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1 Introduction

The underlying principle of wavelets is to capture incremental information in a function. The
piecewise constant approximation of a function is representation of the function at different
resolutions.

For understanding this, consider an example of a cabbage. Let the outermost shell be the
maximum resolution. The job of wavelet is to peel-off or to take out a particular shell of that
cabbage. So we are essentially peeling-off shell-by-shell using different dilates and translates of
a wavelet. Figure 1 shows the concept of nested subspaces. So, it goes like this,

Different dilates
corresponds to−−−−−−−−−−−→ different resolutions.

Different translates
takes us along−−−−−−−−−−−→ different resolutions.
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Figure 1: Nested Subspaces

The idea of wavelets may be introduced using an example of the Haar wavelet. The Haar
wavelet is a dyadic wavelet, that is, the piecewise constant approximation is refined in steps
of two at a time. The wavelet captures the incremental information between two consecutive
levels of resolution. In other words, the Haar wavelet gives the additional information required
to go from one resolution to the next higher level of resolution.

Example 1

The idea of expressing a function at different resolutions may be explained with the example
of Figure 2. It shows the signal at high resolution in red, its piecewise constant approximation
over unit intervals in blue and that over intervals of length 0.5 in green.
The corresponding function which gives the incremental information between the two approxi-
mation levels is shown in Figure 3. The same idea may be extended to two dimensions as well.
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Figure 2: Signal at different Resolution

In Figure 4, Figure 4a is the image at a certain level of resolution. Figure 4b(i) is the image at
0.5 resolution of Figure 4a. Figure 4b(ii), 4b(iii) and 4b(iv) give the incremental information
in the vertical, horizontal and diagonal directions respectively.

Figure 3: Incremental information

The idea of wavelets is analogous to an object with many shells. Wavelet translates at the
maximum resolution takes out the outermost shell, the next shell is taken out at the next lower
resolution and so on. Hence, we are essentially ‘peeling off’ shell by shell using different dilates
and translates of the wavelet function. The dilation takes us to the next level of resolution,
while translation takes us along a given resolution.
Without any loss of generality, we begin with piecewise constant approximation at a resolution
of unit length. The choice of unit interval is entirely one’s own choice. We now need to find a
function φ(t) such that its integer translates are able to span the space of piecewise constant
functions on the standard unit intervals. Here, space refers to a linear space of functions,
that is, a set of functions which is closed under linear combinations. In this discussion we
only consider finite linear combinations. The same ideas may be extended for infinite linear
combinations.
A set V0 is defined as follows,
V0 : { x(t), such that x(·) ∈ L2(R) is piecewise constant on interval ] n, n + 1 [ , ∀ n ∈ Z }.
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Figure 4: 2D example, showing image 0.5 resolution and incremental information

The subscript ‘0’ is used for V0 because of piecewise constancy on interval of size 2−0.
Similarly, V1 is defined as,
V1 : { x(t), such that x(·) ∈ L2(R) is piecewise constant on all ]2−1n, 2−1(n+ 1) [ , ∀ n ∈ Z }.
V1 is the set of functions piecewise constant over the interval of 2−1.
In general Vm is the set of functions which is piecewise constant over the interval of size 2−m.
Vm : { x(t), such that x(·) ∈ L2(R) is piecewise constant on all ]2−mn, 2−m(n+ 1)[ , ∀ n ∈ Z}.

Example of a function x(·) ∈ V2

All function belonging to V2 are piecewise constant over the interval of 0.25. Figure 5 shows a
function belonging to V2. Here x(t) ∈ V2 means x(t) ∈ L2(R). This implies that the squared
sum of all the piecewise constant values must be convergent.

Figure 5: Example of a function belonging to V2 space
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Figure 6: Example of a function belonging to V−1 space

Example of function x(·) ∈ V−1

Any function belonging to V−1 is piecewise constant over the interval of length two. Figure 6
shows a function belonging to V−1. Now a function which is piecewise constant over the interval
of 1 is also piecewise constant on the interval of 0.5. Therefore, a function belonging to space
V0 also belongs to space V1. In general a function which belongs to space Vm also belongs to
space Vm+1. Hence a ladder of subspaces is implied.

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2...

Intuitively we can see that as we move towards right i.e. up the ladder we are moving towards
L2(R)

{∪Vm}m∈Z = L2(R)

Now what happens when we go left towards the ladder? Movement towards leftwards implies,
piecewise constant approximation over larger and larger intervals. Now consider L2 norm of
function going towards leftwards:

∞∑
n=−∞

|Cm(n)|22−m

where C(·) is approximate coefficient at resolution 2−m. Now as we move towards left m
becomes negative and m → −∞. Therefore L2 norm is given by

2|m|
∞∑

n=−∞

|Cm(n)|2

If we require L2 norm to converge, however for large |m|,
∞∑

n=−∞

|Cm(n)|2 must be zero. That is

Cm = 0 ∀ n. Hence movement towards left implies movement towards trivial subspace {0}.

3 - 4



{∩Vm}m∈Z = {0}

We say that a set of functions {f1, f2, f3, ..., fk, ...} span a whole space if any function in that
space can be represented by linear combination of these functions.
What is function φ(t) and how does its integer translates span V0? We may consider function
φ(t) as shown in figure 7.

Figure 7: Function φ(t)

Any function in V0 can be expressed in the form∑
n∈Z

Cnφ(t− n)

where Cn is piecewise approximation constants and φ(t− n) are integer translates of the φ(t).
Figure 8 shows a function belonging to V0. It can be expressed as shown below.

Figure 8: Example of a function belonging to V0

0.2φ(t+ 1) + 0.7φ(t)− 0.4φ(t− 1) + 0.6φ(t− 2) + 1.3φ(t− 3)

Hence any space V can be similarly constructed using a function φ(2mt).

Vm = span{φ(2mt− n)}n,m∈Z
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φ(t) is called as scaling function(Haar MRA), which is also called as ‘Father function’. The
ladder of subspaces

...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2...

with these properties is called as Multi-Resolution Analysis(MRA).

2 Axioms of MRA

There exists a ladder of subspaces, ...V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2... such that

1. {∪Vm}m∈Z = L2(R)

2. {∩Vm}m∈Z = {0}

3. There exists φ(t) such that, V0 = span{φ(t− n)}n∈Z

4. {φ(t− n)}n∈Z is an orthogonal set.

5. If f(t) ∈ Vm then f(2−mt) ∈ V0, ∀m ∈ Z

6. If f(t) ∈ V0 then f(t− n) ∈ V0, ∀n ∈ Z

3 Theorem of MRA

Given the axioms, there exists a ψ(·) ∈ L2(R), so that {ψ(2mt−n)}m∈Z,n∈Z spans the L2(R).

The wavelet function ψ(·) is also called as ‘Mother function’.
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