd =N
frequency
divider

A® = 0 if f,yr happens to be equal to f,¢. Zero spurs!
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Changing the free running frequency of a VCO

Voff
Vctl J\ m (ffree"' chovoﬁ) + chchII _ Vctl firee"" chovcll
v
VCO VCO

firee = fireetKucoVort

@ Add a bias to the input to change the free running
frequency

Nagendra Krishnapura Phase locked loop frequency synthesizers



Slowly change the bias until A¢ =0

monitor A® and
continuously adjust
Vi until AG=0
output signal at f,
(fout=Nfref at

et [ P ' steady state)
at fref E /\ i \
K H ¥ :
£ = By N vd —~ @ :
phase E.firee VCO E
detector ~ _ STTTTTTTmmmmmmmees
N
frequency
divider

@ Slowly change the bias V4 until A¢p =0
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Slowly change the bias until A¢ =0

integral
phase
detector In steady state,
Kdequ dt Voit = (fourfiree) KueoKpa
AD Kpd,l dt /

output signal at f,;
(fout=Nfref at

inpln Signal [ I Steady state)
at ! A m : \
i 1
K, 1 ¥ :
AP = <I:'ref'q)om/N A\> A pd E &) @ :
/‘ phase i.f1reey VCO E
detector ~ _ STTTTTTTmmmmmemees
In steady state,
AP =0 +N
frequency
divider

@ Measure A¢ and integrate it to control Vg
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Type Il Phase locked loop

phase detector + loop filter

E integral E
! phase i
i detector !
i Ko | A dt !
LAe | Ky dt E
E - i output signal at f,,,
! proportional ! (foul=NfreV at
input signali phase ! steady state)
put sig
atfy | detector ! \‘
" H KpaAD !
: Kpd k):/ : //D
AP = d)ref'q)out/N E \ U
b : VCO
In steady state,
AD=0 ~N

@ Proportional + integral loop filter
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Type Il PLL with a tri state phase detector

@ Lock range is not limited by the phase detector

@ Loop locks with zero phase difference between reference
and feedback signals

@ Tri state phase detector output is zero for zero input phase
difference = No reference feedthrough!

@ Reference feedthrough does exist in reality due to
mismatches
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Type Il PLL—phase model

zero at
steady state

21 e Dy \

2nf it

+F 27tf gy t+ Doy
2K, \ dt

2mf /N t+ Dy /N ‘
1/N ‘

dVy/dt o 2 (f-fou/N)t + @ - Pou/N
At steady state, fo=fo/N;  Drer - Dou/N = 0;

@ Proportional + integral loop filter




Type Il PLL—incremental model

zero at
steady state

27tfreft+q>ref \

2mf ot t+Pot
21K o S dt

2nf /N t+®y /N ‘
1/N ‘

dVy/dt o 27(fe-fou/N)t + Dy - Po/N
At steady state, f=fou/N;  Prgf - Pou/N = 0;

@ Proportional + integral loop filter




Type Il PLL—incremental model

Kpd,l
S
¢ref(S) + ~ Vctl(s) 211;ch0 ¢out(s)
+\ [ g):/ s
{ﬁ/
Pour(S)/N
1/N

@ Proportional + integral loop filter
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Type Il PLL—Frequency domain

p1 > 21K 4K oo/N

Ko, more poles can be used
s
Orer(S) | tz\vctl(s) 1 Va 21K o OoulS)
*2 h - 1+s/p; s

doulSIN |
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Type Il PLL—Implementation

“ reference  [me lout reference  [eme Tout
reference _|
1 :|:|:|:|:|: divider o/p. R + divider o/p
—ik= 1 proportional
AD = Dby gmsm proportional
divider o/p *1| - + integral
output

1 L=

Gy
reference
l
dout Tefl MM -
pdou dividar ofp + L
“lep Cintegral -
. output
proportional +l.,R D u u ~
output —

“lepR -

integral *Q?‘ -
output SO slope=1,,/C

Phase detector with a current output (£/¢p)

Integral term K4 ;/s: Current flowing into a capacitor C;
Proportional term Kpy: Current flowing into a resistor Ry
Series RC to obtain the sum

