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Introduction

In lecture 14, we studied steps required to design conjugate quadrature filter-banks. We set
out with the aim to achieve systematic design steps for building higher order filter banks and
learnt relationships between analysis and synthesis filters and between analysis low pass filter
and analysis high pass filter which emanated from alias cancelation and perfect reconstruction
conditions. Such analysis also enabled us to design higher and higher order filters of Daubechies
family (as a special case of conjugate quadrature filter-bank) through incorporation of more and
more (1+z−1) terms in analysis low pass filter transfer function for achieving regularity required
for convergence. Till this point, our analysis of scaling and wavelet functions has been either
in time domain or in transform domain. However, several tasks require localization in both
time and transform domain simultaneously and hence the need of such transform. Wavelet
transforms arrive from family of transforms which provide such localization also known as
multi-resolution analysis of the underlying signal. In this lecture, we analyze Haar scaling
and wavelet functions for time and frequency localization. We analyze their frequency domain
behaviors over the containment ladder. This very analysis gives us reason enough to move
towards ideal aspirations for scaling and wavelet transforms and in turn towards the basic
question of bound over simultaneous localization in time and frequency domain also known as
the ‘uncertainty principle’ in coming lectures.

Description

We start our analysis by considering Haar scaling function, which is shown in figure 1.

Figure 1: Haar Scaling Function
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If we denote Ω as analog angular frequency variable and φ̂(Ω) as Fourier transform of scaling
function then Fourier transform can be carried out in the following way:

φ̂(Ω) =

∫ +∞

−∞
φ(t)e−jΩt dt

φ̂(Ω) =
1− e−jΩ

jΩ

φ̂(Ω) = e−0.5jΩ

[
sin 0.5Ω

0.5Ω

]

If we consider magnitude only for this scaling function then it may be represented and de-
picted as shown in figure 2.

Figure 2: Magnitude of Fourier Transform for Haar Scaling Function

The above analysis of scaling function is applicable to subspace V0. A space having piece-
wise constant approximation over standard unit interval [n, n+1]. Let us now analyze time
and frequency domain behavior of scaling function as we move across the subspace ladder.
In subsequent discussion, we use ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2... relationship between
subspaces and consider only magnitude of the Fourier transform. For general case, we note the
following relationship:

φ(t)
F.T.←→ φ̂(Ω)

φ(αt)
F.T.←→ 1

|α|
φ̂
(Ω

α

)
; ∀ α ∈ R− {0}

As translation only affects phase in frequency domain, we consider scaling function without
translation in time domain without loss of generality (as our analysis is limited to magnitude
only). In this case, above relationship may be represented in the following manner.
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φ(t)
F.T.←→

∣∣∣φ̂(Ω)
∣∣∣

φ(2mt)
F.T.←→

∣∣∣∣∣ 1

|2m|
φ̂
( Ω

2m

)∣∣∣∣∣
Using this relationship, scaling function in time and frequency domain across various subspaces
may be sketched as shown in figure 3. Note the changes in localization in time and frequency
as we move from coarser subspaces to finer subspaces.
As evident from figure 3, as we go from subspace V−1 towards V2, subspace localization in
time improves by factor of 2, i.e. in V0 subspace scaling function lies in [0 1] interval (nonzero
values), whereas in V1 subspace scaling function lies in [0 0.5] interval. In this sense we may
say that time localization gets better and better as we move from V−∞ to V+∞. Similarly,
localization in frequency gets poorer by factor of 2 as we go from subspace V−1 to V2, i.e. width
of main lobe doubles each time we move to higher subspace. In this sense, we may add that
frequency localization gets poorer and poorer as we move from V−∞ to V+∞.
We shall now see how such localization affects projection of some signal x(t) ∈ L2(R) on
various subspaces. We shall also check the relationship between taking dot product in time
and frequency domains. For this purpose, we shall first consider orthonormal basis at some
subspace Vm. We note that: 〈

φ(2mt− n), φ(2mt− l)
〉

where, < a, b > represents dot product between functions a and b. As mentioned, when n 6= l,
scaling functions do not overlap with each other and hence yield zero dot product. We shall
now check what happens when n = l. As evident, this case provides norm of the scaling
function, which may be obtained in the following manner:∥∥∥φ(2m·)

∥∥∥2

2
=

∫ 2−m

0

(1)2 dt = 2−m

where, ‖·‖22 represents square of L2 norm and ‘ · ’ represents corresponding argument. Here,
argument is used to denote that this relationship is true for any valid translation. As can
be seen, we need to make scaling function unit norm in order to form orthonormal basis for
subspace Vm. Hence,

√
2mφ(2m − n) = 2

m
2 φ(2m − n) forms an orthonormal spanning set for

subspace Vm. This relationship may be represented in the following manner:

Vm = span
{
2

m
2 φ(2mt− n)

}
∀ n,m ∈ Z

Projection of signal x(t) over this subspace may be denoted as
〈
x(·), 2m

2 φ(2m · −n)
〉
, where

again ‘·’ denotes any valid argument. For understanding relationship between dot product in
time and frequency domain we shall interpret what happens when we take Fourier transform
and inverse Fourier transform.

