WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING

Lecture 1: Introduction
Prof.V.M.Gadre, EE, IIT Bombay

1 Introduction

This lecture introduces the subject of wavelets and multirate digital signal processing. It
provides an inspiration to understand this subject at a greater depth.

The subject of wavelets follows a basic exposition to subjects like signal analysis, system
theory and digital signal processing. It could be considered as an advanced course on signal
processing. However, this does not imply that the concepts introduced in this course are
difficult to understand. In fact, the concepts are easier than a basic course on signal analysis.
The basic course had introduced the idea of abstraction i.e. abstraction of signals, systems,
transforms, analysis in different domains etc. On the other hand, wavelets bring us closer to
reality. In this sense, the course is very easy. In a basic course, we assume that the signals
last forever. For example, while calculating the Fourier transform, we represent any signal in
terms of basis functions and these basis functions last from ¢ = —ootot = -+ oo, where
t denotes time. However, no signal in this world can last forever. Thus, we should deal with
signals in finite domains.

Example 1

In fact, we understand finite domains very well, if that finite domain is the natural domain. To
reflect more on this, consider an example of a piece of an audio signal which is finite in time.
Here, time is the natural domain. From a signal processing perspective, we wish to find the
content in that audio signal, by enhancing some parts of that signal and suppress others. We
may even be interested in characterizing the system. But for doing all these things, we deal
with finite time signal and the abstraction of everlasting signals is unnecessary.

Example 2

Consider another example, in which we have a picture of a ‘face’. In this case, the natural
domain is space and it is 2-Dimensional. The face has various features like eyebrows, forehead,
nose, lips etc. Suppose we wish to isolate a particular feature, say lips. This requires localization
in the spatial domain. Here, again, the amount of data is finite.

Example 3

Another example which explains localization is a piece of audio in which a number of notes
are sung. It may be called as a ‘raga’ in Indian tradition and the notes may be called as the
components of the raga. Now, we aim to make a system that takes the rendition of this ‘raga’
and identifies the notes that compose it. To achieve this, we need to segment the signal in
time. For example, the first note may be played for 1 second, the second note for 0.5 seconds
and so on. This demands segmentation in time. Moreover, we should also understand that all
the notes are not of fixed lengths. The length of the time segment is also important. But more
important is to understand the concept of ‘Notes’ in the signal processing context.
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In the basic course, we were exposed to the idea of frequency domain. We know that signals
have embedded inside them, a collection of sine waves. These sine waves are continuous for
continuous time signals while they are sampled for discrete sequences. Thus most reasonable
signals can be thought of as a collection of sine waves. In principle, if the signal is not periodic,
we require an infinity of sine waves whose frequency ranges from 0 to co. For periodic signals, we
have a discrete set of sine waves, possibly finite or possibly infinite. Thus, a different domain is
more useful to analyze the signal. Now if we query about the ‘Notes’ in the raga, it is equivalent
to asking the frequency content in the audio piece i.e. what points on the frequency axis are
occupied by this note? What are the locations where the transform is prominent? This is one
of the most fundamental inspirations to study wavelets. Before continuing with this example,
it is worthwhile to introduce the term ‘wavelets’.

1.1 Wavelets

Fourier transforms deal with sine waves. Sine waves have many nice properties. Firstly they
occur naturally. For example, an electrical engineer recognizes sine wave as naturally emerging
from an electricity generation system. Secondly, sine waves are the most analytic, the smoothest
possible periodic functions. They also have the power to express many other waveforms i.e.
they form a very good basis. Addition of two sine waves of the same frequency but with
possibly different amplitudes and phases, gives a sine wave of the same frequency with possibly
different amplitude and phase. A sine wave on differentiation or integration is a sine wave of
the same frequency. Any linear combination of all these operations on a sine wave results in a
sine wave of the same frequency. But the biggest drawback of sine waves is that they need to
last forever. If the sine wave is truncated (a one sided sine wave, for example), the response to
this signal by a system, in general, is different from the response which would be obtained if
the signal would be a sine wave from¢t = —ocotot = +o0. There would be transients which
are not periodic. All the beautiful properties mentioned above, are no longer valid. So, if we
need to apply the principles studied in a basic course, we need something unrealistic i.e. a sine
wave which lasts forever. To be more realistic in our demands, it is appropriate to deal
with wavelets rather than waves. Wavelets are waves that last for a finite time, or
more appropriately, they are waves that are not predominant forever. They may be
significant in a certain region of time and insignificant elsewhere or they might exist only for
finite time duration. For example, a sine wave that exists only between ¢t = 0 and t = 1 msec
is, in principle, a wavelet (though not a very good one), a wave that doesn’t last forever.