Kod = lepR1/2m; Kpg,) = lepC1 /27
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Tri state phase detector with charge pump

vdd
lop
Qa (UP
1_D Q A (UP) \ O
A >
ref RST
B__[RsT iona
i proportiona
div Qz (DN) \ © + integral
TP Q@ output

c I

@ Q4 and Qg drive a charge pump
@ Charge driven into the loop filter Iop Tret A® /27
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Tri state phase detector implementation example

1
—D Q CLK Q

CLK —per

D latch with reset and D="1"

CLK —s

Q

RESET

ol O
n »

(D input with "1" implicit)
Realization using SR latches RESET

Realization using NOR gates

@ D flip flops with reset implemented using SR latches
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Tri state phase detector-reset path delay

Trel 1 Tref
PR AL
1 L1 L1 [ -1
S I I o B | gl -
+H B LI L 4 L1 L1 [—
Qx +! 1 I Qx gl | I I
+1 +1
Qs L I Qs M1
ﬁA(D = Py Pyiy _CA and Qg

simultaneously
on

A leading B Alagging B

@ Q4 and Qg simultaneously high for a short duration
@ Qu — Qg proportional to Ad
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Tri state phase detector-current source mismatch

vdd phase offset
in steady state

AD = Do Py

lop+Bleg/2
+1

1 1

1 al Qx (UP) A7 [
A ) TYEQ
e ! 1
ief LRST W Roc, B: . i

n 4n_n

B [RST Qa
di 4n_n
S A Qs (N \° Qe

ER M 2

I1 "l
lep-Sleg/2 1 L lop-0lce/2
C

oot

= lout 7M‘

RREEEEE
(zero average)

@ |deally AP = 0 in a type-Il loop = no ref. feedthrough

@ Mismatch between top and bottom current sources and
switching transients causes a non zero A® and reference
feedthrough

@ Current pulse area o< dlep Trst much smaller than in a Type |
PLL (area ~ Igp Trer)
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Type Il PLL with a tri state phase detector

¥, a,cos(2nnft+ay,) (“error”)
Koa,i S dt
¢ref A\ +I Veu ¢out
) ) ,
+ z + \);/ CZ 2n cho S dt
- | +

K
OautN B |

1/N
|

@ Loop locks with a small phase offset (due to mismatch)
between ¢.r and ¢,/ N for all frequencies

@ Error E(t) is periodic at f.f:
E(t) =72 ancos(2mnfrest + aup)

@ Amplitude of E(t) related to mismatch; much smaller than
in a type-l PLL
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Type Il PLL with a tri state phase detector-Frequency
domain

E(j2nf) = X, a, & 5(f-nf )

E(s) Ko,
)\ S
¢ref + +1 Vey 21K, q)out
=\ N vco
Qe Q) ® S
- +

|
K
N > |
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Type Il PLL—Additional attenation poles

zero at poles beyond
steady state 21K Koo/ N onft
Koa,l S dt

\ Vau 2 27tf oy t+ Doy
O, filter |—>| 27K,q, \ dit

2f ot + Py

27t /N t+ Do, /N

1/N}

dVy/dlt 0 20(frer-Fou/N)t + Bre - Dou/N
At steady state, fg=fou/N; P - Poy/N = 0;

@ Additional poles beyond the unity loop gain frequency to
reduce reference feedthrough
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Type Il PLL—Additional attenation poles

p1 > 21K 4K oo/N
Koa,i more poles can be used

¢ref(s) \VC“(S) 1 Vctl 2nK ¢out(s)

"
| Y vco
* gJ 1+s/p; s

P
I}/

Pour(S)/N

1/N

@ Additional poles beyond the unity loop gain frequency to
reduce reference feedthrough
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Type Il PLL—Additional attenation poles

lC

1 Q, (UP
b a for two
out extra poles
/N

“RST
—_—

B

P
B ,RST
div Qs (DN)
P

lC

N—
for one

extra pole

@ Extra RC sections for additional poles
@ Must be sufficiently beyond the unity loop gain frequency

to ensure sufficient phase margin
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Noise sources in a PLL

¢out/ N

@ Noise can be added as ¢,f (reference phase noise,
charge-pump noise, divider output phase noise) or

1/N

21K o

q)VCO

q)oul

Vne (loop filter noise) or ¢co (VCO phase noise)
@ Need to compute transfer functions from each of these
noise sources to ¢out

