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1 Discrete probability distributions

1.1 Mean and variance

Let’s begin with a quick recapitulation of some elementary properties of a ran-
dom variable n that can take on values in the set of integers (or some subset of
integers), called the sample space of n. Let Pn be the normalized probability
that the variable takes on the particular value n. Thus Pn ≥ 0 , and

∑
n Pn = 1 .

The mean value, mean squared value, and variance of n are given by

〈n〉 def.
=
∑
n

nPn , 〈n2〉 def.
=
∑
n

n2 Pn , Var n
def.
= 〈n2〉 − 〈n〉2 = 〈

(
n− 〈n〉

)2〉,

respectively. The final equation above shows that the variance is strictly positive
for a random variable. It vanishes if and only if n takes on just one value with
probability 1, i.e., if n is a sure or deterministic variable rather than a random
variable. The standard deviation (often denoted by ∆n) is the square root of the
variance. It is the basic measure of the scatter of the random variable about its
mean value. In dimensionless units, one often uses the ratio

relative fluctuation = ∆n/〈n〉

to measure this scatter about the mean. More information about the probability
distribution Pn is contained in the higher moments 〈nk〉, where k ≥ 3.

F 1. A pair of (distinguishable) dice is tossed once. Each die can give a score
of 1, 2, 3, 4, 5, or 6. Let s denote the total score of the pair of dice. It is obvious
that the sample space of s is the set of integers from 2 to 12.

(a) Write down the set of probabilities {Ps}. What is the most probable value
of s?

(b) Find the mean, standard deviation and relative fluctuation of s.

Remark: It is useful to recall the language of statistical mechanics. Each pos-
sible configuration of the two dice is an accessible microstate of the system
(which comprises the two dice). The dice are distinguishable, which is why we
must count the configuration (5, 6) as different from the configuration (6, 5), and
so on. Hence there are 6× 6 = 36 possible microstates, each with an a priori (or
before-the-event) probability of 1

36
. The total score s may be taken to label the

possible macrostates of the system. There are 11 possible macrostates, corre-
sponding to s = 2, 3, . . . , 12. The most probable score (i.e., the most probable
macrostate) is s = 7, because it has the largest number (= 6) of accessible mi-
croststates. This is why P7 = 6× 1

36
= 1

6
.

F 2. The probability of a score s = 3 is of course P3 = 2× 1
36

= 1
18

.
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(a) Suppose the two dice were made indistinguishable from each other for all
practical purposes. What would P3 be in this case?

(b) Here is a quantum mechanical analog of a pair of dice: Consider a pair
of identical bosons that obey quantum mechanics. Suppose the possible
values of the energy of each particle are 1, 2, 3, 4, 5 and 6 (in suitable units),
with a corresponding normalized eigenstate |j〉, where j runs from 1 to 6.
Let |jk〉 denote the normalized state of the two-particle system in which
particle 1 has energy j and particle 2 has energy k. What are the possible
normalized energy eigenstates of the system? If, further, the system can be
in any of these states with equal probability, what is the probability that
its energy is equal to 3?

(c) Now consider a pair of identical fermions instead of bosons, all the other
conditions remaining the same as in the foregoing. What is the probability
that the total energy of the pair is equal to 3?

1.2 Bernoulli trials and the binomial distribution

Consider an event in which the outcome can be either success, with an a priori (or
before-the-event) probability p ; or failure, with an a priori probability q ≡ 1−p .
Here 0 < p < 1 in general. Such an event is called a Bernoulli trial. A simple
example is a coin toss, in which the outcome can be a head (success, say) or a
tail (failure). If the coin is a fair one, then p = q = 1

2
; if the coin is biased, then

p 6= 1
2

. We make N trials. The question is: what is the probability Pn that the
total number of successes is n? Here n is the random variable, and the sample
space is the set of integers from 0 to N .

The trials are independent of each other. Hence the probability of any partic-
ular sequence of successes (heads) and failures (tails), such that the total number
of successes is n, is just pnqN−n . Each such sequence contributes to Pn , and
there are NCn such sequences. Therefore

Pn =

(
N

n

)
pn qN−n, 0 ≤ n ≤ N.

This probability distribution is called the binomial distribution for an obvi-
ous reason: Pn is a term in the binomial expansion of (p + q)N . The binomial
distribution is a two-parameter distribution, specified by the parameters p and N .

We are interested in various moments of Pn. These are most easily obtained
from the generating function of Pn . This function is given, for any fixed value of
N , by

f(z)
def.
=

N∑
n=0

Pn z
n = (pz + q)N ,
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where z is a complex variable. Generating functions are usually power series in
some variable. When this is an infinite series, the question of its convergence
arises. Recall that a series in non-negative integer powers of a complex variable z
is absolutely convergent inside some circle of convergence centered at the origin
in the complex z-plane. In the present instance, the generating function is just
a polynomial of order N in z, which therefore remains a valid representation of
the generating function for all finite |z|.

The normalization of the probability distribution is trivially verified, since
N∑
n=0

Pn = f(1) = 1. The kth factorial moment of n is given by

〈n(n− 1) . . . (n− k + 1)〉 =
dkf(z)

dzk

∣∣∣∣
z=1

.

F 3. Verify that the mean and variance of the binomial distribution are given by

〈n〉 = N p and Var n = N p q,

respectively, and that its kth factorial moment is

〈n(n− 1) . . . (n− k + 1)〉 =

{
N(N − 1) . . . (N − k + 1) pk , k ≤ N

0 , k > N.

F 4. What is the condition that must be satisfied in order that the most prob-
able value of n is (a) 0 (b) N?

It is often more convenient to consider another, related generating function,
the moment generating function. If n is the random variable and u denotes
a complex variable, this is defined as

M(u) = 〈eun〉 ≡
∑
n

Pn e
un =

∑
n

Pn (eu)n.

Therefore M(u) is related to the generating function f(z) by

M(u) = f(eu).

The advantage of using M(u) rather than f(z) is that the derivatives of M(u)
at u = 0 directly give the moments (rather than the factorial moments) of the
random variable n: we have

M(u) =
∞∑
k=0

〈nk〉 u
k

k!
so that 〈nk〉 =

dkM

duk

∣∣∣∣
u=0

.
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The moment generating function of the binomial distribution is

M(u) = (peu + 1− p)N = (peu + 1− p)µ/p,

where the final expression follows upon eliminating N in favor of the mean value
µ = Np.

1.3 Number fluctuations in a classical ideal gas

The relative fluctuation in the case of the binomial distribution is

∆n

〈n〉
=

√
q

Np
=

√
q

〈n〉
.

Note the 1/
√
N fall-off of this quantity with increasing N . This feature is not

restricted to the binomial distribution. It is characteristic of numerous physical
situations in equilibrium statistical mechanics. In that context, N is usually pro-
portional to the number of degrees of freedom of the system concerned. This is
essentially why thermodynamics, which deals only with mean values of macro-
scopic observables, and neglects fluctuations in them, provides a satisfactory de-
scription of physical phenomena under the conditions in which it is applicable. If
N is of the order of Avogadro’s number, for instance, then N−1/2 ∼ 10−12 � 1.
The following simple physical example illustrates the point.

Consider a (classical, ideal) gas of N molecules in thermal equilibrium in a
container of volume V . The molecules move about at random, suffering elastic
collisions with each other. The average number density of the particles is ρ =
N/V . Now consider a sub-volume v in the container. It is obvious that the
number of molecules that are present in the sub-volume is a rapidly fluctuating
quantity. In principle, this number can be any integer from 0 to N at any
given instant of time. Let n be this random number (at a any given instant of
time). We want the probability Pn that there are exactly n molecules in the
sub-volume. The a priori probability that a given molecule is in the sub-volume
is just v/V , because it has an equal probability of being in any volume element
in the container. Therefore the probability that it lies outside v is (1 − v/V ).
(The molecules are assumed to be independent of each other, i.e., there is no
correlation between the locations of different molecules.) Since the n molecules
inside V can be chosen in NCn ways, we have

Pn =

(
N

n

)( v
V

)n (
1− v

V

)N−n
=

(
N

n

)(ρv
N

)n (
1− ρv

N

)N−n
.

Thus Pn is a binomal distribution, with p = v/V = ρv/N . The mean value is
given by 〈n〉 = ρv, as expected. The relative fluctuation in n is [(1−ρv/N)/ρv]1/2.
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F 5. The so-called thermodynamic limit of this system corresponds to letting
N → ∞ and V → ∞, keeping their ratio N/V = ρ fixed at a finite value. In
this limit, the binomial distribution goes over into the Poisson distribution, as
we’ll see. The sample space of n is now the set of all nonnegative integers.
The mean value 〈n〉 remains equal to ρv, of course. The relative fluctuation
becomes (ρv)−1/2. Estimate this quantity for a volume v = 1 m3 of air at standard
temperature and pressure.

1.4 The geometric distribution

Consider once again a coin that has a priori probabilities p for heads and q ≡ 1−p
for tails, each time it is tossed. The experiment now consists of tossing the coin
repeatedly till heads is obtained for the first time. What is the probability Pn
that this happens on the (n+ 1)th toss?

It is clear that the random variable in this case is n. Its sample space is the
set of non-negative integers 0, 1, . . . ad inf. The probability distribution of n is
obviously given by

Pn = qn p.

Such a probability distribution is called a geometric distribution, because the
successive terms in the sequence P0 , P1 , . . . form a geometric progression. The
properties of a geometric distribution are easily deduced.

F 6. Show that the generating function for Pn is f(z) = p/(1− qz). Hence show
that 〈n〉 = q/p , Var (n) = q/p2 , and ∆n/〈n〉 = 1/

√
q.

Denoting the mean 〈n〉 by µ, the geometric distribution and its generating func-
tion are given by

Pn =
1

µ+ 1

(
µ

µ+ 1

)n
, f(z) =

1

1 + µ− µz
.

The geometric distribution is a single-parameter distribution, the parameter be-
ing µ. All its moments must therefore be functions of µ alone.

1.5 Photon number distribution in blackbody radiation

A physical situation in which the geometric distribution occurs is provided by
blackbody radiation, which is just a gas of photons in thermal equilibrium at
some absolute temperature T . Here’s a brief recapitulation of some background
material.
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Recall that a photon is a particle with zero rest mass, satisfying the energy-
momentum relation ε = c p, where p = |p| is the magnitude of its momentum.
The connection with electromagnetic waves is expressed via the relations

ε = hν, p = ~k, and λ = 2π/k.

Here ν is the frequency, λ is the wavelength, k is the wave vector, and k = |k|
is the wave number. Hence the ‘particle picture’ relation ε = c p is equivalent to
the familiar ‘wave picture’ relation c = ν λ.

A photon is specified not only by its momentum p (or wave number k), but
also its spin S. The spin quantum number of a photon is S = 1. Based on
quantum mechanics, you might then expect the spin angular momentum along
specified direction to have only (2S + 1) = 3 possible values, namely, −~, 0 and
+~. However, the photon has zero rest mass, as already mentioned. Such a
particle has only one possible speed in a vacuum, namely, the fundamental (or
limiting) speed c.

• It is a consequence of relativistic quantum mechanics that a particle whose
speed is always c (i.e., a zero-rest mass particle) has only two possible spin
states, no matter what the quantum number S is.

The spin angular momentum of a photon is always directed either parallel or
antiparallel to its momentum p. That is, the quantity (S · p)/(Sp) (called the
helicity of the particle) can only take on the values +1 and −1, in units of ~.
These correspond, in the wave language, to right circular polarization and left
circular polarization, respectively. They are the only possible states of polariza-
tion of a single free photon.

Blackbody radiation is also called thermal radiation. It comprises photons
of all wave vectors (and hence, all frequencies). It is also unpolarized, which
means that it is an incoherent superposition of photons of both states of polar-
ization for every wave vector. Since the spin quantum number of a photon is an
integer (S = 1), photons obey Bose-Einstein statistics. Now consider all pho-
tons of a given wave vector k (and hence a given wave number k and frequency
ν) and a given state of polarization (either left or right circular polarization) in
blackbody radiation at a temperature T . We want to find the probability Pn that
there are n such photons at any instant of time. We should really write n(k,+1)
or n(k,−1) to indicate the fact that these are photons of a given wave vector and
polarization state, but let’s keep the notation simple.

There’s a subtlety involved here that you must appreciate. A photon gas
differs in two important ways from a gas of particles of nonzero rest mass in a
container:
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(i) In the case of a gas of particles with nonzero rest mass, collisions between
the particles help maintain the thermal equilibrium of the gas. On the other
hand, the mutual interaction between photons themselves is quite negligible.
(There is a small photon-photon scattering cross-section induced by a quatum-
electrodynamic process, but the effect of this interaction is extremely small at
normal intensities of the radiation field.)

(ii) The number of massive particles in a closed container is constant. In stark
contrast, the number of photons in a blackbody cavity fluctuates, because of their
absorption and emission by the atoms in the walls of the radiation cavity. In fact,
it is precisely this atom-photon interaction that is responsible for maintaining the
thermal equilibrium of the radiation.

Although the photon number n fluctuates, all ensemble averages (in this case, the
mean photon number and all its higher moments, etc.) are guaranteed to remain
constant in time, because the system is in thermal equilibrium. In other words,
the probability distribution of n must be independent of time. According to the
rules of Bose-Einstein statistics, the mean number of photons of wave vector k
and helicity equal to either +1 or −1 is given by

〈n〉 =
1

eβhν − 1
,

where ν = ck/(2π), β = (kBT )−1, and kB is Boltzmann’s constant. Hence

e−βhν =
〈n〉
〈n〉+ 1

.

But we know that when a system is in thermal equilibrium at a temperature T ,
the probability that it has an energy E is proportional to e−βE. The energy of
n photons of frequency ν is just nhν. Hence the probability Pn is proportional
to e−nβhν . The constant of proportionality is easily determined by using the
normalization condition

∑∞
n=0 Pn = 1. We find

Pn =
(
1− e−βhν

)
e−nβhν .

Substituting for e−βhν in terms of 〈n〉, we get the normalized geometric distribu-
tion

Pn =
1

〈n〉+ 1

( 〈n〉
〈n〉+ 1

)n
where n = 0, 1, . . . .

The probability distribution of the number of photons of a given wave vector and
polarization in blackbody radiation is therefore a geometric distribution. Because
of this connection with Bose-Einstein statistics, the geometric distribution itself
is sometimes called the Bose-Einstein distribution, especially in the quantum op-
tics literature concerned with photon-counting statistics.
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F 7. Show that the variance and relative fluctuation of n are given, respectively,
by

Var (n) = 〈n〉
(
〈n〉+ 1

)
and

∆n

〈n〉
=
(

1 +
1

〈n〉

)1/2

,

and that the kth factorial moment of n is given by

〈n(n− 1) . . . (n− k + 1)〉 = 〈n〉k k!

The geometric distribution of the photon number in blackbody radiation is a
direct consequence of (i) Bose-Einstein statistics, (ii) the absence of an interaction
between photons, and (ii) the fact that the chemical potential of a photon gas is
zero. Observe that the relative fluctuation in n is always greater than unity: in
thermal radiation, the photon number has a large scatter about its mean value.
As you will see shortly, this feature is in stark contrast to what happens in the
case of coherent radiation. The same remark applies to the factorial moments as
well.

1.6 From the binomial to the Poisson distribution

The Poisson distribution is a discrete probability distribution that occurs in
a very large number of physical situations. It can be understood as a limiting
case of the binomial distribution when the number of Bernoulli trials tends to
infinity, while the probability of success in a single trial tends to zero, such that
their product tends to a finite positive limit. That is,

lim
N→∞
p→0

(N p) = µ.

F 8. Show that, in this limit, the binomial distribution

Pn =
N !

(N − n)!n!
pn (1− p)N−n (0 ≤ n ≤ N)

goes over into the Poisson distribution

Pn = e−µ
µn

n!
, where n = 0, 1, . . . .

(Eliminate p by setting it equal to µ/N . Use Stirling’s formula for the factorial
of a large number.)
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The sample space of a Poisson-distributed random variable n is the infinite
set of non-negative integers 0, 1, . . . . The parameter µ is nothing but the mean
value of n, i.e., 〈n〉 = µ. The generating function of the Poisson distribution is

f(z) =
∞∑
n=0

Pn z
n = eµ(z−1) .

The Poisson distribution is again a single-parameter distribution—there is only
one parameter involved, namely, µ, which is the mean value itself. Hence all the
higher moments of the random variable n must be expressible in terms of the
mean value. The kth factorial moment in this case is just

〈n(n− 1) . . . (n− k + 1)〉 =
dkf(z)

dzk

∣∣∣∣
z=1

= µk .