Example 3 revisited

Now, we go back to the example of audio clip. The audio clip comprises of many notes of
varying time lengths and hence requires time segmentation. On the other hand, identifying
notes in a particular time segment, involves segmentation in the frequency domain. Thus we are
asking for a simultaneous localization in time and frequency domain. But the uncertainty
principle in nature puts constraints on this simultaneous localization beyond a point. In signal
processing, we call it uncertainty in time and frequency domain. Thus, the resolution
in the time domain is increased at a compromise in the resolution in the frequency domain. It
could be even intuitively argued that, for a shorter audio clip, it is more difficult to identify
a note in that time segment than a note played for a longer period of time. But, what is not
intuitive from this discussion is that we cannot go down to identifying one particular frequency
precisely. So, if we wish to come down to a point on the time axis, we need to spread all over
the frequency axis and vice versa. This is the stronger version of this principle. However the
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weaker version is more subtle. Even if we select a time region on the time axis and ask for the
region of frequencies which are predominant in that time region, even then there is a restriction
on the simultaneous length or measure of the time and frequency regions. In fact, the more we
focus in time, the less we focus in frequency. This could be best explained by examples.

1.2 A few examples

Example 1

Consider a mobile communication system in which a bit stream is transmitted at 1Mbps. If the
bit interval is uniform, the time interval for 1 bit is 1 usec. This indicates segmentation in time.
Now, consider that there are two mobile operators operating in a given region. All the users in
the region are using mobile from any of the two operators. To avoid interference, these operators
should be separated in some domain. They cannot be separated in the time domain since the
users of different operators can use the mobiles simultaneously. So the separation could be in
frequency domain. Thus, every operator is allocated a particular bandwidth i.e. a region in the
frequency domain so that the users of that operator can operate in that frequency region only.
This is indicative of segmentation in frequency. Thus, in a mobile communication case, there
is a desire to localize in time and frequency simultaneously ¢.e. transmitting a bit in a time
interval of 1 usec, indicating a localization in time and transmitting in a particular frequency
region only indicating localization in frequency. Thus, this is an example of simultaneous
localization in time and frequency.

Example 2

Consider another example of a biomedical signal, say ECG signal (electro-cardiographic wave-
form) in which various features of the ECG signals are analysed. There are various segments
in a typical ECG signal which are often indexed by letters say P, Q etc. These segments are
of unequal length.. In fact, biomedical engineers often talk about what are called as evoked
potentials. They give stimulus to a bio-medical system and evoke a response and the waveform
corresponding to that response is called an evoked potential. An evoked potential typically
has fast-varying parts in the response and slow-varying parts in the response. Obviously, the
slower parts of the response are predominantly located in the lower ranges of the frequency
region while the quicker parts of the response are predominantly located in the higher ranges
of the frequency. To isolate the quicker parts of the response, is it sufficient to pass the sig-
nal through a conventional high pass filter? Here arises the time frequency conflict. Indeed,
it is not sufficient. In fact we need a different perspective on filtering. We need to identify,
in different parts of the time axis, which regions of the frequency axis are predominant and
then identify different parts of the frequency axis that need to be emphasized in different time
ranges. This is yet another example of time frequency conflict. In a basic course, we under-
stand the domains very well because we keep them apart. But one normally needs to consider
the two domains together and when we try to do so, there is a fundamental conflict.