Nagendra Krishnapura
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Type-Il PLL: transfer functions

Wu,loop Z1 14 S
S S Zq

27erdeco B IchKVCO
N N
Koay 1
Koa RC
1+ s/
1+ S/Z1 + S2/21 Wu,loop
N s/

Kpa 1+ 8/21 4 8%/ 21wy joop

52/Z1WU,/oop
1+ 5/z1 + 82/ 21wy, joop
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Type-Il PLL: transfer functions

L(s) 1+8/z

1+ L(s)  1+8/z1 4 S%/z1wyj00p

@ Two poles and a zero
® Zero zy = Kpg,1/Kod
@ Natural frequency wy = /27 Kpg 1Kvco/N
@ Quality factor Q = \/z1 /wy joop = /NKpa.1/27Kico/ Kpd
@ Damping factor ¢ =1/2Q =1/2/wy joop/ Z1
@ For well separated (real) poles (21 < wy jogp),
P~z + 212/Wu,/oop N Z1, P2 & Wy loop — Z1;

@ Pole zero doublet {p1, z1 }; p; at a slightly higher frequency
than z
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Type-Il PLL: transfer functions

-20/1 —¢-4.08
——(=0.3162
=1
-25 3 2 ‘4 ) 1
10 10 qutzmp 10 10
Gout(S) N 14 5/2
bref(S) 1+8/z1 + 52/Z1Wu,loop

@ Peaking in |pout/ Pref| because of the zero
@ Damping factor ¢ > 1 to avoid peaking = slow settling
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Type-Il PLL: transfer functions

PLL transfer functions
T

Magnitude response [dB]

70 . . ,
10 107" 10° 10" 10°
i
u,loop

(Example parameters:

N =10,z = 0.1wy joops N/ Kpa = 27Kyco/wu joop = 25V ")
@ |dout/ Prer|: Lowpass with a dc gain N
® |pout/Vne|: Bandpass with peak gain N/Kpg = 25V~
@ |dout/ Pveol: Highpass with a high frequency gain of 1
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Type-ll PLL phase noise example

PLL phase noise components

~140T-"~ = reference
— ref. contribution to PLL
-160{{ =~ - VCO

—— VCO contribution to PLL|
= Total

-180 . . ;
10 107" 10° 10’ 10
i, loop

(Example parameters:
N =10,z = 0.1wy joop, N/ Kpa = 27 Kyco/wu,loop = 25 V!
@ Reference contribution dominant below 0.1wy j00p
@ VCO contribution dominant above 0.1wy j00p
@ VCO contribution reduced by the loop upto wy, jo0p
@ Charge pump and loop filter noise ignored in the above
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Type-Il PLL: Reference input

9ou/®el 4B, closed loop gain S,(f) dBc/Hz
20log(N) —

1 21K Koo/

T Koo Kpa

)

(O] (O]

reference oscillator
hase noise

Koa,/Kog

pole-zero
doublet at
21K K eo/N

pll phase noise

¢ref(s) 2 N Kpd
S s 1
27TKpd,lcho + Kpd,l +

@ Low pass response; Reference noise attenuated at high
frequencies

@ Low frequency gain of N, -3dB bandwidth of 27 KyyKyco/N

@ Pole zero doublet py ~ zy = Kpq,1/Kpa; p1 at a slightly
higher frequency than z;
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Type-Il PLL: Noise added to control node

dB, loop gain
[Dout/Veul dB(radians/V)
20l0g(N/Kq)

I o t t °
" 1 2 '
& éN +20dB/dec < zg }odB/dec
EX oy
bl X * X
© B S
o N ¢
g

¢out(s) _ N SKpd/Kpd’l

Var(s) K, K

ct(S) pd g2 pd 4

2rKpa,1Kvco Kpa,1

@ radians/Volt

@ Bandpass response

@ Mid band gain of N/Kpqy

@ Lower cutoff at Ky 1/ Kpg, Upper cutoff at 27 KpgKyco/ N
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Type-ll PLL: VCO noise

vco phase noise
-30dB/dec.(1/f%)

p4
[9ouOveol 3
out/Pucol 43 2 < Sq(f) dB/HZ ™\ 20dB/dec.(1/)
= N Il ph i
x‘l (ﬁ ® +20dB/de pll phase noise ®
0B = ‘ ’ :
Hodeidec & F \
3 4
X B
N4
B
o
s? N
bo(s) 2-Rod 1 Koco
Pveo(S) s2 N Kod +1