In particular,
Var (n) = 〈n〉 for a Poisson distribution.

The equality of the variance and the mean is a characteristic signature of the
Poisson distribution. This relationship is a particular case of an even more spe-
cial property of the Poisson distribution: all its cumulants are equal to µ. (We’ll
define cumulants shortly.)

Returning to the example of density fluctuations in an ideal gas, the passage
to the limiting Poisson distribution has a physical interpretation. We have in
this case p = ρv/N , and the limit in which Np tends to a finite limit (which is
clearly ρv) is just the thermodynamic limit: the number of molecules N → ∞
and the volume V → ∞ such that the ratio N/V tends to a finite value, the
mean number density ρ. In this limit, the relative fluctuations in thermodynamic
quantities vanish, and thermodynamics (which involves only average values of
macroscopic observables) becomes exact. In this example, the probability that
there are n gas molecules in a volume v becomes a Poisson distribution,

Pn = e−ρv
(ρv)n

n!
,

with a mean value given by 〈n〉 = ρv, as you would expect.

1.7 Photon number distribution in coherent radiation

Another physical situation in which the Poisson distribution occurs is again pro-
vided by photons. In an ideal single-mode laser, the radiation is made up of
photons of the same wave vector and polarization, and is said to be in a coherent
state of the electromagnetic field. The properties of the quantum mechanical
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linear harmonic oscillator enable us to describe coherent radiation quantum me-
chanically. What happens, in a nutshell, is as follows. When the electromagnetic
field is quantized, each ‘mode’ of the field—that is, each component of a given
frequency and state of polarization—behaves like a quantum mechanical linear
harmonic oscillator. The annihilation and creation operators of the quanta
(or photons) of each given wave vector and state of polarization are exactly like
the lowering and raising operators (or ladder operators) a and a† of the oscilla-
tor. They satisfy the canonical commutation relation [a , a†] = I. The operator
N = a† a is now the photon number operator. (Obviously, we should label a and
a† with the wave vector k and the state of polarization of the mode concerned.
But we’re concerned with just a single mode, and so let’s keep the notation sim-
ple.) Its eigenvalues are, of course, the integers n = 0, 1, . . . , with corresponding
eigenvectors | 0 〉 , | 1 〉 , . . . . The energy eigenstate |n 〉 of the oscillator is equiv-
alent to the Fock state of the electromagnetic field with exactly n photons of a
given wave vector and polarization.

Every complex number α is a possible eigenvalue of the lowering operator a.
The corresponding normalized eigenstate is a so-called coherent state, conve-
niently denoted by |α〉. Thus, we have the eigenvalue equation

a |α〉 = α |α〉 for any α ∈ C.

F 9. Expand |α〉 in the Fock basis as |α〉 =
∑∞

n=0 cn |n 〉, and determine the
coefficients {cn} by imposing the eigenvalue equation for a. You will need the
basic relations a |n 〉 =

√
n |n − 1〉. Choosing the phase of c0 to be zero, show

that the normalized coherent state is given by

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n 〉.

It is now very easy to determine the probability distribution Pn of the number
of photons in the coherent state |α〉. According to a basic rule of quantum
mechanics, the probability amplitude that there are exactly n photons in the
coherent state |α〉 is given by the inner product 〈n|α〉. The actual probability
(that the number of photons in this state is n) is of course the square of the
modulus of the probability amplitude. Using the orthonormality property of the
set of Fock states, we get

〈n|α〉 =
e−

1
2
|α|2 αn√
n!

,

Therefore

Pn ≡ |〈n|α〉|2 =
e−|α|

2 |α|2n

n!
.
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This is a Poisson distribution with mean value |α|2. Hence the photon number
distribution in ideal, single-mode coherent radiation is a Poisson distribution.
The variance in the photon number is therefore equal to the mean value. The
relative fluctuation in the photon number is 1/|α|. It decreases as the mean
number of photons in the coherent state increases, in marked contrast with the
case of thermal radiation (where it never falls below unity).

1.8 The negative binomial distribution

We’ve seen that the number distribution of photons of a given wave vector and
state of polarization in coherent radiation is a Poisson distribution, while that
in thermal radiation is a geometric distribution. The natural question to ask is:
does there exist a family of distributions, of which the two distributions above
are members? The negative binomial distribution provides such a family.

This question is of practical interest for the following reason. In general, ra-
diation from a laser may contain more than one mode. But even in the case of
a single mode, the coherent radiation is likely to be mixed with some thermal
radiation as well. Photon-counting statistics enables us to analyze this admixture
by quantifying the deviation from Poisson statistics. It’s useful, for this purpose,
to model the photon statistics of the admixture in terms of the negative binomial
distribution.

The negative binomial distribution is a discrete distribution in which the
random variable n takes the integer values 0, 1, . . . ad inf., with probability

Pn =

(
N + n− 1

n

)
pN qn,

where 0 < p < 1, q = 1 − p, and the parameter N is a positive integer. This
distribution is therefore characterized by two parameters, p and N . It is imme-
diately obvious that the case N = 1 reduces to the geometric distribution. The
generating function of the distribution is

fN(z) =
∞∑
n=0

Pn z
n = pN

∞∑
n=0

(N + n− 1)!

(N − 1)!n!
(qz)n.

The series above can be summed by elementary methods, once it is recognized
as just a binomial series. The result is

fN(z) = pN(1− qz)−N .

The form of f(z) tells you why the distribution is called the negative binomial
distribution.
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F 10. Verify that the generating function of the negative binomial distribution
is fN(z) = pN(1− qz)−N . Show that the mean, variance, and relative fluctuation
of n are given, respectively, by

〈n〉 =
Nq

p
, Var (n) =

Nq

p2
,

∆n

〈n〉
=

1√
(Nq)

.

There exists a more general form of the negative binomial distribution. Here
the parameter N is allowed to be any positive number, not necessarily an inte-
ger. The binomial coefficient in the definition of the distribution must then be
expressed in terms of gamma functions, i.e.,

Pn =

(
N + n− 1

n

)
pN qn =

Γ(N + n)

Γ(N)n!
pN qn.

This form enables us to see how the Poisson distribution arises as a limiting case
of the negative binomial distribution, as follows.

F 11. Denote the mean value 〈n〉 by µ, so that µ = N(1 − p)/p. Hence
p = N/(N+µ) and q = µ/(N+µ). Substitute these expressions in the expression
above for Pn, and pass to the limit N →∞. Use Stirling’s approximation for the
gamma functions, to arrive at the result

lim
N→∞

Pn = e−µ
µn

n!
,

the Poisson distribution with mean value µ.

• The negative binomial distribution reduces to the geometric distribution
for N = 1, and to the Poisson distribution as N → ∞ keeping 〈n〉 (= µ)
finite.

As I have mentioned already, the negative binomial distribution is used in photon-
counting statistics to characterize admixtures of thermal and coherent radiation.
The family of negative binomial distributions interpolates between the geometric
and Poisson distributions.

1.9 The sum of Poisson-distributed random variables

Often, one has to deal with a random variable that is the sum of two or more
independent random variables, each of which is Poisson-distributed. What is the
probability distribution of this sum? Let’s first consider the case of two random
variables. The more general case will turn out to be a simple extension of this
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case, owing to a fundamental property of the Poisson distribution.

Letm and n be two independent random variables, each of which has a Poisson
distribution, given by

P1(m) = e−µ
µm

m!
and P2(n) = e−ν

νn

n!
,

respectively. (I’ve used two different symbols, P1 and P2, for the two distributions
in order to distinguish between them—one of them involves the parameter µ,
while the other involves the parameter ν.) Let s = m + n denote the sum of
the two random variables. It is obvious that the sample space of s is again
the set of non-negative integers. We want to find the probability distribution
Psum(s) of the sum s. This is obtained as follows: (a) multiply together the
two individual probability distributions to get the joint probability (since the
variables are independent of each other); (b) sum over all the possibilities for
the individual random variables, subject to the constraint that the sum of m and
n be equal to s. Thus,

Psum(s) =
∞∑
m=0

∞∑
n=0

P1(m)P2(n) δm+n , s .

F 12. Carry out the summations to obtain the result

Psum(s) = e−(µ+ν) (µ+ ν)s

s!
, s = 0, 1, . . . .

Hence the sum of the two Poisson-distributed random variables m and n is also
Poisson-distributed, with a mean value

〈s〉 = µ+ ν = 〈m〉+ 〈n〉.

It follows that
Var (s) = Var (m) + Var (n) = µ+ ν .

Further, the sum of any number of Poisson-distributed, independent random vari-
ables is also Poisson-distributed, with mean values and variances simply adding
up.

1.10 The difference of two Poisson-distributed random
variables

Consider again the pair of Poisson-distributed random variables m and n, with
respective mean values µ and ν. Let r = m − n be the difference of the two
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random variables. We seek the probability distribution of r.

It is immediately obvious that r cannot have a Poisson distribution, because it
can take on all possible integer values, including negative ones—its sample space
is Z. The probability distribution of r is given by

Pdiff(r) =
∞∑
m=0

∞∑
n=0

P1(m)P2(n) δm−n , r .

Once again, the sum over n can be eliminated using the Kronecker delta to replace
n by m− r. You must be careful about the limits of the subsequent summation
over m. Draw the (m,n) plane, mark the lattice points m ≥ 0 , n ≥ 0, and note
the set of points satisfying the constraint m − n = r. It is immediately obvious
that two cases arise, corresponding to r ≥ 0 and r < 0, respectively. Consider
the case r ≥ 0 first. The summation over m must obviously run from r upward,
because n does not take on negative values. Hence the expression for Pdiff(r)
reduces to

Pdiff(r) =
∞∑
m=r

P1(m)P2(m− r) (r ≥ 0).

Now consider r < 0. In this case all values of m from 0 upward contribute to the
sum. Hence

Pdiff(r) =
∞∑
m=0

P1(m)P2(m+ |r|) (r < 0).

It remains to substitute the given Poisson distributions for P1 and P2 in the sums
above, and to carry out the summations.

It turns out that the answer can be expressed in terms of the modified
Bessel function of the first kind and of order l, denoted by Il(z). Recall that
his function is defined, when l is not a negative integer, by the power series

Il(z) =
∞∑
m=0

1

m! Γ(m+ l + 1)

(
1
2
z
)l+2m

.

The series converges for all finite values of |z|, so that Il(z) is an entire function
of z. When l = 0, 1, 2, . . . , the gamma function reduces to a factorial, and we
have

Il(z) =
∞∑
m=0

1

m! (m+ l)!

(
1
2
z
)l+2m

.

For negative integer values of l, the modified Bessel function is defined by the
symmetry property

I−l(z)
def.
= Il(z), l ∈ Z.
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F 13. Use these relations to show that

Pdiff(r) = e−(µ+ν) (µ/ν)r/2 Ir(2
√
µ ν) for all r ∈ Z.

This distribution is also known as the Skellam distribution. Note that (i) it
is a distribution on the full set of integers, and (ii) it is characterized by two
parameters, µ and ν.

Recall that the generating function for the modified Bessel function of the
first kind is given by

∞∑
r=−∞

Ir(t) z
r = exp

{
1
2
t
(
z + z−1

)}
.

You will recognise that this is a Laurent series that converges absolutely for all
z in the annular region 0 < |z| < ∞. It follows that the generating function of
the Skellam distribution is given by

f(z) =
∞∑

r=−∞

Pdiff(r)zr = e−(µ+ν) eµz+νz
−1

.

Thus f(1) = 1, verifying that Pdiff(r) is a correctly normalised distribution. It is
obvious that the mean value of r = m− n is given by 〈r〉 = µ− ν.

F 14. Show that Var (r) = Var (m− n) = µ+ ν. More generally, show that, if
a and b are arbitrary real constants,

Var (am+ bn) = a2 µ+ b2 ν.

1.11 Cumulants and the cumulant generating function

The idea behind the variance of a random variable is generalized to the higher
moments of the variable by means of the cumulants κr of a probability dis-
tribution. These quantities arise naturally as follows. The moment generating
function of a random variable n M(u) is the average value of the exponential eun.
The idea is to write this average value as the exponential of a function of u. The
latter is, in general, a power series in u, whose coefficients are proportional to the
cumulants of the random variable. We have

M(u) = 〈eun〉 = eK(u), where K(u)
def.
=

∞∑
r=1

κr
r!
ur.
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The quantities κr are called the cumulants of n, and K(u) is the cumulant gen-
erating function. Note that K(u) starts with the first-order term in u. Since
M(0) = 1 for a normalized probability distribution, K(0) = 0. K(u) is related
to the moment generating function by

K(u) = ln M(u).

The rth cumulant is then found from the inversion formula

κr =

[
drK(u)

dur

]
u=0

.

The cumulants can therefore be expressed in terms of the moments, and vice
versa. The leading term in κr is 〈nr〉, followed by terms involving the lower
moments of n. The first cumulant is just the mean. The second and third
cumulants are the corresponding central moments. Thus

κ1 = µ = 〈n〉,
κ2 = σ2 = 〈(δn)2〉 = 〈n2〉 − 〈n〉2,
κ3 = 〈(δn)3〉 = 〈n3〉 − 3〈n2〉 〈n〉+ 2〈n〉3 .


The fourth cumulant is given by

κ4 = 〈(δn)4〉 − 3〈(δn)2〉2

= 〈n4〉 − 4〈n3〉 〈n〉 − 3〈n2〉2 + 12〈n2〉 〈n〉2 − 6〈n〉4 .

}

A central problem in mathematical statistics is the problem of moments: given
all the moments (and hence all the cumulants) of a distribution, can the distri-
bution be reconstructed uniquely? I will not digress into this formal question
here. In practice, however, the first four cumulants of a distribution provide a
reasonable approximate description of the salient properties of the probability
distribution of the random variable concerned.

The cumulant κr is a homogeneous function of order r in the following sense:
if the random variable n is multiplied by a constant c, the rth cumulant of cn is
cr times the corresponding cumulant of n. Observe that each κr starts with the
rth moment 〈nr〉, but involves subtracting away contributions from the products
of lower-order moments. This should remind you of the way in which we obtain
spherical tensors from Cartesian tensors, to get irreducible sets of quantities un-
der rotations. Something similar is involved here, too. For r ≥ 2, the cumulants
κr are invariant under translations of the random variable, i.e., under a change of
variables n 7→ n + a where a is a constant. More than the moments themselves,
or even the central moments, the different cumulants help characterize distinct
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properties of a distribution. In general terms, the second cumulant (i.e., the vari-
ance) is a measure of the spread or dispersion of the random variable about its
mean value. The third cumulant κ3 measures the asymmetry or skewness of the
distribution about the mean value. The fourth cumulant κ4 characterizes, for a
symmetric distribution, the extent to which the distribution deviates from the
normal or Gaussian distribution.

F 15. Consider the discrete probability distributions discussed in the foregoing.
Eliminate parameters wherever applicable in favor of µ, which represents the
mean value (except in the case of the Skellam distribution). Show that the
cumulant generating functions are given by

K(u) =



(µ/p) ln (1− p+ p eu) (binomial)

− ln (1 + µ− µeu) (geometric)

µ (eu − 1) (Poisson)

µ (eu − 1)− ν(1− e−u) (Skellam)

N ln N −N ln (N + µ− µ eu) (negative binomial).

Find the first four cumulants explicitly in each of the cases above.
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2 Continuous probability distributions

2.1 Probability density and cumulative distribution

We move on now to (real) random variables whose sample space is a continuum.
The probability that a continuous random variable takes any particular, precisely
specified, value in a continuous set is actually zero, in general. (This is true unless
there is a δ-function contribution to the probability density at that point, as we’ll
see below.) The reason is that a single point, specified to infinite precision, is a set
of measure zero in a continuum. For continuous random variables, therefore, we
must speak of a probability density function (PDF). It’s useful to distinguish
between a continuous random variable per se and the values it can take, by using
different (but related) symbols for the two—e.g., upper case and lower case letters
such as X and x, respectively. Wherever it is preferable to do so, I will make this
distinction. Suppose the sample space of a random variable X is (−∞,∞), and
p(x) is its PDF. Then:

(i) p(x) dx is the probability that the random variable X has a value in an
infinitesimal range dx at the value x, i.e., in the range (x, x+ dx).

(ii) p(x) ≥ 0 for all x.

(iii)
∫∞
−∞ dx p(x) = 1.