If, x(t) ↔ x̂(Ω) then x̂(Ω) =
∫ +∞
−∞ x(t)e−jΩtdt . During this process, we take components

of x(t) along directions provided by complex exponentials e−jΩt. Also, inverse Fourier trans-
form gives x(t) back from 1

2π

∫ +∞
−∞ x̂(Ω)ejΩtdΩ , which may be interpreted as reconstruction

of x(t) from components along ejΩt. Now, from Parseval’s theorem we have the following
relationship:

< x(t), y(t) >=
〈
x̂(Ω), ŷ(Ω)

〉
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Which states that dot product is independent of basis we select and is equal in time and angular
frequency domain within factor of 2π. Using this relationship we may denote the relationship
between projection of function x(t) over subspace Vm in the following manner:〈

x(t), 2
m
2 φ(2m · −n)

〉
=

1

2π

〈
x̂(Ω), 2

m
2 ̂φ(2m − n)

〉
In figure 4, solid line shows Fourier transform of Haar scaling function and dotted line shows
Fourier transform of signal under consideration, namely x(t). As we can see, contribution of
side lobes towards overall dot product is unsubstantial compared to contribution from main
lobe. In other words, frequencies of x(t) inside main lobe are emphasized with respect to
frequencies outside the main lobe. As we move across the subspace ladder different amount of
frequencies are emphasized. To be more precise, as we go from V−∞ to V+∞, more and more
frequencies are emphasized as peak always remains on zero frequency.
Let us now analyze Haar wavelet function in time and frequency domain. Haar wavelet function
is shown in figure 5. Haar wavelet may also be represented in terms of basis of subspace V1 as
it is clearly in V1. This relationship may be represented as ψ(t) = φ(2t) − φ(2t − 1) . Using
this relationship we may find Fourier transform of Haar wavelet function. Clearly,

φ(t)
F.T.←→ φ̂(Ω)

φ(2t)
F.T.←→ 1

2
φ̂
(Ω

2

)
φ(2t− 1)

F.T.←→ 1

2
e
−jΩ

2 φ̂
(Ω

2

)
Using these relationships we may get

ψ(t) = φ(2t)− φ(2t− 1)

ψ̂(Ω) =
1

2
φ̂
(Ω

2

)
− 1

2
e
−jΩ

2 φ̂
(Ω

2

)
ψ̂(Ω) =

1

2

(
1− e

−jΩ
2

)
φ̂
(Ω

2

)
ψ̂(Ω) = je

−jΩ
2

sin2(Ω
4
)

Ω
4

If we consider magnitude only then we may write

|ψ̂(Ω)| =

∣∣∣∣∣sin2(Ω
4
)

Ω
4

∣∣∣∣∣
Using this relationship we may plot Haar wavelet function across various subspaces. Figure 6
shows Haar wavelet in subspaces W−1 to W2.
Obviously, as in the case of Haar scaling function, here also localization in time improves as
we move from W−1 to W2 by factor of 2. Similarly, localization in frequency degrades as we
go in similar direction by factor of 2. However, important thing to note here is along with the
bandwidth (as we may call it) centre frequency also shifts, unlike in the case of Haar scaling
function. If we now interpret this result by using Parseval’s theorem then we may state that
in case of Haar wavelet different bands with increasing bandwidth are emphasized as we go
from W−∞ to W+∞. This characteristic of Haar wavelet function is similar to aspirant band
pass filter. Again, similar notion of time and frequency localization applies here as in case of
Haar scaling function. Namely, localization in time gets better and better and localization in
frequency gets poorer and poorer as we go from W−∞ to W+∞.
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Summary

In this lecture we analyzed Haar scaling and wavelet functions in detail. Rather than analyzing
functions in either time domain or in frequency domain, we consider them in joint domain, i.e.
time and frequency domains simultaneously. Analysis reveals that time and frequency domain
localization improves and deteriorates respectively as we go from left to right in subspace
ladder and vice versa. Also, Haar scaling function aspires to become low pass filter and wavelet
function aspires to be band pass filter. Through this analysis we may consider ideal frequency
responses of scaling and wavelet functions, which may improve overall response and projections
over approximation and detail subspaces (V and W subspaces respectively). Findings of this
sort allow us to consider fundamental question of bound over simultaneous localization in
time and frequency domain, namely the ‘uncertainty principle’, which we shall look into in
subsequent lectures.
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Figure 3: Haar scaling function at various time and frequency resolutions. 3(a): scaling function
and frequency domain characteristic in V−1 subspace; 3(b): scaling function and frequency
domain characteristic in V0 subspace; 3(c): scaling function and frequency domain characteristic
in V1 subspace and 3(d): scaling function and frequency domain characteristic in V2 subspace.
Note how localization varies across different subspaces starting from coarse subspace V−1.
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Figure 4: Pictorial representation of dot product in frequency domain of a signal x(t) with
haar scaling function in some subspace

Figure 5: Haar wavelet function in time domain
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Figure 6: Haar wavelet function at various time and frequency resolutions. 6(a): wavelet
function and frequency domain characteristic in W−1 subspace; 6(b): wavelet function and
frequency domain characteristic in W0 subspace; 6(c): wavelet function and frequency domain
characteristic in W1 subspace and 6(d): wavelet function and frequency domain characteristic
in W2 subspace.
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