+ S
2nKod,1Kvco = Kpa,i

@ Second order highpass response
@ Feedback loop effectively inactive beyond 27K,y Kyco/ N
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Type-ll PLL phase noise example

S,(f) dBc/Hz S,(f) dBc/Hz total phase noise

\‘\/ due to vco o

due to
reference oscillator

|

27K K o/N T

Koa,/Kog T

reference
dominated| vco dominated




LC oscillator
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LC oscillator

L — L

C

1

—~W—-Gy

Gy = Gp
for sustained
oscillation
@ Lossless LC resonator sustains a sinusoidal voltage
indefinitely
@ LC resonator loss modeled using a parallel resistance R,
@ Compensate the loss of a lossy LC resonator using a
parallel negative resistance
@ Oscillation frequency f, = 1/27VLC
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LC resonator losses

L RS,L C RS,C
M ’—|}—va‘ L
C
L C
2 — 2

@ Capacitor and Inductor series resistances represented by
equivalent parallel resistances

o Effective R, is a parallel combination of losses from all
components
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Negative resistance-implementation

Gnv

+—
v

T —
Gnv

'GN

@ Transconductor Gy connected in positive feedback
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Negative resistance-implementation

-Om/2
i 9./2

ImV/2 gmv/2

|
ve—t e L{ ;J

9m Im

Itail Itail Itail

@ Cross coupled differential pair

@ Negative conductance = g,/2 where gn, is the
transconductance of each MOS device
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LC oscillator

Vdd
L
—F—c
Gp
92—

Itail

@ Parallel LC tank with cross coupled differential pair

@ This and its variants are the most commonly used
topologies of CMOS integrated oscillators
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LC oscillator-amplitude

Itail

@ Complete switching of MOS devices assumed

@ Equivalent to a square wave current of amplitude //2
driving the parallel LC tank
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LC oscillator-amplitude

+ v(t) -
L L L L
| | || 4
| — | — | — ——c
oo Aot dmon ) "
M; off M; on
/2 /2 0 Mgon | IMgoff o,
"bias" point
2 —
VoV To
2n --- 2IRp/m -~
/2
. fundamental . .
driving \ component differential voltage
current
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LC oscillator-amplitude

@ Equivalent to a square wave current of amplitude //2
driving the parallel LC tank

@ All components except the fundamental filtered out
@ Amplitude of the differential sinusoidal voltage = 2/Rp/7
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LC oscillator-tunability

a b
| ] 11
oy 2 oy
P- P-

1

a | b [:| o

@ Tunable using a varactor
@ Reverse biased p-n junction

@ MOS device in accumulation—Ilarger tuning range; more
popular in CMOS ICs
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Accumulation MOS varactor

a

T T 1 ]
A R TS AR Ty
n well
[m [ u m | meta [m [ u u | meta
n+ n+ n+ n+ n+ IW’"QE’ n+ n+ n+ n+ n+ IW""W
[m n u | metq
<>t <>t
Lfinger Liinger

@ nMOS in n-well

@ Multi fingered structure to reduce gate, channel resistance
@ W ~ few microns; L > L, to reduce parasitics

@ Gate contacts at both ends to further reduce resistance

@ Quality factor: 20+
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MOS varactor with differential excitation

b ) T ) )

l F-||J-||--||J-||--||J-||--|J. ap_“:::|T|j:“_a
Lot \ =]
\ 0V due to symmetry

@ Interdigitated fingers—alternate ones connected to g, and
an

@ Region between gates connected to a, and a, at 0V due
to symmetry

@ All n+ contacts except the ones at the end can be
removed [7]

@ Smaller structure, lower series resistance, and smaller
parasitic capacitances
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On chip inductors

@ Planar inductor on one of the metal layers
@ Top level metal preferred
@ Farther from the substrate
@ Smaller parasitic capacitance
@ Lesser coupling to substrate, and hence, loss
@ Thicker top level metal (~ 2 um) available in mixed signal

processes
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Inductor loss mechanisms

c distributed model: more sections can be added
|
|

|
|
o
|
|
o
S
||
Il
||
Il
|
[

substrate substrate

@ Winding resistance
o RoL/W
e Effective Ry larger due to skin effect
@ Copper: 2 um skin depth (x 1/+/f) at 1 GHz