Note that p(x) itself does not have to be less than unity. In fact, it can even
become unbounded in the domain of x. But it must be integrable, because of
condition (iii) above.

The cumulative distribution function (CDF), also called simply the dis-
tribution function, is the total probability that the random variable X is less than,
or equal to, any given value x. Thus, in the case of a sample space (−∞ , ∞),

Pr (X ≤ x) ≡ F (x) =

∫ x

−∞
dx ′ p(x ′).

F (x) is a non-decreasing, non-negative function of x that satisfies F (−∞) =
0, F (∞) = 1. It is obvious that dF/dx = p(x).

The CDF is a more general concept than the PDF. All probability distribu-
tions need not necessarily have well-behaved functions as corresponding proba-
bility densities. For instance, there may be some specific value of the random
variable, say x0 , with a nonzero probability α, say, of its occurrence. In the
heuristic approach we have taken, we would simply say that the PDF p(x) has a
‘spike’ of the form α δ(x − x0). In a more rigorous treatment, care must be ex-
ercised in handling such singularities. A δ-function spike in p(x) leads to a finite
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jump or step in F (x). This is one reason why it is found to be more convenient,
mathematically, to deal with the CDF rather than the PDF.

As I’ve mentioned, the CDF is frequently called the distribution function. In
physical applications, one often goes a step further and refers to the PDF itself
as the ‘probability distribution’ or just the ‘distribution’. While this terminology
is loose, it is very common in the physics literature. No confusion should arise,
as matters will be clear clear from the context. Note that

(i) p(x) has the physical dimensions of [x]−1, while F (x) is dimensionless.

(ii) F (x) can never exceed unity (but there is no such restriction on p(x), of
course).

2.2 The moment and cumulant generating functions

Probability distributions themselves are not measurable or ‘physical’ quantities.
All that we can measure directly, or find, are various averages. For a single
random variable, this is the set of its moments 〈Xr〉, r = 1, 2, . . . . As in the case
of a discrete-valued random variable, we define the moment generating function

M(u) = 〈euX〉 = 1 +
∞∑
r=1

〈Xr〉
r!

ur, so that 〈Xr〉 =

[
drM(u)

dur

]
u=0

.

In particular, the mean value 〈X〉 ≡ µ is the coefficient of u in the power series
expansion of M(u).

More useful than the moments are the central moments of the random
variable. These are the moments of the deviation of X from its mean value,
namely,

〈(δX)r〉 = 〈(X − µ)r〉.

The first of these is zero, by definition. The second is the variance,

σ2 ≡ Var (X) = 〈(X − µ)2〉 = 〈X2〉 − µ2.

As you know, the variance of a random variable is always positive (it vanishes if
and only if the variable is deterministic). It provides the leading measure of the
scatter of a random variable about its mean value.

The generating function f(z) corresponding to the distribution of X is just

f(z) =

∫
dx p(x) zx = 〈zX〉.
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It is obvious that f and M are related to each other according to

M(u) = f(eu).

As in the case of a discrete random variable, the cumulant generating function
K(u) is related to M(u) according to

M(u) = eK(u), or K(u) = ln M(u).

The rth cumulant is given by κr = [drK(u)/dur]u=0 .

F 16. I’ve already stated that the cumulants κr for r ≥ 2 remain unchanged
under a shift of the random variable by a constant. Here’s an example to illustrate
this property. Let n be a Poisson-distributed random variable with mean value
µ. Consider the random variable X = an+b, where a and b are arbitrary positive
constants (not necessarily integers).

(a) Find the probability distribution (or the PDF) of X, and its moment gen-
erating function.

(b) Hence find the cumulant generating function of X, and show that its cumu-
lants are given by κ1 = aµ+ b and κr = ar µ for r ≥ 2. This shows that κr
is unchanged if the random variable n is merely shifted by a constant to n+b.

2.3 The characteristic function

A very useful quantity associated with the PDF p(x) of a random variable X is
its Fourier transform p̃(k), given by

p̃(k) =

∫ ∞
−∞

dx e−ikx p(x).

p̃(k) is called the characteristic function of the distribution. It is closely
related to the moment generating function of the random variable: p̃(k) can also
be regarded as the expectation value of exp (−ikX), so that

p̃(k) = 〈e−ikX〉 = M(−ik) = f(e−ik).

(Recall that M is the moment generating function and f is the generating func-
tion associated with the random variable.) Thus 〈Xr〉/r! is the coefficient of
(−ik)r in the power series expansion of p̃(k). The characteristic function carries
the same information about the random variable as does its PDF. The signifi-
cance and utility of the characteristic function will become clear shortly.

A function of k ∈ (−∞,∞) has to have some special features in order to
qualify as the characteristic function p̃(k) of a probability distribution:
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(i) p̃(0) must be equal to unity, to ensure that the random variable X is a
proper random variable, with a normalized probability distribution.

(ii) The inverse Fourier transform of p̃(k) must be a real, non-negative function
of x, in order to be an acceptable PDF p(x).

The second of these requirements, in particular, places considerable restrictions
on the function p̃(k).

2.4 The additivity of cumulants

A crucial property of cumulants emerges when we consider sums of independent
random variables. Let X1 and X2 be independent random variables, each with
a sample space comprising all real numbers, and with PDFs p1(x1) and p2(x2),
respectively. Let X = X1 +X2 be their sum. The PDF of X is given by

p(x) =

∫ ∞
−∞
dx1

∫ ∞
−∞
dx2 p1(x1) p2(x2) δ

(
x− (x1 + x2)

)
=

∫ ∞
−∞
dx1 p1(x1) p2(x− x1).

But this is just a convolution of the PDFs of x1 and x2. Hence, by the convolution
theorem for Fourier transforms, the Fourier transform of the function p is just
the product of the Fourier transforms of the functions p1 and p2 . In other words,
the corresponding characteristic functions are related according to

p̃(k) = p̃1(k) p̃2(k), or M(−ik) = M1(−ik)M2(−ik),

where M1 and M2 are the moment generating functions of X1 and X2 . Tak-
ing logarithms, it follows at once that the corresponding cumulant generating
functions simply add up:

K(−ik) = K1(−ik) +K2(−ik).

As a consequence, the rth cumulant of X1 + X2 is the sum of the rth cumulants
of X1 and X2 , for every positive integer r. It is obvious that this result can be
extended immediately to the sum (more generally, to any linear combination)
of any number of independent random variables. Unlike the cumulants, none of
the moments higher than the first moment (or mean value) has this property of
additivity. This is a major advantage that the cumulants of random variables
enjoy over the corresponding moments.

2.5 The Gaussian (or normal) distribution

The Gaussian distribution, also called the normal distribution, plays a central
role in statistics. Its appearance in applications is also ubiquitous. The distri-
bution of a continuous random variable X that takes values in ∈ (−∞ , ∞) is
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Gaussian if its normalized PDF is given by

p(x) =
1√

(2πσ2)
exp

{
− (x− µ)2

2σ2

}
,

where µ is any real number and σ is a positive number. The parameter µ is the
mean value of X, σ2 is its variance, and σ is its standard deviation:

〈X〉 = µ, 〈(X − µ)2〉 = σ2.

In statistics, the notationN (µ, σ2) is often used to denote the normal distribution.
N (0, 1) is the standard normal distribution. The Gaussian PDF is an example of
a symmetric, unimodal density: it has a single peak or mode, which also happens
to be located at x = µ, and the plot of p(x) is symmetric about this point. The
variance σ2 is a direct measure of the width of the Gaussian. The full-width-at-
half-maximum (FWHM) is given by

FWHM
∣∣
Gaussian

= 2 (2 ln 2)1/2σ ' 2.355σ.

Here is a physical instance in which the Gaussian distribution appears. Re-
call the number fluctuations in a classical ideal gas. We’ve seen how, in the
thermodynamic limit, the binomial distribution goes over into the Poisson dis-
tribution: the probability that a volume v of the gas has n molecules is given
by Pn = e−〈n〉 〈n〉n/n!, where 〈n〉 = ρv and ρ is the mean number density of the
gas. At normal temperature and pressure, the mean number of molecules in a
cubic metre of air is of the order of 1022. This is so large compared to unity that
we may regard the deviation X = n − 〈n〉 in the number of molecules around
its mean value to be an essentially continuous variable. The distribution of X is
then a Gaussian with zero mean, with a variance that remains equal to 〈n〉.

F 17. Establish this result, as follows. Consider the logarithm of Pn . Use
Stirling’s formula for ln n! , replace n by 〈n〉 + x, and Pn by the PDF p(x). Use
the fact that

ln
(
〈n〉+ x

)
= ln 〈n〉+ ln

(
1 +

x

〈n〉

)
' ln 〈n〉+

x

〈n〉
− x2

2〈n〉2
.

After the cancellation of various terms, show that ln p(x) is proportional to
−x2/(2〈n〉), to leading order. Hence X has the normal distribution N (0, 〈n〉).

The cumulative distribution function of a Gaussian random variable X is
given by

Pr (X ≤ x) = F (x) =
1√

2πσ2

∫ x

−∞
dx ′ exp

{
− (x ′ − µ)2

2σ2

}
.
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We have F (−∞) = 0 and F (∞) = 1, as required. Further, F (µ) = 1
2
. Recall

that the so-called error function is defined as

erf(x) =
2√
π

∫ ∞
0

dt e−t
2

.

In terms of the error function, the CDF of a Gaussian random variable is given
by

F (x) =
1

2

{
1 + erf

(
x− µ√

2σ2

)}
.

2.6 Moments and cumulants of a Gaussian distribution

Owing to the symmetry of the Gaussian PDF about the mean value, all the
odd moments of the deviation from the mean value (that is, all the odd central
moments) vanish identically:

〈(X − µ)2l+1〉 =

∫ ∞
−∞

dx (x− µ)2l+1 p(x) = 0, l = 0, 1, . . . .

On the other hand, all the even central moments of a Gaussian random variable
are determined completely in terms of σ2, i.e., in terms of the variance of the
distribution.

F 18. Show that, for l = 0, 1, . . . ,

〈(X − µ)2l〉 =

∫ ∞
−∞

dx (x− µ)2l p(x) =
(2σ2)l√

π
Γ(l + 1

2
) =

(2l) !

2l l!
σ2l.

Note, in particular, that

〈(δX)4〉 = 3σ4 = 3 〈(δX)2〉2.

The significance of this fact will become clear shortly.

The moment generating function for the Gaussian distribution is

M(u) = 〈euX〉 =
1√

2πσ2

∫ ∞
−∞

dx exp
{
− (x− µ)2

2σ2
+ ux

}
= exp

(
µu+ 1

2
σ2 u2

)
.

The characteristic function of the Gaussian distribution is therefore

p̃(k) = M(−ik) = exp
(
−iµ k − 1

2
σ2 k2

)
.

The corresponding cumulant generating function is just

K(u) = ln M(u) = µu+ 1
2
σ2 u2,

a quadratic function of u. A fundamental property follows at once:
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• All the cumulants of a Gaussian distribution higher than the second cumu-
lant vanish identically.

In particular, the fourth cumulant κ4 is identically equal to zero for a Gaussian.
This brings us to the significance of κ4 for a general distribution that is symmetric
about its mean value. The dimensionless ratio

κ4

κ2
2

=
〈(δx)4〉 − 3 〈(δx)2〉2

〈(δx)2〉2

is called the excess of kurtosis. This quantity is exactly zero for a Gaussian
distribution. A positive excess of kurtosis (a leptokurtic distribution) implies
that the fourth central moment dominates over the square of the second central
moment. Hence larger values of |x − µ| contribute more significantly than they
do in a Gaussian. In qualitative terms, this means that the PDF has a leaner
peak than a Gaussian, and fatter ‘tails’ on either side of the peak. On the other
hand, a negative excess of kurtosis (a platykurtic distribution) implies that
the weight of large values of |x− µ| is less than what it would be in the case of a
Gaussian. Hence the peak is broader than that of a Gaussian, while the tails on
either side of the peak are thinner.

The cumulant generating function K(u) is a quadratic in u for a Gaussian
distribution. Hence κr vanishes identically for all r ≥ 3 in this case. It is natural
to ask: Are there continuous distributions for which K(u) is a cubic, or quartic,
or some polynomial of finite degree l ≥ 3, so that all cumulants with r ≥ l + 1
would vanish identically? Interestingly, the answer is that there are no such
distributions.

2.7 Simple functions of a Gaussian random variable

An arbitrary function of a Gaussian random variable will, in general, have a
PDF that looks quite different from a Gaussian. Here’s a simple example. Let
the random variable X have a distribution N (0, σ2), so that its normalized PDF
is

p(x) =
1√

(2πσ2)
e−x

2/(2σ2).

What is the normalized PDF ρ(ξ) of the random variable X2? The sample space
of X2 is, of course, just the half-line 0 ≤ ξ <∞. If the mapping x 7→ ξ had been
one-to-one, then we could have used the formal identity p(x) |dx| = ρ(ξ) |dξ| to
find ρ(ξ). This identity is nothing but the following statement: if x lies in the
range (x, x + dx), then ξ lies in the range (ξ, ξ + dξ), and the corresponding
probabilities are obviously equal to each other. But both −x and +x correspond
to the same ξ = x2. Hence there is a two-fold contribution to ρ(ξ). This gives an
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extra factor of 2, and we have

ρ(ξ) = 2 p
(√

ξ
) ∣∣∣∣dxdξ

∣∣∣∣ =
1√

(2πσ2 ξ)
e−ξ/(2σ

2).

Alternatively, you could also use the formal expression

ρ(ξ) =

∫ ∞
−∞

dx p(x) δ(x2 − ξ) =

∫ ∞
−∞

dx p(x)
δ(x+

√
ξ) + δ(x−

√
ξ)

2
√
ξ

,

to arrive at the same result. Note that ρ(ξ) is properly normalized according to∫∞
0
dξ ρ(ξ) = 1.

A physical example: The most well-known example of a Gaussian distribution
in physics is, of course, the Maxwellian distribution of velocities in a classical
ideal gas in thermal equilibrium at an absolute temperature T . Each Cartesian
component of the velocity of a molecule of mass m has a Gaussian PDF, with
zero mean and a variance equal to kBT/m. Thus

peq(vx) =
( m

2πkBT

)1/2

exp
(
− mv2

x

2kBT

)
, (−∞ < vx <∞)

and similarly for vy and vz. Correspondingly, the PDF ρeq(v) of the speed v of a
molecule is given by Maxwell-Boltzmann distribution

ρeq(v) =
( m

2πkBT

)3/2

4πv2 exp
(
− mv2

2kBT

)
, (0 ≤ v <∞).

F 19. Show that the PDF φeq(ε) of the (kinetic) energy ε of a molecule is given
by

φeq(ε) =
2√

π (kBT )3/2
ε1/2 e−ε/(kBT ), (0 ≤ ε <∞).

This PDF is an example of a gamma distribution. The latter is a two-
parameter distribution of a random variable taking values in [0,∞), with a PDF
proportional to xa−1 e−x/b, where a (the shape factor) and b (the scale parameter)
are positive constants. In the example at hand, a = 3

2
, b = kBT .

2.8 Linear combinations of Gaussian random variables

The statistical properties of sums (more generally, of linear combinations) of in-
dependent Gaussian random variables are of considerable interest. Consider the
simplest case first. Let X1 , X2 , . . . , Xn be n independent, identically-distributed
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random variables (usually abbreviated as iidrv), each with a distributionN (µ, σ2).
Then the random variable

Zn =
X1 + . . .+Xn − nµ√

nσ2

has the distribution N (0, 1), i.e., Zn is is also a Gaussian random variable, with
zero mean and unit variance.

The ‘brute force’ way to derive this result would be to compute the PDF of Zn
as follows: Take the product of the n individual Gaussian PDFs p(xi) of the the
random variables Xi , multiply this by δ(z− zn) where zn =

∑n
i=1(xi−µ)/(σ

√
n)

(to take care of the definition of Zn), and integrate the result over all the n
variables xi . It would be foolish to use the δ-function to carry out one of the
integrations, because you would still be left with an (n − 1)-fold integral. A
better way is to write the Fourier representation for the δ-function. This would
immediately factorize the argument of the δ-function into a product, and each
of the resulting Gaussian integrals can be evaluated. The result is the PDF
(2π)−1/2 e−z

2/2, which corresponds to a standard normal distribution.

But there’s a simpler way to write down the answer. Recall the additivity
property of the cumulants (or their generating function) for independent random
variables, and the fact that they are invariant under a shift of the random variable
by a constant! The cumulant generating function of each (Xi−µ) is 1

2
σ2u2. It fol-

lows that the cumulant generating function of Zn is given by 1
2
nσ2u2/(nσ2) = 1

2
u2.