2  Brief outline of the course
This course will start with a particular tool to analyze signals, i.e. the Haar Multiresolution

Analysis. Haar, a mathematician, proposed a dual of the idea of Fourier analysis. In Fourier
analysis, we represent even discontinuous or non-smooth waveforms into a linear combination
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of extremely smooth functions namely the sine waves. Haar proposed the idea of taking smooth
functions and convert them into a linear combination of effectively discontinuous functions. For
example, data in a digital communication system, e.g. an audio signal, image, or a video, is
transmitted it with a large level of discontinuity. To record a digital audio, we first sample the
signal then we digitize the signal, and then record it. All these are highly discontinuous opera-
tions. In fact we are not only, forcibly, introducing discontinuity in time but also in amplitude.
Thus, representing a smooth audio signal into a discontinuous bit stream is very beneficial to
digital communication system. In fact a digital recording is even better than an analog record-
ing. Therefore, the first few lectures will look at one whole angle of wavelets and multirate
digital signal processing based on the principles that Haar propounded. Understanding Haar
multiresolution analysis(MRA) in depth leads to better understanding of many of principles of
wavelets and multirate processing, specifically the two band processing. After Haar MRA, the
sequence would be

e The Daubechies family of multiresolution analysis.(Daubechies is the name of the math-
ematician who proposed this family of multiresolution analysis).

e The uncertainty principle, fundamentally and in terms of its implications.

e The Continuous wavelet transform(CWT). In the Haar multiresolution analysis, we have
a certain discretization in the variables associated with the wavelet transform. In the
continuous wavelet transform, the variables become continuous.

e Some of the generalisations of the ideas like ‘wave packet transform’, variants of
wavelet transforms.

e In the last phase of the course, we shall look at some of the important applications, where
wavelets and multirate digital processing provide great advantages.

3 Multirate digital signal processing

Let us look at some of the developments in the subject of multirate signal processing. The
connection with wavelets will also be seen. Consider the biomedical example discussed previ-
ously. The biomedical signal has fast-varying parts and slow-varying parts of the response. The
slow-varying parts of the response are likely to last for a longer period of time while the quicker
parts of the response are likely to last for a shorter period of time. So, apart from considering
localization in time and also in frequency, the localization required for higher frequencies and
lower frequencies is also important. Lower frequencies in response have lower time resolution.
Resolution means the ability to resolve, the ability to be able to identify specific components.
How can the frequency axis be narrowed down? More appropriately, how much do we need
to narrow down? It is often desired (not always) that the higher frequency components be
compromised on frequency resolution but not on time resolution. So things that are transient,
demand time resolution and things that occupy lower frequency ranges, demand frequency
resolution. Hence for increasing frequencies, more frequency resolution is needed opposed to
time resolution. This brings the idea of multirate processing. So, if we have higher frequen-
cies, we should use smaller sampling interval and vice versa, in a discrete processing system.
This leads to more efficient processing operations. In an evoked potential response, frequent
sampling is not required for the lower frequency components. It increases data without any
advantage. On the other hand, while handling quicker components, if our sampling rate is
less or inadequate, ‘aliasing’ is introduced. Hence, same sampling rate is not used for all the
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frequency components. Unlike a basic course, we deal here with sequences that are obtained
with different sampling rates in the same system. This brings the idea of multirate digital
signal processing.

3.1 Filter banks

Going further, the idea of filter banks is important as opposed to filters. In a biomedical
example, to separate components, many different operators have to be simultaneously used.
So a system of filters is needed, which has certain individual characteristics as well as collective
characteristics. Thus, analysis as well as synthesis is required. In addition to that, we also
require localization. So a bank of filters, refers to a set of filters which either have a common
input or a common point of output. This concept of a bank of filters, and in fact, two bank
filters namely analysis and synthesis filter bank, taken together, is very central to multirate
signal processing. So a two band filter bank will be studied in this course at a greater depth.
The concept of two band filter bank is of great importance to be able to construct wavelets. In
fact from the Haar multiresolution analysis example, we will see that an intimate relationship
exists between the Haar wavelet and a two band Haar filter bank.