@ Capacitive coupling to substrate and its resistance

@ Inductive coupling to (resistive) substrate

@ Quality factors upto 15 possible, typically 8-10

@ Use adequate thickness and number of vias during layout
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Differential inductor

vias

a]

@ Symmetrical differential inductor
@ More compact for a given differential inductance
@ Larger potential difference between turns = larger effect of
interwinding parasitic capacitance
@ Symmetrically laid out single ended inductors

o Greater area
@ Interwinding parasitic capacitance not very significant
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Inductor simulation

@ Some processes have scalable inductor library and models

@ Typically needs to be simulated from process
parameters—metal thickness, resistivity, intermetal
spacing etc.

@ Inductance value

@ FastHenry, Asitic etc.
@ Accurate estimation possible
@ Quality factor
o FastHenry, Asitic etc.
@ Harder to accurately estimate losses due to substrate
coupling
@ Parasitic capacitance

@ First order parallel plate estimation—OK for single ended
inductors

o FastCap etc.

@ Use distributed models for accuracy—2 to 3 sections are
sufficient
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VCO design: bias current and transistor sizing

@ Bias current is a function of tank losses and desired
amplitude
@ Maximize the inductance for a large amplitude from a small
current
@ Transistors typically minimum length at high
frequencies—longer to lower 1/f corner

@ Bias source: longer than minimum length to lower 1/f
noise

@ Minimize all parasitics to maximize tuning range from the
varactor

@ Transistor W/L to get the desired gy, for startup in the
worst case

@ Large g, = increased phase noise; So don’t go crazy!
@ Minimize g, variations over process and temperature; Less
overdesign
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5GHz VCO in 0.18 um CMOS

L =4nH and C = 0.25pF (differential) chosen

6 turn inductor on top metal layer, ~ 140 um square
From inductor simulations, Q ~ 6

Minimum length transistors

Cascode buffer for measurement
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VCO (higher freq. version)-measured f vs. V

frequency vs Vctl curve

6.3

fvco(in GHz)

56 I I I I

~0.5 0 0. 1 1.5 2

 Vetl (V)
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VCO-simulated phase noise

Phase Noise
20 ey

-30 dB/decade
—20F : : ;/// s : : : : -

N
T -ao0f 4
o
°
2 -eof .
[}
=2
2
«© -80fF B
<
o

-100F ~20 dB/decade ||

-120 : l
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Programmable frequency divider
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Programmable divider-Synchronous counter

D Q—
[ Q
D a2
©
- c
Qo
T
£
o)
S
o
o
D Q—
fin
It

@ All of the circuitry running at full speed
@ Very high power dissipation
@ Asynchronous operation preferred
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Programmable divider-Pulse swallow architecture

M A

f tput
Ly - M ol
/N
T B
T N=MP-+A
- A

Dual modulus prescaler ~P/P + 1

Divide by P + 1 for A cycles

Divide by P for M — A cycles

Fullcycle=(P+1)A+ P(M—-A)=MP + A

Only the dual modulus prescaler running at full speed
Programmability using M and A
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Programmable divider using divide-by-2/3 cells

2/3 2/3 2/3 2/3 2/3 Vg

Po P+ P2 P3 P4

@ Each stage divides by 2 (if px = 0)

@ Each stage divides by 3 (if px = 1) once in each output
cycle

@ With L stages, the division factor range from 2- to 25+ — 1

@ Modular approach
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Programmable divider using divide-by-2/3 cells

2/3 2/3 vad
mod, mod, | T
Po P Pops=11

mody T3 ] 2 2 [
b L ¥ 1T 1 T
fout j\ j N

@ Each stage divides by 2 (if px = 0)

@ Each stage divides by 3 (if px = 1) once in each cycle

@ With L stages, the division factor range from 2- to 25+ — 1
@ Modular approach
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Divide-by-2/3 cell for the programmable divider

............................................

Ai  Latcht Latch2

E:':)—DQ DQ—I

! clk clk 6 13 Mout
Fm{ """"" r

mModyy

Q D

L 1Q ck clk
Latch4 Latch3
P
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