Comparing this with the general expression for the cumulant generating function
of a Gaussian distribution, we conclude that Zn has a Gaussian distribution with
zero mean and unit variance, N (0, 1).

A more general version of this result is as follows. Let the mean and variance
of the Gaussian random variable Xi be µi and σ2

i , respectively. Consider the
linear combination

ξn =
n∑
i=1

aiXi ,

where the constants ai are real numbers. It follows from the additivity of the
cumulants κ1 and κ2 that the mean and variance of ξn are given, respectively, by

〈ξn〉 =
n∑
i=1

ai µi and 〈(ξn − 〈ξn〉)2〉 = 〈(δξn)2〉 =
n∑
i=1

a2
i σ

2
i .

F 20. Show that the random variable χn = (ξn − 〈ξn〉)/〈(δξn)2〉1/2 has the
distribution N (0, 1).
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2.9 The Central Limit Theorem

One of the most important theorems of statistics is the Central Limit Theorem.
Widely regarded as the ‘crown jewel’ of the subject of probability and statistics,
the theorem is actually a generic name for a class of convergence theorems in
statistics. What is referred to here is the most common of these results:

Let X1 , X2 , . . . , Xn be iidrv with mean µ and variance σ2. They need not be
Gaussian random variables! Then, in the limit n→∞, the probability distribu-
tion of the random variable Zn = (X1 +. . .+Xn−nµ)/(σ

√
n) tends to a Gaussian

distribution with zero mean and unit variance.

A Gaussian is therefore a limit law or limit distribution in this sense.
Several of the conditions stated above can be relaxed without affecting the validity
of the theorem. For instance, under certain conditions, the random variables need
not be identically distributed. The crucial requirement, however, is the finiteness
of the mean and variance of each of the random variables making up the sum.
The Central Limit Theorem helps us understand why the Gaussian distribution
occurs so frequently in all physical applications. In very broad, qualitative terms:

• When a large number of independent and uncorrelated effects contribute
to a cause, one may expect the resultant, suitably shifted and re-scaled, to
have a normal distribution.

This is essentially how the Maxwellian distribution of velocities arises in a gas in
thermal equilibrium.

F 21. A random variable X is uniformly distributed in the unit interval [0, 1].
That is, its PDF is given by

p(x) =

{
1 for 0 ≤ x ≤ 1
0 otherwise.

Another, independent, random variable Y is also uniformly distributed in [0, 1].
Show that the PDF ρ2(z) of their sum Z = X + Y is given by

ρ2(z) =

{
z for 0 ≤ z ≤ 1
2− z for 1 < z ≤ 2.

2.10 An explicit illustration of the Central Limit Theorem

The example just considered shows how the uniform distribution in x and y leads
to a tent-shaped PDF for their sum. As one keeps adding more such variables,
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the PDF of the resultant acquires more and more bends, and approximates a
Gaussian ever more closely. Here is how the Gaussian emerges as a limiting dis-
tribution in this instance.

Let X1 , . . . , Xn be iidrv, each distributed uniformly in [0, 1]. The mean value
of each variable is obviously µ = 1

2
, while its variance is σ2 = 〈x2

i 〉−µ2 = 1
3
− 1

4
=

1
12

. Now consider the random variable

Zn =
X1 + . . .+Xn − 1

2
n√

n/12
.

We’re going to show that, as n→∞, the distribution of Zn tends to the standard
normal distribution N (0, 1). We’ll do this in two slightly different (but equiva-
lent) ways.

(i) Since the PDF of each Xi is just unity, the PDF of Zn is

ρn(z) =

∫ 1

0

dx1 . . .

∫ 1

0

dxn δ(z − zn),

where zn =
∑n

1

(
xi − 1

2

)
/
√
n/12. Using the Fourier representation

δ(z − zn) =
1

2π

∫ ∞
−∞

dk eik(z−zn),

we get

ρn(z) =
1

2π

∫ ∞
−∞

dk eikz eik
√

3n In,

where the integral

I =

∫ 1

0

dx e−ikx
√

12/n.

Simplifying, we get

ρn(z) =
1

2π

∫ ∞
−∞

dk eikz
{sin (k

√
3/n )

k
√

3/n

}n
.

It is now easy to pass to the limit n → ∞. Expand the sine in its power series,
and note that

lim
n→∞

{sin (k
√

3/n)

k
√

3/n

}n
= lim

n→∞

(
1− k2

2n

)n
= e−

1
2
k2 .

Therefore

lim
n→∞

(z) ≡ ρ(z) =
1

2π

∫ ∞
−∞

dk eikz e−
1
2
k2 =

1√
2π

e−
1
2
z2 ,
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a Gaussian PDF with zero mean and unit variance, as asserted.

(ii) Alternatively, we can arrive at the characteristic function of Zn with a little
less work, by the following argument. Since each Xi is uniformly distributed in
[0, 1] with a PDF equal to unity, the random variable Yi =

√
12
(
Xi − 1

2

)
/
√
n is

uniformly distributed in [−
√

3/n ,
√

3/n], with a constant PDF equal to
√
n/12.

Hence the moment generating function of any Yi is given by

MY (u) =
√

(n/12)

√
3/n∫

−
√

3/n

dy euy =
sinh (u

√
3/n)

u
√

3/n
.

The cumulant generating function of any Yi is given by ln MY (u). Hence the
cumulant generating function of Zn =

∑n
1 Yi , which is a sum of n independent

random variables, is just n ln MY (u) = ln [MY (u)]n. Exponentiating this quan-
tity, the moment generating function of Zn is

MZn(u) =
{sinh u

√
3/n

u
√

3/n

}n
.

The characteristic function of Zn is therefore

ρ̃n(k) = MZn(−ik) =
{sin (k

√
3/n)

k
√

3/n

}n
.

Taking the inverse Fourier transform gives us ρn(z). The rest of the derivation
proceeds as before.

F 22. Work out explicitly the steps of the derivations outlined above.

2.11 From random flights to diffusion

The manner in which a random walk goes over into the diffusion process in the
limit of zero step size in both time and space serves as another beautiful illustra-
tion of the Central Limit Theorem.

In order to be specific, and to be closer to a physical situation, let’s consider
random flights of the following kind, in three-dimensional space of infinite extent.
(For ease of identification, I’ll use the term random walk for random motion on
discrete spatial lattices, and random flight for random motion with finite-sized
steps in a continuous space.) The walker starts at an arbitrary origin, and at the
end of each time step τ , takes a step of fixed length l in an arbitrary direction in
space. This assumption can be relaxed to include a distribution of step lengths,
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but I’ll not do so here. Each successive step is taken independently, and is un-
correlated with the steps preceding it. We ask for the normalized probability
density function p (r, nτ) of the position vector r of the walker at the end of n
time steps, i.e., at time nτ . I have written p (r, nτ) rather than p (r, n) in order
to make the time dependence explicit. The objective is to calculate this quantity,
and to show that it reduces to the fundamental Gaussian solution of the diffusion
equation when the limits n→∞, l → 0 and τ → 0 are taken in a specific manner.

Let the successive steps of the walker be given by the (randomly directed)
vectors R1 , R2 , . . . ,Rn , so that

r =
n∑
j=1

Rj .

As usual, we use the symbol 〈· · · 〉 to denote the statistical average. In the present
instance, this is an average over all ‘realizations’ of the random flight, i.e., over
all possible configurations of the set of steps. In effect, it is as if we have a chain
with n straight, rigid segments, with loose-jointed hinges connecting every pair
of adjacent segments. As each step is equally likely to be in any direction, it is
obvious that the average value of the vector representing any step vanishes, i.e.,
〈Rj〉 = 0. Hence the mean displacement vector 〈r〉 = 0, as you would expect
intuitively. Further, using the fact that the magnitude of every step is equal to
l, we have

〈r · r〉 ≡ 〈r2〉 = nl2 + l2
n∑

i,j=1
i 6=j

〈cos θij〉,

where θij is the angle between the vectors Ri and Rj . But 〈cos θij〉 = 0, because
the angle between the two vectors is as likely to have a value θ as it is to have
a value (π − θ), and cos (π − θ) = − cos θ. The contributions from the two
possibilities add up to zero. It follows that

〈r2〉 = nl2.

Since 〈r〉 = 0, 〈r2〉 is actually the variance of the displacement in an n-step ran-
dom flight. (It is not the variance of the end-to-end distance, because the mean
distance 〈r〉 is not zero.) As n is proportional to the duration t of the walk,
you can already see the emergence of the linear growth in time of the variance of
the displacement. This behavior is characteristic of diffusive motion. Note, in
particular, that this result for the variance is actually independent of the number
of dimensions of the space in which the random flight occurs!

Let’s return to the calculation of the PDF p (r, nτ). It turns out to be easier
to compute its Fourier transform p̃ (k, nτ) first. The latter is just the charac-
teristic function of the random variable r. Recall the multiplicative property of
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characteristic functions for a sum of independent random variables. Since r is the
sum of the independent random variables Rj (1 ≤ j ≤ n), it follows that p̃ (k, nτ)
must be the product of the characteristic functions of the individual steps. It is
instructive to see this explicitly, as follows. We have

p̃(k, nτ) =

∫
d3r e−ik·r p(r, nτ) ⇐⇒ p(r, nτ) =

1

(2π)3

∫
d3k eik·r p̃(k, nτ).

But p̃(k, nτ) can be interpreted as the average value of the quantity e−ik·r over
all possible n-step random walks. Therefore we have

p̃(k, nτ) =
〈
e−ik·r

〉
=
〈
e−i

∑n
j=1 k·Rj

〉
=
〈
e−ik·R1 . . . e−ik·Rn

〉
.

A great simplification occurs now, because the individual steps are completely
independent of each other. Hence the average value of the product in the final
step above becomes equal to the product of average values, and we have

p̃(k, nτ) =
〈
e−ik·R1

〉〈
e−ik·R2

〉
· · ·
〈
e−ik·Rn

〉
=

n∏
j=1

〈
e−ik·Rj

〉
.

Now let p(r, τ) ≡ p1(r) denote the PDF of a single step. Since this PDF is the
same for each of the steps, we have〈

e−ik·Rj
〉

=

∫
d3Rj e

−ik·Rj p1(Rj) = p̃1(k),

the Fourier transform of the single-step PDF. Thus

p̃(k, nτ) = [p̃1(k)]n .

Next, we must find the single-step PDF p1(r) and calculate its Fourier trans-
form. The only condition imposed on a step is that its magnitude be equal to
l. Therefore p1(r) must be proportional to δ(r − l). But normalization implies
that

∫
d3r p1(r) must be equal to unity. This condition fixes the constant of

proportionality. The normalized PDF is

p1(r) =
1

4πl2
δ(r − l).

Therefore

p̃1(k) =

∫
d3r e−ik·r p1(r) =

1

4πl2

∫
d3r e−ik·r δ(r − l).

Carrying out the integration, we get (check this out)

p̃1(k) =
sin kl

kl
, where k = |k|.
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The characteristic function of the position vector r for an n-step random flight is
therefore given by

p̃(k, nτ) =
(sin kl

kl

)n
.

Hence

p(r, nτ) =
1

(2π)3

∫
d3k eik·r

(sin kl

kl

)n
.

This is an exact formula for the PDF of the end-to-end displacement vector r in
a random flight of n steps, each of length l, in three-dimensional space. Observe
its striking similarity to the expression found earlier for the PDF of a sum of
n random variables uniformly distributed in [0, 1]—a problem that is seemingly
quite different from the problem of random flights!

The integration over all the directions of k is easily carried out if we choose
spherical polar coordinates with the polar axis along the direction of r, exploiting
rotational invariance. The result is

p(r, nτ) =
1

2π2r

∫ ∞
0

dk k sin kr
(sin kl

kl

)n
.

The evaluation of the integral above for successive values of n is an interesting
exercise in its own right. But our present purpose is to examine p(r, nτ) for
very large n—in fact, in the limit n → ∞ , τ → 0 such that lim nτ = t. Now,
|(sin kl)/(kl)| < 1 for all kl 6= 0. Hence the factor [(sin kl)/(kl)]n in the integrand
causes the integral to vanish as n→∞ as long as l remains finite and non-zero.
But if l tends to zero simultaneously, we have(sin kl

kl

)n
'
(

1− k2 l2

6

)n
.

It is then clear that the right-hand side tends to a finite nontrivial limit (that is
not 0 or 1) if, and only if, l2 → 0 like n−1. This is the only possible way in which
a nontrivial limiting PDF can arise. But n−1 ∼ τ , so that we must let l2 tend to
zero like τ . Therefore, let τ → 0 and l→ 0, such that

lim
l, τ→0

l2

6τ
= D,

where D is a finite positive quantity called the diffusion coefficient. The choice
of the precise numerical factor 1

6
in the above is unimportant. It has been tailored

so as to obtain the same numerical factors in the limiting expression for p(r, nτ)
as the fundamental Gaussian solution of the diffusion equation. In this ‘diffusion
limit’, we have (

1− k2 l2

6

)n
=
(

1− Dk2t

n

)n
−→
n→∞

e−Dk
2t.
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We thus obtain

p(r, nτ)→ p(r, t) =
1

(2π)3

∫
d3k e−Dk

2t+ik·r .

This integral is most easily evaluated in Cartesian coordinates—it then factors
into the product of three Gaussian integrals. Put r = (x, y, z), k = (k1 , k2 , k3),
and use the familiar formula for the shifted Gaussian integral. Re-combine x2 +
y2 + z2 into r2, to arrive finally at

p(r, t) =
1

(4πDt)3/2
e−r

2/(4Dt).

F 23. Work through the steps of the derivation to obtain the result quoted
above for p(r, t).

The expression we have found for p(r, t) is precisely the normalized funda-
mental Gaussian solution to the three-dimensional diffusion equation

∂p(r, t)

∂t
= D∇2p(r, t)

with the initial condition p(r, 0) = δ(3)(0) and boundary condition p(r, t) → 0
as r → ∞. Thus, in the diffusion limit, the random flight goes over into the
diffusion process. It is easily checked that the mean squared displacement is

〈r2〉 =

∫
d3r r2 p(r, t) =

4π

(4πDt)3/2

∫ ∞
0

dr r4 e−r
2/(4Dt) = 6Dt.

The linear growth of the variance of the displacement with time is thus retained
in the diffusion limit.

2.12 Stable distributions

As mentioned earlier, a topic of great importance in statistics is the probability
distribution of the sums of independent, identically-distributed random variables
(iidrv). In particular, a crucial question is the existence of a limit law when the
number of random variables becomes infinite. We’ve already seen an example of
such a limit law, namely, the Gaussian distribution. The Gaussian is one mem-
ber (perhaps the most important member, as far as physical applications are
concerned) of a whole family of distributions called the stable distributions,
which are intimately connected with such limit laws.
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Suppose we have n iidrv X1 , X2 , . . . , Xn , each with a cumulative distribu-
tion function F . We ask: Are there forms of F such that the sum

∑n
i=1Xi , pos-

sibly shifted by an n-dependent constant and re-scaled by another n-dependent
constant, also has the same distribution function? The complete answer to this
question is one of the key results in statistics. There is a whole family of dis-
tributions with the property required, called the stable distributions. (The
full name of the family is Lévy skew alpha-stable distributions.) There are
several alternative (and equivalent) ways of stating the defining property of these
probability distributions.

Definition 1: The CDF F is a stable distribution if and only if, for every positive
integer n ≥ 2, it is possible to find a positive constant an and a real constant bn
such that the probability distribution of the quantity

Zn =
1

an

{ n∑
i=1

Xi − bn
}

is also given by F itself. If this condition can be satisfied with bn = 0 for all n,
the distribution F is said to be strictly stable. The latter constitute a subset of
the class of stable distributions.

Definition 2: Let F be the CDF of two iidrv X1 and X2 . Then F is a stable
distribution if and only if, given any two arbitrary positive numbers a1 and a2, a
positive number a and a real number b can be found such that (a1X1+a2X2−b)/a
also has the distribution F . Again, if this can be done without a shift constant
b, the distribution is strictly stable.

This formulation of the defining property can be re-expressed as a property of
the distribution function itself, as follows.

Definition 3: F is a stable distribution if and only if, given any two positive
numbers a1 and a2 , we can find a positive number a and a real number b such
that F satisfies

F (x/a1) ∗ F (x/a2) = F ((x− b)/a) ,

where the symbol ∗ denotes the convolution of the two distributions. If this
relation is satisfied with b = 0 in all cases, F is strictly stable.

