WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 6: The Haar Filter Bank

Prof. V.M. Gadre, EE, IIT Bombay

1 Introduction

In this lecture our aim is to implement Haar MRA using appropriate filter banks. In the analysis part we decompose given function in y_{v0} and y_{w0} . Decomposition of corresponding sequence is carried out in terms of wavelet function $\psi(t)$ and scaling function $\phi(t)$. After this is done we explore signal reconstruction using y_{v0} and y_{w0} . Earlier, we have seen that we can divide the real axis (number line) into various equally spaced blocks which then constitute a space. For example, let us split the line into blocks of width 1 as shown below. Corresponding

Figure 1: Number Line

to Figure 1, we have basis functions of V_0 and W_0 . If the same functions were used over a period of half $(\frac{1}{2})$, we have the spaces V_1 and W_1 and by halving or doubling the width we achieve the whole range of spaces.

$$\{0\} \subset \ldots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \ldots$$

2 Analysis part

Once we have decided the space in which we are operating, we can create a piecewise approximation of given function. Consider a function $y(t) \in V_1$ defined between [-1, 3]. The number written in between the interval indicates piecewise constant amplitude for that interval.

Figure 2: $y(t) \in V_1$

This continuous function can be associated with the sequence

$$y[-2] = 4, y[-1] = 7, y[0] = 10, y[1] = 16, y[2] = 14, y[3] = 11, y[4] = 3, y[5] = -1$$

y[n] is an approximation of y(t) over period $\left[\frac{n}{2}, \frac{n+1}{2}\right]$ in the space V_1 . In general, we write

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]\phi(2t - n)$$

where $\phi(2t-n)$ is shifted version of basis function of V_1 shown in figure 3.

Figure 3: Basis function of V_1

Now we decompose space V_1 in two subspaces V_0 and W_0 as

$$V_1 = V_0 \bigoplus W_0$$

Corresponding to these subspaces we obtain two functions y_{v0} and y_{w0} . So, for a given $y(t) \in V_1$ we can split it in two components $y_{v0}(t)$ and $y_{w0}(t)$ which are projections of y(t) on the V_0 and W_0 subspaces, respectively.

Note that this is after the whole analysis part (after the decimation operation). These functions can be represented as shown in figure 4.

Figure 4: Projection of y(t) over subspaces V_0 , W_0

The above representations graphically demonstrate scaled and shifted combinations of the bases to get the original signal (sequence).

We define a[n] as the input and $b_1[n]$ and $b_2[n]$ as the output.

$$b_1[n] = \frac{1}{2}(a[n] + a[n-1])$$

$$b_2[n] = \frac{1}{2}(a[n] - a[n-1])$$

This is equivalent to

$$b_1[n] = \frac{1}{2}(y[n] + y[n-1])$$

Figure 5: Graphical representation of y_{v0} and y_{w0}

Figure 6: Filter Bank: Analysis Part

$$b_2[n] = \frac{1}{2}(y[n] - y[n-1])$$

Here, $b_1[n]$ and $b_2[n]$ are sequences having the same length and order as y[n] whereas we want them to be shorted and one order lesser than y[n]. $b_1[n]$ and $b_2[n]$ must be modified somehow to get $y_{v0} \in V_0$ and $y_{w0} \in W_0$ respectively. This is performed by decimation (down-sampling). Taking Z-transform on both the sides, we get

$$B_1(Z) = \frac{1}{2}(1+z^{-1})Y(Z)$$

Figure 7: Filter Bank: Analysis Part

$$B_2(Z) = \frac{1}{2}(1 - z^{-1})Y(Z)$$

This is followed by the decimation operation to remove unwanted data. Hence, the Analysis filter bank is as shown in figure 6 .

3 Synthesis Part

To synthesize y(t) from $y_{v0}(t)$ and $y_{w0}(t)$, in continuous time, we can write $y(t) = y_{v0}(t) + y_{w0}(t)$, however it is required to do some work in discrete time. We again write all the three sequences as,

$$y[n] = \{4, 7, 10, 16, 14, 11, 3, -1\}$$
$$y_{v0}[n] = \{\frac{11}{2}, 13, \frac{25}{2}, 1\}$$
$$\uparrow$$
$$y_{w0}[n] = \{\frac{-3}{2}, -3, \frac{3}{2}, 2\}$$

Upsampler: To 'outdo' or 'overcome' decimation operation, we define operation of upsampling by symbol

Figure 8: Upsampler

$$x_{out}[n] = x_{in} \left[\frac{n}{2}\right],$$
 where n is multiple of 2
= 0, otherwise

Basically upsampler expands the input sequence and it does so by adding zero in between successive samples.

If $x_{in}[n] = y_{v0}[n]$, then x_{out} is given by

$$x_{out}[n] = \{\frac{11}{2}, 0, 13, 0, \frac{25}{2}, 0, 1, 0\}$$

and similarly, $y_{w0}[n]$ on upsampling gives,

$$x_{out}[n] = \{\frac{-3}{2}, 0, -3, 0, \frac{3}{2}, 0, 2, 0\}$$

If the sequences obtained after upsampling $(y_{v0} \text{ and } y_{w0})$ are added and subtracted alternately, we can recover original sequence. We can combine the operations with proper up-sampling and delay to get back the original. Figure 9 shows how an operation of upsampling is done using signal flow diagram. The delay is used to give the output in proper order.

Figure 9: Signal flow diagram with up-sampler by two

Figure 10: Filter Bank: Synthesis Part

Figure 10 shows the synthesis part of 2-band perfect reconstruction filter bank. In this way, filter bank is used to implement Analysis and Synthesis aspects of Haar MRA.