
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 4: Algebra of Linear Vector Spaces, Bases, etc
Prof.V.M.Gadre, EE, IIT Bombay

1 Generalized vectors:

A vector quantity or vector, provides the magnitude as well as the direction of a specific
quantity.
Example: When giving directions to a point, it is not enough to say that it is x miles away,
but the direction of those x miles must also be provided for the information to be useful. (Note
that physical quantities are represented by Scalars, such as temperature, volume and time etc.)

Figure 1: Graphical representation of vectors

Given a coordinate system in three dimensions, a vector may thus be represented by an ordered
set of three components which represent its projections v1, v2, v3 on the three coordinate axes.

v = [v1, v2, v3]

The three most commonly used coordinate systems are rectangular, cylindrical, and spherical.
Alternatively, a vector may be represented by the sum of the magnitudes of its projections on
three mutually perpendicular axes:

v̄ = v1û1 + v2û2 + v3û3

The n-dimensional coordinate systems based on the Euclidean space (Cartesian space or n-
space) represented by Rn or En, under n-dimensions and n-vectors. Usually, the Euclidean
space is formed by (X1, X2, X3, ..., Xn) where n is equal to 8.
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Parallelogram law of vector:
Let us take an example, in this using parallelogram law we can get the resultant vector.
The resultant vector can be calculated as:

v̄ = ¯̃v1 + ¯̃v2

where ¯̃v1 = k1û1

and ¯̃v2 = k2û2

then v̄ = k1û1 + k2û2

Figure 2: Parallelogram law of vectors

2 Relationship between functions, sequences, vectors:

One can intimately relate processing of a function to processing of equivalent sequence, and
whatever we are doing to try and gain information from or modify a function can be done
equivalently by processing or modifying that sequence corrosponding to function. A sequence
is like a vector and each n is a different dimension of that vector.
An infinite (countably infinite) dimension vector is a sequence x[n], n ∈ Z, where n is index
and Z is set of integers.
Now, we would like to extend other ideas of vectors to this context of infinite dimension vector.

Dot product of vectors:
Let,
ē1 = e11û1 + e12û2 and ē2 = e21û1 + e22û2 then dot product is ē1ē2 = e11e21 + e12e22. That
means it is nothing but sum of products of corresponding coordinates.

Let two n-dimensional vectors as
ē1 : e11, e12, ..., e1N and ē2 : e21, e22, ..., e2N the dot product of these two vectors is

〈ē1ē2〉 =
N∑

k=1

e1ke2k. These are also called as orthogonal coordinates.

Let two sequences, say x1[n], x2[n], n ∈ Z, the ‘dot product’ or ‘inner product’ is 〈x1, x2〉,
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where

〈x1, x2〉 =
+∞∑

n=−∞

x1[n]x2[n]

In 2−D, 3−D space, we will calculate magnitude from the dot product, but in general n−D
space, we will use norm. Generally norm squared represents energy.
Let vector x: essentially a sequence x[n], n ∈ Z, then the ‘norm’ of sequence x = ‖x‖ should
be 〈x1, x2〉1/2

‖x‖ ≥ 0 and‖x‖ = 0 iff x = 0 i.e. x[n] = 0 ∀ n ∈ Z

If x1 and x2 are real,

〈x1, x2〉 =
+∞∑

n=−∞

x1[n]x2[n]

〈x, x〉 =
+∞∑

n=−∞

x2[n]

As long as x[n] is real ∀n ∈ Z, this will satisfy norm requirements.
A small change will be applied for complex sequences as follows

〈x1, x2〉 =
+∞∑

n=−∞

x1[n]x2[n]

Properties of Inner product:

1.Conjugate community:

〈x1, x2〉 = 〈x2, x1〉

=
+∞∑

n=−∞

x1[n]x2[n]

=
+∞∑

n=−∞

x2[n]x1[n]

〈x1, x2〉 = 〈x2, x1〉

2. Linear in first argument :

〈a1x1 + a2x2, x3〉 = a1〈x1, x3〉 + a2〈x2, x3〉

=
+∞∑

n=−∞

(a1x1 + a2x2)x3

=
+∞∑

n=−∞

a1(x1x3) + a2(x2x3)

〈a1x1 + a2x2, x3〉 = a1〈x1, x3〉 + a2〈x2, x3〉
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3. Positive definite :

〈x, x〉 =
∑

x[n].x[n]

〈x, x〉 = 0; iff x[n] = 0 ∀n

Extension to uncountably infinite dimension:
For any ‘t’, t ∈ R is a different dimension and x(t), t ∈ R, means x(t) for a particular ‘tth’
coordinate. Then the ‘dot product’ or ‘inner product’ between two functions x(t) and y(t) is

〈x, y〉 =

∫ +∞

−∞
x(t)y(t)dt

Parseval’s Theorem:
The Parseval’s theorem states that the inner product of any two functions in time domain is
equal to the inner product of those two functions in frequency domain.
Let x(t) be a function and x̂(ν) or x̂(Ω) is its fourier transform (in Hz or in radians) and defined
as

x̂(ν) =

∫ +∞

−∞
x(t)e−j2πνtdt or x̂(Ω) =

∫ +∞

−∞
x(t)e−jΩtdt where Ω = 2πν

Let y(t) be a function and ŷ(ν) or ŷ(Ω) is its fourier transform (in Hz or in radians) and defined
as

ŷ(ν) =

∫ +∞

−∞
y(t)e−j2πνtdt or ŷ(Ω) =

∫ +∞

−∞
y(t)e−jΩtdt where Ω = 2πν

The inner product of these in time domain is

〈x, y〉 =

∫ +∞

−∞
x(t)y(t)dt

and it is equal to the inner product in frequency domain given by

〈x̂, ŷ〉 =

∫ +∞

−∞
x̂(ν)ŷ(Ω)dΩ

That means 〈x, y〉 = 〈x̂, ŷ〉
The function x(t) can be reconstructed from its frequency components as

x(t) =

∫ +∞

−∞
x̂(Ω)e−jΩtdΩ

Applications of Parseval’s Theorem:
The Parseval’s theorem is often used in many areas like physics and engineering etc, and it is
written many of the times as ∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|x̂(ν)|2dν

where x̂(ν) represents the continuous Fourier transform of x(t) and ‘ν’ represents the frequency
component of x.
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From this equation, the theorem tells that the total energy contained in a function
x(t) over all time ‘t’ is equal to the total energy of the its Fourier Transform x̂(ν)
over all frequency ‘ν’.

For discrete time signals, the theorem becomes:

+∞∑
n=−∞

|x[n]|2 =
1

2π

∫ +π

−π

|x̂(ejω)|2dω

where x̂(ejω) is the Discrete-Time Fourier transform (DTFT) of x and ‘ω’ represents the an-
gular frequency (in radians per sample) of x.

For the Discrete Fourier transform (DFT), the relation becomes:

N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|x̂[k]|2

where x̂[k] is the DFT of x[n] and ‘N ’ is length of sequence in both domain .

Relation between continuous functions and sequences:
Let x(t) be a continuous function and let φ(t) be a unit step function in [0, 1] interval, then
x(t) can be written as

x(t) = .... + C−1φ(t + 1) + C0φ(t) + C1φ(t − 1) + C2φ(t − 2) + ....

It can be graphically represented as shown in figure 3.

Figure 3: Relation between continuous functions and sequences

Equivalance between continuous functions and sequences will be dealt in greater detail in
subsequent lectures.
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