2.13 The characteristic function of stable distributions

Not surprisingly, the most explicit way of specifying the stable distributions is
in terms of their characteristic functions. Definition 3, involving the convolution
of distributions, suggests that the characteristic function of a stable distribution
might satisfy some sort of ‘multiplication property’, and be related to exponential
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functions. This intuitive guess is indeed borne out.

The family of stable distributions is characterized by four different parameters,
but I shall not go into these details here. The important points are the following.

(a) It turns out that the scaling constant an in the definition of Zn in Definition
1 must have the power-law form an = n1/α, where 0 < α ≤ 2.

(b) The exponent α is the primary characterizer of the members of the family
of stable distributions.

(c) The stable distributions have continuous PDFs that are unimodal (i.e., have
single peaks).

Let X denote a random variable with a stable distribution, and p(x) its PDF.
Except for certain special values of the exponent α, p(x) cannot be written down
in explicit closed form, in general. The characteristic function p̃(k), however, can
be expressed in such a form for all 0 < α ≤ 2.

(d) In essence, the modulus |p̃(k)| of the characteristic function for a stable
distribution with exponent α behaves like exp (−|k|α).

The reasons for restricting the exponent α to the range 0 < α ≤ 2 are as follows:

(i) If α ≤ 0, the function p̃(k) → 1 as |k| → ∞. Therefore
∫∞
−∞dk e

ikx p̃(k)
diverges, and hence the PDF p(x) does not exist. (The trivial case when p̃(k) is
a constant corresponds to a δ-function form for p(x).)

(ii) At the other end, if α > 2, the inverse Fourier transform of p̃(k) is no longer
guaranteed to be a real, non-negative function of x, as it must be in order to
represent a PDF. (This is much harder to prove.)

2.14 The three important special cases

There are three notable and important cases in which the formula for p̃(k) can
be inverted to yield explicit expressions for the PDF p(x) in terms of elementary
functions. There do exist other cases in which the PDF can be obtained explicitly
in terms of known functions. But these do not occur as frequently in physical
applications. Moreover, even in these cases p(x) is only expressible in terms of
certain hypergeometric functions, and does not reduce to any elementary func-
tion. The three cases that follow are also the cases that appear most often in
physical applications.
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(i) The Gaussian distribution: For α = 2, we have the Gaussian distribution
parametrized by the mean µ and variance σ2. Recall that the PDF and the
characteristic function are, respectively,

p(x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

and p̃(k) = e−iµ k−σ
2 k2/2,

where x, k ∈ (−∞,∞).

(ii) The Cauchy distribution: For α = 1, we have the Cauchy distribution.
The PDF and characteristic function are given, respectively, by

p(x) = (λ/π)[(x− µ)2 + λ2]−1 and p̃(k) = e−iµ k−λ |k|,

where x, k ∈ (−∞,∞), and λ(> 0), µ are real parameters. The PDF has a
Lorentzian shape, symmetric about its center µ. (This is the simplest form of the
Cauchy distribution, and corresponds to special values of the parameters other
than α that characterize a stable distribution.)

(iii) The Lévy distribution: For α = 1
2
, we have the Lévy distribution, given

by the PDF

p(x) = [c/(2πx3)]1/2 e−c/(2x) and p̃(k) = e−c|k|
1/2 (1+i sgn k),

where c is a positive parameter. Note that x ∈ [0,∞) and k ∈ (−∞,∞) in this
case. The PDFs in cases (ii) and (iii) actually correspond to the most important
cases of more general stable distributions with α = 1 and α = 1

2
, respectively, for

some special values of certain other parameters.

The Gaussian distribution, corresponding to α = 2, differs in a crucial respect
from all the other stable distributions.

(i) The stable distributions with α < 2 are heavy-tailed distributions, in
the sense that the PDF has a leading asymptotic behavior p(x) ∼ |x|−(α+1)

as |x| → ∞. The Gaussian does not share this property.

(ii) As a consequence, of all the stable distributions, only the Gaussian has a
finite variance. All the other stable distributions have infinite variance.

(iii) For α ≤ 1, even the first moment or mean value does not exist. Once again,
this happens because the PDF p(x) decays to zero too slowly as |x| → ∞.

Finally, I mention that there is a generalization of the Central Limit Theorem
that is applicable to the family of stable distributions.
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2.15 Connections between the three cases

There are close relationships among the three special distributions listed above.
Here are a couple of these.

F 24. We’ve seen that the square of a Gaussian random variable (e.g., the
kinetic energy of a molecule in a classical ideal gas) has a gamma distribution.
Now consider the reciprocal of the square. Let X be a Gaussian random variable
with zero mean and variance σ2. Consider the random variable ξ = 1/X2. Its
PDF is given by

ρ(ξ) = (2πσ2)−1/2

∫ ∞
−∞

dx e−x
2/(2σ2) δ(ξ − x−2).

Convert the δ-function to δ-functions at x = ±ξ−1/2, and carry out the integration
over x. Show that the result is

ρ(ξ) = (2πσ2ξ3)−1/2 e−1/(2σ2ξ) (0 ≤ ξ <∞),

which is a Lévy distribution with c = 1/σ2.

An interesting duality: The result just derived is a special case of a duality
that exists between different stable distributions:

• A stable distribution with exponent α (where 1 ≤ α ≤ 2) for the random
variable X is essentially equivalent to a stable distribution with exponent
α−1 (so that 1

2
≤ α−1 ≤ 1) for the random variable X−α.

F 25. The ratio of two Gaussian random variables, each with a mean equal to
zero, is Cauchy-distributed. Let’s see how this happens, using as an example the
physical context of two independent random walks on a line, in the diffusion limit.
Consider two particles, each starting from the origin at t = 0, diffusing on the x-
axis. The particles are assumed to have no interaction with each other (and to be
able to ‘pass through’ each other). Let X1 and X2 be the positions of the particles,
and let D1 and D2 be their respective diffusion coefficients. The respective PDFs
p1(x1 , t) and p2(x2 , t) of X1 and X2 are given by the fundamental Gaussian
solution to the one-dimensional diffusion equation, namely,

pi(xi , t) =
1

(4πDit)1/2
e−x

2
i /(4Dit), where i = 1, 2.

Let ξ = X1/X2 be the ratio of the positions of the two particles. It is clear that
the sample space of ξ is also (−∞,∞). The PDF of ξ is given by

ρ(ξ , t) =

∫ ∞
−∞
dx1

∫ ∞
−∞
dx2 p1(x1 , t) p2(x2 , t) δ

(
ξ − x1

x2

)
.
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Carry out the integrations to obtain

ρ(ξ , t) =
λ

π

1

(ξ2 + λ2)
, where λ =

√
D2/D1.

Note that there is no time-dependence on the right-hand side! Remarkably
enough, the ratio ξ = X1/X2 has precisely the same Cauchy distribution for
all t > 0.

2.16 Infinitely divisible distributions

To recapitulate: Let X1 , . . . , Xn be a set of iidrv with a stable probability
distribution. Then, there exist constants an and bn such that the (shifted and
re-scaled) sum Zn =

(∑n
i=1Xi− bn

)
/an also has the same stable distribution, for

every positive integer n.

Going the other way, it is natural to ask the opposite question: given a ran-
dom variable X with a specified probability distribution, when can we write it as
the sum of n iidrv X1 , . . . , Xn for every positive integer value of n? Whenever
this can be done, X is said to be an infinitely divisible random variable. Its prob-
ability distribution is an infinitely divisible distribution. It should come as
no surprise that stable distributions are intimately related to infinitely divisible
distributions.

In order to understand the concept of infinite divisibility clearly, the following
points must be noted. It is convenient to call the individual Xi (into which X is
decomposed) the ‘components’ of X.

(a) The components Xi need not have the same distribution as X itself! All
that is required is that, for each value of n, all the components Xi (where
i ≤ 1 ≤ n) have the same distribution.

(b) All stable distributions are infinitely divisible. The converse is not nec-
essarily true. Stable distributions comprise a subset of infinitely divisible
distributions.

(c) The special feature of a stable distribution is that, in this case, the compo-
nents Xi also have the same distribution as the sum X, for every n.

The divisibility of a random variable is a subtle concept. A random variable
may be ‘n-divisible’, but not ‘m-divisible’, where n and m are different positive
integers. Here’s a very simple example. Suppose the sample space of a random
variable X is the set of integers {0, 1, 2, 3}. It can then be decomposed into 3
components X1 , X2 and X3 , where each Xi has the sample space {0, 1}. Thus X
has the possibility of being 3-divisible (see below). But it can never be 2-divisible,
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because there is no way you can find two iidrv X1 and X2 that sum up to X with
the sample space specified above, namely, {0, 1, 2, 3}. It’s not hard to see why.
If X1 and X2 have the sample space {0, 1}, then their sum can never reach the
value 3. If the sample space of X1 and X2 is {0, 1, 2}, then their sum can have
the value 4, which is not in the sample space of X. If 3

2
is in the sample space of

X1 and X2 , then, since 0 must also be in this sample space, 3
2

must also be in
the sample of space of X, which is not the case. And so on.

Continuing with this example, it must also be understood that not every
random variable with the sample space {0, 1, 2, 3} is even 3-divisible. For, if each
component Xi has the sample space {0, 1} with probabilities p and q = 1− p for
the two values (and this is the only possibility), then the distribution of X must
necessarily be a binomial distribution with exponent 3. That is, the respective
probabilities of the values 0, 1, 2 and 3 must be p3, 3p2q, 3pq2 and q3, in order
that X be 3-divisible. It should now be obvious that a random variable X with a
binomial distribution with parameter N is N -divisible: each of its N components
is a Bernoulli trial, i.e., it can take the values 0 and 1, with respective probabilities
p and q.

(d) A moment’s thought tells us that, if X is an infinitely divisible random vari-
able, then its sample space must be unbounded in at least one direction—
from below or from above, or both.

The definitive property of an infinitely divisible distribution is found by looking at
its characteristic function. We know that the characteristic function of a sum of
iidrv is just the product of the characteristic functions of its components. Hence:

(e) X can be an infinitely divisible random variable only if its characteristic
function p̃(k) can be written as the nth power of a characteristic function
(of any of its components Xi) for every n. That is, for every positive integer
n, we must be able to find a characteristic function p̃n(k) such that

p̃(k) =
[
p̃n(k)

]n
.

Recall, at this stage, the properties required of a characteristic function, listed
earlier. The characteristic functions of the all the Lévy skew alpha-stable distri-
butions can be shown to satisfy these properties. Hence all stable distributions
are also infinitely divisible distributions, as already stated. It is easy to see how
this happens in the special cases of the Gaussian, Cauchy and Lévy distribu-
tions. Their characteristic functions have been written down in the foregoing. It
is almost trivial to observe that the characteristic functions of the components in
these cases are given by

p̃n(k) =


exp

{
−i(µ/n) k − 1

2
(σ/
√
n )2 k2

}
(Gaussian)

exp {−i(µ/n) k − (λ/n) |k|)} (Cauchy)

exp
{
−(c/n) |k|1/2 (1 + i sgn k)

}
(Lévy).
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In effect, all that needs to be done is to scale down the parameters of the distri-
butions by n (and by

√
n in the case of the standard deviation of the Gaussian),

to read off p̃n(k) from p̃(k) itself. It is obvious that the exponential form of the
characteristic function makes this special property possible.

2.17 Infinite divisibility does not imply stability

It remains to give instances of distributions that are infinitely divisible, but are
not stable distributions. A prominent example is the Poisson distribution, which
is not a member of the family of Lévy skew alpha-stable distributions. Recall
that the characteristic function of a Poisson distribution with mean value µ is is
p̃(k) = exp {µ (e−ik − 1)}. But this expression can be written as

p̃(k) =
[

exp
{

(µ/n) (e−ik − 1)
}]n

for every positive integer n, entailing a simple re-scaling of the mean value. It is
therefore obvious that the Poisson distribution is infinitely divisible. Moreover,
for each n, the components of a Poisson-distributed random variable are them-
selves Poisson-distributed.

Similarly, the characteristic function of a Skellam distribution with mean value
(µ− ν) and variance (µ+ ν) can be written as

p̃(k) =
[

exp
{

(µ/n) (e−ik − 1) + (ν/n) (eik − 1)
}]n

where n is any positive integer. Once again, it is evident that the distribution is
infinitely divisible, and that each component for any n also has a Skellam distri-
bution.

F 26. We’ve already seen that the binomial distribution with parameter N
is N -divisible into N Bernoulli trials (recall that µ = Np in this case). Now
show that the negative binomial distribution with parameter N is N -divisible
into geometric distributions. Start with the fact that the characteristic function
of the negative binomial distribution with parameter N and mean µ is given by

p̃(k) =

(
N

N + µ− µ e−ik

)N
.
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3 Stochastic processes

A stochastic process or random process is one in which the random variable
takes on different values from its sample space as time elapses. Stochastic pro-
cesses comprise a rather extensive subject by themselves. Our focus will be on
an important sub-class of these processes, namely, Markov processes. These are
the processes that are used most often in applications. As usual, we deal with
probabilities P and probability densities p, respectively, for discrete and continu-
ous sample spaces. For notational simplicity, we shall deal with the discrete case
for the most part. But what follows is adaptable, with obvious modifications, to
the continuous case.

Consider a random variable X whose sample space consists of a discrete set
of N values, {x1 , . . . , xN}. Instead of referring to the values themselves, it is
notationally convenient to specify them as ‘states’ labeled from 1 to N . The
indices j, k, l, . . . will be used to denote these state labels. Alternatively, I will
use j1 , j2 , . . . for the state labels, when the need arises to introduce an arbi-
trarily large number of labels. The formalism below is also applicable when N
is infinite, provided certain convergence conditions are satisfied. As the random
process evolves in time, the state of the variable changes randomly.

Let t1 < t2 < t3 < . . . be an arbitrary sequence of instants of time. The
statistical properties of the random process are specified completely by an infinite
set of multiple-time joint probabilities

P1(j, t1), P2(k, t2 ; j, t1), P3(l, t3 ; k, t2 ; j, t1), . . . ad infinitum.

The n-time joint probability Pn(jn , tn ; jn−1 , tn−1 ; . . . ; j1 , t1) is the probability
that the random variable has the values corresponding to the state j1 at time t1,
the state j2 at time t2, and so on, and the state jn at time tn . This n-time joint
probability is expressible as the product of an n-time conditional probability
and an (n− 1)-time joint probability, according to the chain rule

Pn(jn , tn ; jn−1 , tn−1 ; . . . ; j1 , t1) = Pn(jn , tn | jn−1 , tn−1 ; . . . ; j1 , t1)×

× Pn−1(jn−1 , tn−1 ; jn−2 , tn−2 ; · · · ; j1 , t1).

The first factor on the right-hand side is a conditional probability: it is the prob-
ability that the state jn occurs at time tn , given that the events to the right of the
vertical bar have occurred at the successively earlier instants tn−1 , tn−2 , . . . , t1 ,
respectively. In turn, the joint probability Pn−1 on the right-hand side can be
written as the product of an (n − 1)-time conditional probability and a joint
probability Pn−2, and so on. Thus, a stochastic process is specified by an infinite
hierarchy of multiple-time conditional probabilities, and a single-time probability
P1(j, t). This is convenient: in all physical applications of probability and random
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processes, we can only write equations for, or model, conditional probabilities or
probability densities—rather than the corresponding absolute probabilities them-
selves.

3.1 Discrete Markov processes

In practice, it is essentially impossible to determine or specify all the members
of the infinite set of conditional probabilities. We must make further simplify-
ing assumptions. Fortunately for us, most physical stochastic processes are also
amenable to modeling in terms of such simplified processes. The most notable of
these is the class of Markov processes.

Markov processes can have discrete or continuous sample spaces. Discrete
Markov processes may also be defined in discrete time, in which case they are
called Markov chains. There is a vast literature on this subject. But we shall
restrict ourselves here to the case of continuous time. This is the case that oc-
curs most commonly in physical applications such as nonequilibrium statistical
mechanics. The discussion below is an appropriate extension of what holds good
for Markov chains.

A Markov process is one with a ‘memory’ that is restricted, at any instant of
time, to the immediately preceding time argument alone. That is,

Pn(jn , tn | jn−1 , tn−1 ; . . . ; j1 , t1) = P2(jn , tn | jn−1 , tn−1) for all n ≥ 2.

The single-time-step memory characterizing a Markov process is equivalent to
saying that the future state of the process is only dependent on its present state,
and not on the history of how the process reached the present state. Although
this appears to be a mild technical assumption, it leads to a great deal of simpli-
fication. It has an immediate implication: All the joint probabilities of a Markov
process are expressible as products of just two independent probabilities:

(i) The single-time probability P1(j , t).

(ii) The two-time conditional probability P2(k , t | j , t ′), where t ′ < t.

The Markov assumption immediately simplifies the n-time joint probability to

Pn(jn , tn ; jn−1 , tn−1 ; . . . ; j1 , t1) = P2(jn , tn | jn−1 , tn−1)×
P2(jn−1 , tn−1 | jn−2 , tn−2) · · · ×
P2(j2 , t2 | j1 , t1)P1(j1 , t1).

Further simplification occurs in the case of a stationary random process,
which is a random process whose statistical properties do not depend on the
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choice of the origin of time. You will recognize that stationarity is the probabilis-
tic equivalent of the assumption of time-translation invariance in determinis-
tic dynamics (classical or quantum). In the mathematics literature, a stationary
random process is often called a homogeneous random process, because station-
arity is the same thing as homogeneity in time. For a stationary random process,
the single-time probability P1(j, t) is actually independent of t, i.e.,

P1(j , t) = P1(j) (stationary process),

and the two-time conditional probability is a function of the time difference (t−t ′)
alone, i.e.,

P2(k , t | j , t ′) = P2(k , t− t ′ | j, 0) (stationary process).

It is convenient to use the notation

P2(k , t− t ′ | j) def.
= P2(k , t− t ′ | j, 0).

Further, let’s drop the subscripts 1 and 2 in P1 and P2 , and write the two
different functions as simply P (j) and P (k , t − t ′ | j), for notational simplicity.
No confusion should arise, because the former probability is time-independent,
while the latter is not. Whenever necessary, I shall refer to P (j) as the stationary
probability, and to P (k , t− t ′ | j) or P (k , t | j) as the conditional probability. We
therefore have, for a stationary Markov process,

Pn(jn , tn ; jn−1 , tn−1 ; . . . ; j1 , t1) =

{
n−1∏
r=1

P (jr+1 , tr+1 − tr | jr)

}
P (j1),

for every n ≥ 2. From this point onward, I consider stationary processes, un-
less otherwise specified. This is entirely for convenience—the notation simplifies
somewhat in the case of stationary processes.

Next, we need inputs for the stationary probability P (j) and the conditional
probability P (k , t | j). These are, a priori, independent quantities. Now, in
physical situations modeled by Markov processes, the dynamics underlying the
random process generally enjoys a sufficient degree of mixing. This is a technical
term in dynamical systems theory. It refers to a kind of ‘scrambling up’ that
occurs in phase space under time evolution for most real-life dynamical systems.
(I will not digress into further detail here.) The mixing property ensures that the
following important relationship holds good:

lim
t→∞

P (k , t | j) = P (k).

In other words, the memory of the initial state j is ‘lost’ as t → ∞, and the
conditional probability simply tends to the stationary probability P (k) corre-
sponding to the final state k. As a consequence, the single conditional probability
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distribution P (k , t | j) completely determines all the statistical properties of such
a stationary Markov process.

The property implied by the relationship above appears to be quite plausible
on physical grounds. But there are some technical issues involved here. One of
them, which is pertinent to current work in nonequilibrium statistical physics, is
whether there exists a unique stationary distribution, as opposed to a whole set
of such distributions. The latter possibility is indeed realized in many physical
situations.

3.2 The master equation

The next step is to find an equation satisfied by the conditional probability
P (k , t | j) of a Markov process. A starting point for the derivation of this equa-
tion is the Chapman-Kolmogorov equation satisfied by Markov processes:

P (k , t | j) =
N∑
l=1

P (k , t− t ′ | l) P (l , t ′ | j) for any t ′ ∈ (0, t).

In effect, this equation says that the probability of ‘propagating’ from an initial
state j to a final state k is the product of the probabilities of propagating from j
to any intermediate state l, and subsequently from l to k, summed over all pos-
sible intermediate states. The Chapman-Kolmogorov equation is applicable to
continuous Markov processes as well. We’ll write down the corresponding version
of the equation later on.

The Chapman-Kolmogorov equation is a nonlinear equation for the condi-
tional probability, since the right-hand side is quadratic in P . Nonlinear equa-
tions are generally much harder to handle than linear ones. But in many cases
the Chapman-Kolmogorov equation can be reduced to a linear equation, depend-
ing on the existence of a transition probability per unit time, or transition rate
w(k | j) between any two distinct states j and k, defined as follows. Recall that,
for a stationary process, P (k, t + δt | j, t) = P (k, δt | j). We now assume that, in
any infinitesimal time interval δt, the probability P (k, δt | j) is proportional to
δt, with a coefficient of proportionality that depends on j and k, i.e.,

P (k, δt | j) = w(k | j) δt (j 6= k).

Such a relation is not always guaranteed for all Markov processes. When it does
hold good, it defines the transition rate w(k | j). What follows below is therefore
valid for those Markov processes for which finite transition rates exist between
the states. The quantity w(k | j) is the probability per unit time that the random
variable jumps from (its value in) the state j to (its value in) the state k. It can
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then be shown that the Chapman-Kolmogorov equation leads to the following
differential equation for the set of conditional probabilities {P (k, t | j)}:

d

dt
P (k, t | j) =

N∑
l=1
l 6=k

{
w(k | l)P (l, t | j)− w(l | k)P (k, t | j)

}
.

For each initial state j, this equation is satisfied for every k from 1 to N . The
initial condition is of course

P (k, 0 | j) = δjk .

The differential equation above for the conditional probability is called the mas-
ter equation (for a discrete Markov process). It has the form of a rate equation
of the sort that is familiar, for instance, in chemical physics. Viewed this way,
it is clear that the first term on the right is a ‘gain’ term, while the second is a
‘loss’ term.

F 27. Derive the master equation from the Chapman-Kolmogorov equation.

Hint: Subtract P (k, t−t ′ |j) from both sides of the Chapman-Kolmogorov equa-
tion, and set t ′ = t− δt. Use the fact that, for any given initial state j, the sum
over the final states of the conditional probability must be equal to unity, by the
conservation of probability. You will need to make use of this relation in the form

1− P (k, δt | k) =
N∑
l=1
l 6=k

w(l | k) δt.

Why are Markov processes so important? Observe that the master equa-
tion for the conditional probability distribution is a first-order differential equa-
tion in the time variable. This is a direct consequence of the Markovian nature
of the random process. The solution of the equation requires a single piece of
information: namely, the specification of the initial distribution P (k, 0 | j). No
earlier history is necessary, i.e., no information is required about how that initial
distribution was attained. But this is precisely what holds good in the case of de-
terministic dynamics as well, both classical and quantum! In classical dynamics,
Hamilton’s equations for the variables in phase space are first-order differential
equations in t. In quantum mechanics, the Schrödinger equation for the state
vector, or the Liouville equation for the density matrix, are first-order differential
equations in t. In this sense, the master equation for a Markov process is the
stochastic analog of the fundamental equations of deterministic dynamics.

Recall that classical dynamics is ‘first-order’ dynamics, provided we identify
and work in terms of the right number of dependent variables, i.e., the generalized
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coordinates as well as the generalized momenta pertaining to a system. (A simple
example: as you know, underlying the familiar second-order equation mẍ = F (x)
is the pair of coupled first-order equations ẋ = p/m and ṗ = F (x).) Similarly, a
given physical situation may appear to require modeling by a stochastic process
that is more history-dependent than a Markov process. But it often turns out
that this is in fact a Markov process in a coupled set of random variables, i.e., by
a multi-component Markov process. This possibility is the reason why Markov
processes make their appearance everywhere.

3.3 Formal solution of the master equation

Next, we turn to the formal solution of the master equation. Let P(t) denote
the column vector whose kth row is P (k, t | j). Although the initial state j is not
explicit in this notation, we’ll keep it in mind. The master equation can then be
written as the matrix equation

dP

dt
= W P,

where W is called the relaxation matrix in the physics literature. The reason
will become clear shortly. This (N ×N) matrix has off-diagonal elements

Wkj
def.
= w(k | j) (k 6= j)

and diagonal elements

Wkk = −
N∑
l=1
l 6=k

w(l | k).

W is not a symmetric matrix, in general.

Since the elements of W do not depend on time (we are considering a sta-
tionary process), the formal solution to the matrix differential equation for P is
simply

P(t) = eWt P(0),

where P(0) is a column vector whose jth row is 1, and all other elements are
0. (This is where the initial state j makes its appearance.) It follows that the
time-dependence of the probability distribution is essentially determined by the
eigenvalue spectrum of the matrix W .

Finding the exponential of the matrix Wt in explicit form is generally not a
simple task. As you know, an arbitrary (2 × 2) matrix is easily exponentiated
using the Pauli matrices, but no such simple general formula of this sort exists
for matrices of higher order. A more convenient way of dealing with the problem
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is to work with Laplace transforms. Let P̃(s) denote the Laplace transform of
P(t). Then

P̃(s) =
(
sI −W

)−1
P(0),

where I is the (N × N) unit matrix. The matrix (sI −W )−1 is, of course, the
resolvent of the transition matrix W . The problem of exponentiating the matrix
W is replaced by the relatively simpler one of finding the inverse of a related ma-
trix. We are still left with the task of inverting the Laplace transform, of course.

The known properties of the relaxation matrix W make it possible to say
something about its eigenvalue spectrum. I restrict myself here to the most
general statements, without going into the details of the necessary and sufficient
conditions for their validity, exceptional cases, and so on. Note that the sum
of the elements of each column of W is equal to zero. It follows at once that
detW = 0, so that 0 is an eigenvalue of this matrix. (The physical implication
of this fact will become clear shortly.) The elements of W are real. Hence its
eigenvalues occur in complex conjugate pairs. Now apply Gershgorin’s Circle
Theorem to W . The centers of the Gershgorin discs are located on the negative
real axis of the complex plane, at the points Wkk = −|Wkk|, where k runs from
1 to N . The radii of the circles are given by |Wkk|. The right-most points of
all the Gershgorin discs are therefore at the origin. Hence the real parts of all
the eigenvalues are negative, except for the eigenvalue 0. It follows that the time
evolution of the probabilities, which is governed by eWt, is given by decaying
exponentials in t, possibly multiplied by factors involving sinusoidal functions of
t. This property justifies the term ‘relaxation matrix’ for W .

3.4 The stationary distribution

To what distribution, if any, do the conditional probabilities P (k, t | j) ‘relax’ as
t → ∞? An important aspect of the master equation concerns the conditions
under which there exists a unique time-independent distribution Pst whose kth

row is the stationary probability P (k). This question becomes even more non-
trivial for discrete Markov processes with an an infinite-dimensional state space
(N →∞), and for continuous Markov processes. Here we shall only consider the
case when N is finite and, further, a unique stationary distribution Pst exists.
This distribution is given by the solution of

dPst

dt
= W Pst = 0.

The stationary distribution Pst is therefore given by the elements of the appropri-
ately normalized right eigenvector of the matrix W corresponding to the eigen-
value 0. As each column of W adds up to zero, it is evident that the uniform row
vector

(
1 1 · · · 1

)
is the (unnormalized) left eigenvector of W with eigenvalue
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zero. Since W is not symmetric in general, the right and left eigenvectors are not
adjoints of each other. It is also necessary to show that the elements of the right
eigenvector are non-negative numbers that add up to unity, after normalization.
I do not go into the proof of this assertion here, but merely mention that it is
based on the Frobenius-Perron Theorem for real non-negative matrices.

From the explicit form of the master equation in terms of the transition rates,
it is clear that the stationary distribution is given by the solution of the set of N
homogeneous simultaneous equations

N∑
l=1
l6=k

{
w(k | l)P (l)− w(l | k)P (k)

}
= 0, (k = 1, 2, . . . , N).

Since det W = 0, we are guaranteed that this set of homogeneous simultane-
ous equations has unique nontrivial solutions for the ratios of the unknowns, say
P (2)/P (1), P (3)/P (1), . . . , P (N)/P (1). We need one more equation, an inho-
mogeneous one, to fix the actual values of the probabilities. This is provided by
the normalization condition

∑N
k=1 P (k) = 1. All the probabilities {P (k)} are now

fully determined. The stationary distribution Pst is thus expressible in terms of
the set of transition rates of the Markov process.

F 28. When N = 2, we have a 2-state Markov process, also called a di-
chotomous Markov process (DMP). We’ll consider the DMP in greater detail
shortly. Show that the stationary distribution is given in this case by

P (1) =
W12

W12 +W21

and P (2) =
W21

W12 +W21

.

F 29. The stationary distribution for a general 3-state Markov process is already
considerably more complicated. Show that it is given by P (k) = Nk/Dk , where

N1 = W12W13 +W13W32 +W12W23 ,

D1 = N1 +W21W13 +W31W12 +W32W21 +W23W31 +W31W32 +W21W23 ,

and N2 , D2 , N3 , D3 are given by cyclic permutations of the expressions above.

3.5 Detailed balance

It is clear that, even for the stationary distribution, the expressions rapidly get
more and more complicated as N increases. But there is a very important special
case in which the solution is simplified considerably. This is the situation in
which the detailed balance condition applies: namely, when each term in the
summand in the sum representing W Pst vanishes by itself. We then have

w(k | l)P (l) = w(l | k)P (k) (detailed balance)
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for every pair of distinct states k and l. The detailed balance condition has its
origin in time reversal invariance. Its importance arises from the fact that
it is applicable to systems in the state of thermal equilibrium, under normal cir-
cumstances. The corresponding stationary distribution may then be termed the
equilibrium distribution, with probabilities denoted by P eq(k) . These prob-
abilities can be found easily in terms of the transition rates.

F 30. Use detailed balance and the normalization condition
∑N

k=1 P
eq(k) = 1 to

show that

P eq(k) =

{
1 +

N∑
l=1
l 6=k

w(l | k)

w(k | l)

}−1

.

The case of a symmetric relaxation matrix W : In the special case of a
symmetric relaxation matrix W , i.e., when w(l | k) = w(k | l), more can be said
on general grounds. As W is a real symmetric matrix, it is diagonalizable by an
orthogonal transformation. All its eigenvalues are real. Taken together with the
conclusions drawn earlier based on the Gershgorin Circle Theorem, this implies
that the eigenvalues are negative, except for the eigenvalue 0. The corresponding
normalized right eigenvector is the equilibrium distribution, which reduces in this
case to the uniform distribution P eq(k) = 1/N for every k. This should remind
you of the fundamental postulate of equilibrium statistical mechanics: all the
accessible microstates of an isolated macroscopic system in thermal equilibrium
have equal probabilities.

3.6 The autocorrelation function

One of the most important quantities associated with any stochastic process is
its autocorrelation function, which is a generalization of the variance of a
random variable. It is the primary measure of the degree of ‘memory’ possessed
by the random variable as it evolves in time. The expressions given below for the
autocorrelation function pertain to the case of a discrete-valued random process
X(t). Their extension to a continuous random process is straightforward. These
expressions are valid for all stationary discrete stochastic processes, and not just
Markov processes. In the case of a Markov process, however, a knowledge of the
autocorrelation function is of particular significance. This is because the autocor-
relation function depends on the conditional probability, and (as you know) the
latter essentially determines all the joint probabilities associated with a Markov
process.

Consider the average value of the product of the random variable at time t1
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with itself at time t2 . We have, by definition,

〈X(t1)X(t2)〉 def.
=

∑
j

∑
k

xj xk P2(k , t2 ; j , t1)

=
∑
j

∑
k

xj xk P2(k , t2 | j , t1)P1(j , t1).

For a stationary random process this becomes, on writing t2 − t1 as simply t,

CX(t)
def.
= 〈X(0)X(t)〉 =

∑
j

∑
k

xj xk P (k , t | j)P (j),

in terms of the stationary probability and the conditional probability. This is the
autocorrelation function CX(t) of the stationary, discrete random process X(t),
in the case when the mean value is zero at all times.

When the mean value of a stationary random process is nonzero, its auto-
correlation function is defined in terms of the deviation from the mean value,

namely, δX = X − 〈X〉, according to CX(t)
def.
= 〈δX(0) δX(t)〉.

F 31. Show that

CX(t) =
{∑

j

∑
k

xj xk P (k , t | j)P (j)
}
− 〈X〉2,

where 〈X〉 =
∑

j xj P (j).

3.7 The dichotomous Markov process

The dichotomous Markov process (or DMP) is a very basic random process that
appears in various forms in numerous applications in science and engineering. It
is a stationary Markov, discrete (or jump) process X(t) in which the sample space
consists of just two values, c1 and c2 . The random variable X flips back and forth
between these values (or between the states 1 and 2) at random instants of time.
Let λ1 be the mean transition rate from c1 to c2, and λ2 the mean transition rate
from c2 to c1. Successive transitions are supposed to be completely uncorrelated
with each other. The transition matrix for this 2-state process is therefore

W =

(
−λ1 λ2

λ1 −λ2

)
.

Before going on to the solution of the master equation in this case, consider
the physical significance of the parameters λ1 and λ2. Suppose the system is in
the state 1 at any instant of time. The probability that it will make a transition
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to the state 2 in the next infinitesimal time interval δt is just λ1 δt. Now, δt is
taken to be so small that the probability of two or more transitions occurring
within this time interval is negligible. Hence the probability that it will not make
a transition in the interval δt is (1− λ1 δt). From this fact, it is easy to calculate
the probability that, if the system has just arrived at the state 1 at some instant
of time t0 , it remains in that state at time t (≥ t0) without having made any
transitions in between. All you have to do is to divide the interval (t − t0) into
n sub-intervals, each of duration δt. Since the process is Markovian, there is no
history-dependence. The no-transition or zero-transition probability we seek is
therefore (1 − λ1 δt)

n, in the limit n → ∞ and δt → 0 such that the product
n δt = (t− t0). Hence

Pr
{

stay in state 1 during an interval (t− t0)
}

= lim
n→∞
δt→0

(1− λ1 δt)
n

= e−λ1(t−t0).

Exactly the same argument applies to the state 2, with λ1 replaced by λ2. Thus

Pr
{

stay in state 2 during an interval (t− t0)
}

= e−λ2(t−t0).

It follows that the mean residence time in the state 1 between two successive
transitions is τ1 = λ−1

1 . Similarly, the mean residence time in state 2, between
successive transitions, is τ2 = λ−1

2 . We may therefore expect that, over a very
long interval of time, the fraction of the total time that the system spends in
states 1 and 2 are, on the average,

τ1

τ1 + τ2

=
λ2

λ1 + λ2

and
τ2

τ1 + τ2

=
λ1

λ1 + λ2

.

This would imply that the a priori probabilities P (1) and P (2) of finding the sys-
tem in states 1 and 2 are, respectively, precisely the fractions above. But you have
already seen that this is indeed so—recall the expressions written down earlier for
the stationary probabilities P (1) and P (2) of a 2-state stationary Markov process.

F 32. Given these expressions for the stationary probabilities P (1) and P (2),
it is easy to write down the mean and variance of X. Show that

〈X〉 =
τ1 c1 + τ2 c2

τ1 + τ2

=
c1 λ2 + c2 λ1

λ1 + λ2

,

〈
(
X − 〈X〉

)2〉 =
τ1 τ2 (c1 − c2)2

(τ1 + τ2)2
=
λ1 λ2 (c1 − c2)2

(λ1 + λ2)2
.
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3.8 Solution of the master equation

As already defined for an N -state Markov process, let P(t) denote the column
vector whose kth row is P (k, t | j). For a given initial state j (which can be either
1 or 2), k now runs over the values 1 and 2. The master equation is dP/dt = W P,
where W is the (2×2) matrix given above. The solution is P(t) = eWt P(0), where
P(0) = ( 1

0 ) or ( 0
1 ), depending on whether j = 1 or 2. The problem therefore re-

duces to finding the exponential of the matrix Wt.

F 33. Let λ
def.
= 1

2
(λ1 + λ2) denote the mean transition rate for the DMP.

(a) Show that

eWt =
1

2λ

(
λ2 + λ1 e

−2λt λ2 (1− e−2λt)

λ1 (1− e−2λt) λ1 + λ2 e
−2λt

)
.

(b) Hence show that the four normalized conditional probabilities characteriz-
ing the DMP are given by

P (c1 , t | c1) =
λ2 + λ1 e

−2λt

λ1 + λ2

, P (c2 , t | c1) =
λ1 (1− e−2λt)

λ1 + λ2

P (c1 , t | c2) =
λ2 (1− e−2λt)

λ1 + λ2

, P (c2 , t | c2) =
λ1 + λ2 e

−2λt

λ1 + λ2

.


Hint: A simple way to compute eWt is to note that W 2 = −2λW .

Observe that

lim
t→∞

eWt =
1

2λ

(
λ2 λ2

λ1 λ1

)
.

Hence the stationary probability distribution of the DMP is simply

Pst =

(
P (1)

P (2)

)
=

(
λ2/(λ1 + λ2)

λ1/(λ1 + λ2),

)
,

as we have found already.

F 34. Show that the autocorrelation function of a dichotomous Markov process
is given by

〈δX(0) δX(t)〉 =
λ1 λ2 (c1 − c2)2

(λ1 + λ2)2
e−2λt ,

where δX(t) ≡ X(t) − 〈X〉. Hence a DMP is exponentially correlated, i.e., the
autocorrelation function is a single decaying exponential in t. The correlation
time is

τcorr =
1

2λ
=

1

λ1 + λ2

=
τ1 τ2

τ1 + τ2

,
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rather than just λ−1, as one might guess at first sight. In other words, the corre-
lation time of a dichotomous Markov process is the harmonic mean of the mean
residence times in the two states of the process.

The symmetric DMP: When c1 = −c2 = c (say), and λ1 = λ2 = λ, we have
a symmetric DMP, and all the foregoing expressions simplify considerably. We
then have

〈X〉 = 0, 〈X2〉 = c2, 〈X(0)X(t)〉 = c2 e−2λt.

Further,

P (±c , t | ± c) = e−λt cosh λt , P (±c , t | ∓ c) = e−λt sinh λt.

3.9 The Poisson pulse process and radioactive decay

A birth-and-death process is a Markov process in which the random variable
takes on integer values, and direct transitions only occur between neighboring
values (or states) with prescribed mean rates. Common examples include the
Poisson pulse process and a simple random walk on a linear lattice.

In the symmetric DMP, suppose we focus on the instants of time at which
the DMP flips from one of its two values to the other. These instants themselves
constitute a random sequence called a Poisson pulse process with a mean pulse
rate λ (called the intensity of the Poisson process in the statistics literature): that
is, the probability that exactly r such instants occur in a given time interval t is
Poisson-distributed, being given by (λt)r e−λt/r!. Let’s now see how this comes
about.

It is instructive to work in the context of a physical example, such as the
decay events in a radioactive isotope containing a sufficiently large number of
nuclei. The latter condition ensures that, during the time interval in which we
observe the sample, the events can be regarded as an on-going stationary ran-
dom process. Starting at an arbitrary instant of time, the sequence of instants
at which a decay takes place comprise a Poisson pulse process. The number of
nuclei that have decayed till time t is an integer-valued random variable r(t) that
starts at the value zero, and increases in steps of unity at random instants of time.

Consider a sufficiently large sample of a radioactive isotope with decay con-
stant λ. At the level of the individual nucleus, λ is the mean rate of decay. The
basic assumptions are as follows:

(i) In any sufficiently small time interval δt, only one of two things can happen :
either a single decay occurs, with probability λ δt, or there is no decay at
all, with probability (1− λ δt).
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If δt is not sufficiently small, then of course multiple decays can occur in that
interval. The idea is that, for any given finite value of λ, the time increment δt
can be chosen to be small enough for the assumption (of either no decay or just
one decay) to be valid. The probability that more than one decay occurs in the
interval δt is at least of the order of (δt)2.

(ii) Successive decays are statistically independent of each other.

That is, the locations on the time axis of the instants when a decay occurs are
completely uncorrelated with each other. In technical terms, this means that the
number of decays is a Markov process. In the present instance, since the number
n of decay events cannot decrease as t increases, we have a Markovian birth
process.

Let P (r, t + δt) denote the probability that exactly r nuclei have decayed in
a time interval t + δt. This probability is given by the sum of the contributions
from two possibilities:

— Either (r − 1) decays have occurred till time t, for which the probability is
P (r− 1, t), and one more decay occurs in the incremental interval δt, with
probability λ δt;

— or, all r decays have already occurred in time t, for which the probability
is P (r, t), and no further decay occurs in the incremental interval δt, with
probability 1− λ δt.

As these two possibilities are mutually exclusive events, their respective proba-
bilities add up. We therefore have

P (r, t+ δt) = (λ δt)P (r − 1, t) + (1− λ δt)P (r, t), where r ≥ 1.

Move the term P (r, t) to the left-hand side, divide both sides by δt and let δt→ 0.
The outcome is the differential equation

dP (r, t)

dt
= λ

{
P (r − 1, t)− P (r, t)

}
, r ≥ 1.

This is the master equation for the probability distribution. Note that it is ac-
tually a set of coupled differential equations for the infinite set of probabilities
{P (r, t)}, where r = 1, 2, . . . . We need an initial condition for each P (r, t), which
is provided by the obvious condition P (r, 0) = δr,0 . Hence P (r, 0) = 0 for every
r ≥ 1, while P (0, 0) = 1.

The zero-decay probability P (0, t) itself obeys an even simpler equation, namely,

P (0, t+ δt) = (1− λ δt)P (0, t).
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The corresponding differential equation is therefore

dP (0, t)

dt
= −λP (0, t).

The solution to this equation, with the initial condition P (0, 0) = 1, is just

P (0, t) = e−λt .

In other words: The probability that no decay event occurs in a time interval t
decreases exponentially with increasing t.

The coupled set of equations for P (r, t) can be solved in several ways. As you
would expect, a convenient way is to use a generating function. Accordingly, let

f(z, t) =
∞∑
r=0

P (r, t) zr,

where z is a complex variable. Multiply both sides of the equation for dP (r, t)/dt
by zr, sum over r, and add on the equation for dP (0, t)/dt. The result is the
differential equation

∂f

∂t
= λ(z − 1) f.

Since P (r, 0) = δr,0 , the initial condition on f(z, t) is f(z, 0) = 1. The solution
for f(z, t) is

f(z, t) = eλ(z−1)t.

It is now trivial to pick out the coefficient of zr in f(z, t) to get the probability
distribution

P (r, t) =
e−λt (λt)r

r!
, r ≥ 0.

Therefore P (r, t) is a Poisson distribution with a mean value λt: that is, the
mean number of decays that take place in a time interval t is just λt. This is
in complete accord with the identification of λ as the mean rate of decay of a
nucleus. The half-life of the isotope concerned is (ln 2)/λ.

3.10 Biased random walk on a linear lattice

Next, let’s consider the prototype of a birth-and-death process, namely, a
biased random walk on an infinite linear lattice in continuous time. The sites of
the lattice are labelled by the integer j. The random walker jumps from any site
j to the site (j + 1) with probability α, or to the site (j − 1) with probability
β = (1 − α). If α 6= β, the random walk is biased. A bias models the effect of
a constant force acting on the random walker, causing a systematic drift toward
the left (if α < β) or the right (if α > β). The difference between a discrete-time
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random walk in which the walker hops to a neighbouring site after a fixed interval
of time (a ‘time step’), and the continuous-time version under consideration here,
is as follows: we now assume that the successive steps of the random walk are
taken at random instants of time, with a mean jump rate λ. The random variable
of current interest, however, is the position (or site label j) of the random walker
at any time t. On an infinite linear lattice, we may take the random walker to
start from the site j = 0 at t = 0, without loss of generality. What is the proba-
bility P (j, t) that she is at the site j at time t? The crucial technical assumption
is that the jump events themselves constitute a Poisson birth process—that is,
the number of steps taken in any given time interval t is Poisson-distributed with
a mean value λt. This makes j(t) a Markov process. Moreover, since j can both
increase as well as decrease with time as the walker moves back and forth, j(t)
is an example of a birth-and-death process.

As before, we write down an equation for P (j, t+δt) based on the assumption
that successive steps are independent of each other, and that δt is small enough
to ensure that only three things can possibly happen in that incremental time
interval : namely, the walker (i) either takes a step to the right, (ii) or takes a
step to the left, (iii) or does not take a step at all. These three possibilities are
mutually exclusive events. Hence their contributions to P (j, t+ δt) add up, and
we get

P (j, t+ δt) = (λα δt)P (j − 1, t) + (λβ δt)P (j + 1, t) + (1− λ δt)P (j, t).

In the limit δt→ 0, this yields the master equation

dP (j, t)

dt
= λ

{
αP (j − 1, t)− P (j, t) + β P (j + 1, t)

}
, j ∈ Z.

The initial condition is of course P (j, 0) = δj,0 . Once again, it is convenient to
solve the master equation using the generating function of P (j, t).

F 35. Define the generating function f(z, t) =
∞∑

j=−∞
P (j, t) zj. Note that the

summation over j runs over all integers (and not just the non-negative ones).

(a) Show that f(z, t) satisfies the first-order differential equation

∂f

∂t
= λ (αz − 1 + βz−1) f.

(b) Use the initial condition f(z, 0) = 1 to obtain

f(z, t) = exp {λt (αz − 1 + βz−1)}.
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(c) You need the coefficient of zj in the expansion of f(z, t) in integer powers
of z. Recall that the generating function of the modified Bessel function of
the first kind, Ij(u), is given by

exp
{

1
2
u
(
z + z−1

)}
=

∞∑
j=−∞

Ij(u) zj.

Hence read off the result

P (j, t) = e−λt (α/β)j/2 Ij
(
2λt
√
αβ
)
.

This solution is valid for all integer values of j—positive, negative and zero. Since
Ij(u) ≡ I−j(u) when j is an integer, the effect of the bias in the random walk
is essentially carried by the factor (α/β)j/2 in the solution above. It is obvious
that, when α > β, the probability is larger for positive values of j than it is for
negative values. The situation is reversed when β > α, as expected.

F 36. Inclusion of a sojourn probability: Here’s a slightly more gener-
alized version of the biased random walk discussed above. Suppose the walker
jumps from any site j to neighboring sites j + 1 and j − 1 with respective prob-
abilities α and β, as before, and stays at the site j with a probability γ, where
α + β + γ = 1. What is P (j, t) in this case?

Hint: A nonzero stay or sojourn probability implies that a ‘jump’ j → j is made
with an average rate λ γ. Show that the master equation is now given by

dP (j, t)

dt
= λ

{
αP (j − 1, t)− (1− γ)P (j, t) + β P (j + 1, t)

}
, j ∈ Z.

Define the generating function for P (j, t) and proceed as before.

Connection with the Skellam distribution: The expression obtained above
for P (j, t) in a biased random walk should look familiar to you. It is just the
Skellam distribution for the difference of two independent Poisson-distributed
random variables, with respective mean values µ = αλt and ν = βλt, so that
µ+ ν = λt. In other words, the position j of the random walker in a biased ran-
dom walk on a linear lattice can be interpreted physically as the difference of two
independent Poisson processes, namely, jumps to the right and left, respectively.
The respective mean rates of these processes are αλ and βλ, so that the mean
values of the individual processes in a time interval t are αλt and βλt. It is the
Markov property of the random walk that leads to such a simple interpretation
of the process.
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From the known values of the mean and variance of the Skellam distribution,
we can write down the mean and variance of the displacement of the random
walker at any time t. These are given by

〈j(t)〉 = (α− β)λt, Var j(t)
def.
= 〈j2(t)〉 − 〈j(t)〉2 = λt.

The first of the equations above shows how a bias in the random walk leads
to a drift, as measured by the mean displacement, that increases linearly with
time. The second shows how the expected diffusive behavior of the random walk
emerges, once the effect of the drift is subtracted out from the mean squared
displacement. This is the most important feature of the random walk.

Asymptotic behavior of the probability: The fact that the variance of
j(t) becomes unbounded as t→∞ suggests that the probability P (j, t) does not,
in fact, tend to any stationary distribution in that limit. In order to see this
explicitly, consider the asymptotic (t → ∞) behavior of the exact solution for
P (j, t). What you need for this purpose is the leading asymptotic behavior of the
modified Bessel function when its argument tends to infinity. This is given by

Ij(z) ∼ ez√
2πz

as |z| → ∞,

for all finite values of j. It follows that the leading asymptotic behavior of P (j, t)
as t→∞ is given by

P (j, t) ∼ (α/β)j/2 e−λt(1−2
√
αβ )(

4πλt
√
αβ
)1/2

.

But 1− 2
√
αβ = 1− 2

√
α(1− α) ≥ 0. The equality sign is attained only when

α = β = 1
2
. We conclude that:

(a) P (j, t) decays exponentially to zero as t → ∞ for all α 6= 1
2
, i.e., when the

random walk is biased (either to the right or to the left).

(b) When the random walk is unbiased (α = β = 1
2
), this asymptotic behavior

is drastically modified. P (j, t) now decays to zero as t→∞ like an inverse
power of t, namely, like 1/

√
t.

(c) In either case, P (j, t) vanishes in the limit t → ∞, for all j. Hence the
random walk process has no stationary distribution.

3.11 Sedimentation under gravity: the barometric distri-
bution

A direct application of a biased random walk is provided by a particle inn a
vertical column of fluid, subject to the (constant) force of gravity. Modeling
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the random motion of the particle by a biased random walk over the sites j =
0, 1, 2, . . . stacked vertically from 0 upwards, we have here a case when β > α
owing to the downward drift under gravity. The stationary distribution P (j) is
obtained by setting dP (j, t)/dt = 0 in the master equation. We find

αP (j − 1)− P (j) + β P (j + 1) = 0, for j ≥ 1.

For j = 0, however, we have a different equation. Since there is no loss of
probability at the ‘floor’ j = 0 (which acts like a reflecting boundary), we
have

αP (0)− β P (1) = 0.

F 37. The foregoing set of equations can be solved for the stationary distribution
P (j), j ≥ 0. Show that the normalised distribution is

P (j) =
(β − α)

β

(
α

β

)j
.

This is a geometric distribution.

The probability P (j) decreases exponentially with increasing j, since it can
be written as

P (j) =
(β − α)

β
e−j ln (β/α).

Later on, we will pass to the continuum limit of the one-dimensional diffusion
of a particle under a constant force, which describes the process of sedimenta-
tion. We’ll see that the expression for P (j) found here reduces precisely to the
barometric distribution of the density of the atmosphere, under the simplifying
assumption that the temperature is uniform.

3.12 General birth-and-death process

A general birth-and-death process involves transition probabilities (or rates) that
are state-dependent. The master equation in this case is a generalization of that
for a biased random walk. Absorbing the rate parameter λ into the bias proba-
bilities α and β, we now have

dP (j, t)

dt
= αj−1 P (j − 1, t)− (αj + βj)P (j, t) + βj+1 P (j + 1, t).

The functions αj and βj now have the physical dimensions of [time]−1. An an-
alytic closed-form solution for P (j, t) is no longer possible, in general. In the
important case when αj and βj are linear functions of j, however, such a solution
may be found.
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The master equation above is useful in modelling a large number of physical
phenomena. One is interested, in particular, in the stationary distribution, if any,
to which P (j, t) tends in the limit t → ∞. This stationary distribution satisfies
the difference equation

αj−1 P (j − 1)− (αj + βj)P (j) + βj+1 P (j + 1) = 0.

It is clear that the integer-valued random variable j can have essentially three
different possible ranges, that is (i) infinite in both directions, or (ii) infinite in
one direction, or (iii) bounded from both above and below. In cases (ii) and (iii),
there is the possibility of a stationary distribution, depending on the boundary
condition imposed at the finite end(s). Consider, for definiteness, the case when
j ≥ 0. The master equation for P (0, t) is different from that for P (j, t), j ≥ 1.
If there is no ‘leakage of probability’ at j = 0, then we must have

dP (0, t)

dt
= −α0 P (0, t) + β1 P (1, t).

Correspondingly, the equation for the stationary distribution becomes

−α0 P (0) + β1 P (1) = 0.

F 38. Use the foregoing to solve successively for P (1), P (2), . . . in terms of P (0),
to obtain

P (j) =
α0 α1 · · · αj−1

β1 β2 · · · βj
P (0).

Hence, assuming that the infinite series in the denominator converges, show that

P (j) =
{α0 α1 · · · αj−1

β1 β2 · · · βj

}/{
1 +

∞∑
k=1

α0 α1 · · · αk−1

β1 β2 · · · βk

}
.

When the upper limit on j is some finite integer N , of course, the sum in the
denominator runs up to k = N .

A couple of physical applications of this result are as follows:

Blackbody radiation: ‘Quantization’ of the electromagnetic field involves a
mathematical equivalence between the field and a set of linear harmonic oscilla-
tors, one for each wave vector and state of polarization. An oscillator with an
energy level spacing equal to hν can interact with radiation of frequency ν by
absorbing and emitting photons. Absorption (respectively, emission) of a photon
takes the oscillator from the level j to the level j + 1 (respectively, j − 1). It
turns out that αj−1 = Aj and βj = Bj in this case, where A and B are positive
constants. It follows that P (j) ∝ (A/B)j. Identifying A/B with ehν/kBT then
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leads to Planck’s formula for the frequency distribution of blackbody radiation.

A chemical reaction: Consider the chemical reaction A 
 B with rate con-
stants K and K ′ for the forward and backward reactions. Let the number of
molecules of A be so large that it essentially remains unchanged by the on-going
reaction. Then, if j is the number of molecules of the product B, we have αj ≈ α,
a constant, while βj = K ′j. It follows that P (j) is a Poisson distribution with
mean value α/K ′.
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4 Continuous Markov processes

4.1 Master equation for the conditional density

We turn now to the case of a continuous Markov process X(t). The sample space
of the random variable is some continuous set of values. The preceding discussion
of discrete Markov processes can be extended to the continuous case with obvi-
ous modifications, such as the replacement of probabilities by the corresponding
probability density functions. Thus, the n-time joint probability density for a
stationary, continuous Markov process is given by

pn(xn , tn ; xn−1 , tn−1 ; . . . ; x1 , t1) =
{ n−1∏
r=1

p(xr+1 , tr+1 − tr |xr)
}
p(x1),

for every n ≥ 2. (Here, the values {xk} belong to the sample space of X(t).)
Hence the fundamental quantity characterizing a stationary continuous Markov
process is the conditional density p(x, t |x0). The stationary PDF p(x) is expected
to be related to this quantity according to

lim
t→∞

p(x , t |x0) = p(x),

independent of the initial value x0 . As in the discrete case, the conditional density
satisfies the Chapman-Kolmogorov equation

p(x , t |x0) =

∫
dx ′ p(x , t− t ′ |x ′) p(x ′ , t ′ |x0) (0 ≤ t ′ ≤ t).

The integration runs over the range of values assumed by the random variable.

As before, this nonlinear equation may be converted to a linear one. Let
w(x |x ′) dx be the probability per unit time of a transition from a given value x ′

of the random variable to any value in the range (x , x+ dx). Therefore w(x |x ′)
is the transition probability density per unit time. The chain equation can
then be reduced to the master equation

∂

∂t
p(x , t |x0) =

∫
dx ′

{
p(x ′, t |x0)w(x |x ′)− p(x , t |x0)w(x ′ |x)

}
.

The initial condition is obviously p(x , 0 |x0) = δ(x− x0).

F 39. Using the same procedure as in the discrete case, derive the master
equation above from the Chapman-Kolmogorov equation.
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4.2 The Fokker-Planck equation

Even though the master equation is a linear equation for the conditional PDF
p(x , t |x0), it is an integro-differential equation. This is the price we pay for the
reduction of the nonlinear Chapman-Kolmogorov to a linear equation. Solving
it exactly is far from an easy task. One approach is to convert it to a partial
differential equation.

F 40. Show that the master equation can be written in the form

∂

∂t
p(x , t |x0) =

∞∑
n=0

(−1)n
∂n

∂xn
[An(x) p(x , t |x0)],

where

An(x) =

∫
dx ′ x′ nw(x+ x ′ |x).

Hint: Write w(x |x ′) = w(x ′ + δx |x ′), and expand this function as a Taylor
series in power of δx. Integration by parts then leads to the result quoted.

This is called the Kramers-Moyal expansion. While it is formally equivalent
to the master equation, the problem is that, in general, it is of infinite order in the
partial derivative ∂/∂x. In many physical applications, however, the Kramers-
Moyal form of the master equation either reduces to, or can be well-approximated
by, the second-order partial differential equation

∂

∂t
p(x , t |x0) = − ∂

∂x
[A1(x) p(x , t |x0)] +

1

2

∂2

∂x2
[A2(x) p(x , t |x0)].

This is known as the forward Kolmogorov equation or, more commonly in the
physics literature, the Fokker-Planck equation. There is an interesting exact
result in this regard: the Kramers-Moyal expansion either terminates at the sec-
ond order, or else is an infinite series—nothing in between. Of course truncation
at the second order may be a good approximation in the latter case, depending
on the problem at hand. The Fokker-Planck equation is the most frequently used
form of the master equation for the conditional PDF in physical applications of
continuous Markov processes. In the mathematical literature on stochastic pro-
cesses, all continuous Markov processes whose conditional densities satisfy the
Fokker-Planck equation are called diffusion processes. The functions

A1(x) =

∫
dx ′ x ′w(x+ x ′ |x), A2(x) =

∫
dx ′ x′ 2w(x+ x ′ |x),

which are essentially the first two moments of the transition rate, are are referred
to as the drift coefficient and diffusion coefficient, respectively. The solu-
tion of the Fokker-Planck equation itself is again a nontrivial task. Part of the
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technical problem is that the differential operator on the right-hand side is not a
self-adjoint operator. There exists a considerable body of literature on the anal-
ysis of the Fokker-Planck equation and its solution in various cases. The familiar
diffusion equation, as well several other related equations to be discussed below,
are examples of Fokker-Planck equations.

Some features of the equation, however, can be deduced quite easily. The
Fokker-Planck equation can be written in the form of an equation of continuity:

∂

∂t
p(x , t |x0) +

∂

∂x
j(x , t |x0) = 0,

where the probability current density j is given by

j(x , t |x0) = − ∂

∂x

{
1
2
A2(x) p(x , t |x0)

}
+ A1(x) p(x , t |x0).

Consider, now, what happens as t → ∞. We have p(x , t |x0) → p(x) (assum-
ing that a stationary PDF p(x) exists). Correspondingly, j(x, t) tends to the
stationary current

jst(x) = − d

dx

{
1
2
A2(x) p(x)

}
+ A1(x) p(x).

Obviously, ∂p(x)/∂t = 0. Hence djst/dx = 0, so that jst(x) is actually a constant
(independent of x). This means that the stationary density itself can be found
by solving the first-order, ordinary differential equation

d

dx

{
1
2
A2(x) p(x)

}
− A1(x) p(x) = constant,

where the constant is obtained from the boundary conditions in any given in-
stance.

4.3 The autocorrelation function for a continuous process

Before we turn to a very important continuous, stationary Markov process de-
scribed by the Fokker-Planck equation, and specific physical examples thereof,
it’s useful to write down the general expression for the autocorrelation function
in the case of a stationary, continuous Markov process. The formulas that fol-
low are straightforward extensions of those already written down for a stationary
discrete stochastic process. We have

〈X(t ′)X(t)〉 =

∫
dx ′
∫
dx x x ′ p2(x , t ; x ′ , t ′)

=

∫
dx ′
∫
dx x x ′ p2(x , t |x ′ , t ′) p1(x ′ , t ′).
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For a stationary process this becomes, on setting t ′ = 0,

〈X(0)X(t)〉 =

∫
dx ′
∫
dx x x ′ p(x , t |x ′) p(x ′),

in terms of the stationary and conditional PDFs. This is the autocorrelation
function CX(t) when the mean value of X(t) is zero.

When the mean value of the random process is nonzero, the autocorrelation
function is defined in terms of the deviation δX = X−〈X〉 from the mean value.
We then have

CX(t)
def.
= 〈δX(0) δX(t)〉 =

∫
dx ′
∫
dx x x ′ p(x , t |x ′) p(x ′)− 〈X〉2,

where

〈X〉 =

∫
dx x p(x).

4.4 The Ornstein-Uhlenbeck process

Among stationary, continuous Markov processes, there is a very unique one:

• There is only one continuous random process that is stationary, Markov, as
well as Gaussian. This is the Ornstein-Uhlenbeck process.

By a ‘Gaussian process’ we mean that all the joint probability densities of the
random variable are Gaussians in functional form. It is understood that the range
of the random variable is (−∞,∞).

The Ornstein-Uhlenbeck (OU, for short) process corresponds to the case when
the drift coefficient is proportional to x, and the diffusion coefficient is a constant:

A1(x) = −a1 x and A2(x) = a2 , where a1, a2 = positive constants.

We’ll discuss two physical examples of this random process, shortly. The Fokker-
Planck equation in this case is

∂

∂t
p(x , t |x0) = a1

∂

∂x
[x p(x , t |x0)] +

a2

2

∂2

∂x2
p(x , t |x0).

The physical dimensions of a1 and a2 are, respectively, 1/[time] and [x2]/[time].
The initial condition on p(x , t |x0) is of course given by

p(x , 0 |x0) = δ(x− x0).

The simplest case corresponds to the natural boundary conditions

p(x , t |x0) = 0 as x→ ±∞.

The solution that satisfies these conditions will be written down subsequently.
The main physical features of this solution are as follows:
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(i) The conditional density starts at t = 0 as a δ-function peak at x0, and
widens as t increases. It is a Gaussian for all t > 0, and attains a limiting
Gaussian form as t→∞.

(ii) As t increases, the mean value of X(t) (and hence the peak of the Gaussian)
drifts monotonically to zero like a decaying exponential function of t.

(iii) Simultaneously, the variance of X(t) increases monotonically from zero, and
tends to a saturation value as t→∞.

(iv) The autocorrelation function of X(t) decays to zero exponentially in time,
with a single characteristic time constant given by 1/a1.

F 41. Some of these features can be deduced even without solving the Fokker-
Planck equation explicitly. Consider, for instance, the mean value 〈X(t)〉 and the
second moment 〈X2(t)〉. These are defined as

µX(t) ≡ 〈X(t)〉 def.
=

∫ ∞
−∞
dx x p(x , t |x0) and 〈X2(t)〉 def.

=

∫ ∞
−∞
dx x2 p(x , t |x0),

respectively.

(a) These moments satisfy ordinary first-order differential equations in time.
Show that

d

dt
〈X(t)〉+ a1〈X(t)〉 = 0 and

d

dt
〈X2(t)〉+ 2a1〈X2(t)〉 − a2 = 0.

(b) The moments under discussion are conditional averages: that is, they are
averages over all realizations of the random process X(t), given the specific
initial value x0 . Therefore the initial conditions on the moments are simply

〈X(0)〉 = x0 and 〈X2(0)〉 = x2
0 .

Show that the solutions for the first and second moments are given by

〈X(t)〉 ≡ µX(t) = x0 e
−a1t and 〈X2(t)〉 =

a2

2a1

+
(
x2

0 −
a2

2a1

)
e−2a1t,

for all t ≥ 0.

Hint: Multiply both sides of the Fokker-Planck equation by x and x2, respec-
tively, and integrate over x. Note that

d〈X(t)〉
dt

=

∫ ∞
−∞
dx x

∂p

∂t
and

d〈X2(t)〉
dt

=

∫ ∞
−∞
dx x2 ∂p

∂t
.
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Use the Fokker-Planck equation for ∂p/∂t, and integrate by parts. All the bound-
ary terms at x = ±∞may be set equal to zero, since p(x , t |x0) and its derivatives
with respect to x tend to zero faster than any inverse power of x as |x| → ∞.
(This will be explicit in the solution to be written down shortly.)

The time-dependent variance of X(t) is

VarX(t) ≡ σ2
X(t) = 〈X2(t)〉 − µ2

X(t) =
a2

2a1

(
1− e−2a1t

)
.

The variance thus increases monotonically from its initial value 0 to the limiting
value a2/(2a1). Observe that it is actually independent of the initial value x0 for
all t.

4.5 The Ornstein-Uhlenbeck distribution

Let’s now consider the exact solution of the Fokker-Planck equation

∂

∂t
p(x , t |x0) = a1

∂

∂x
[x p(x , t |x0)] +

a2

2

∂2

∂x2
p(x , t |x0).

with the initial condition p(x , 0 |x0) = δ(x−x0) and natural boundary conditions
p(x , t |x0) = 0 as x → ±∞. There are several ways of solving the equation. I
will not discuss these here, but will merely write down the solution, based on
the assertion that the PDF is a Gaussian at all times. A knowledge of the
mean and variance therefore suffices for our purposes, because a Gaussian is fully
determined by its mean and variance. The normalized conditional probability
density is given by

p(x , t |x0) =
1√

2πσ2
X(t)

exp
{
−
(
x− µX(t)

)2

2σ2
X(t)

}
,

where, as already found, the mean and variance are given by

µX(t) = x0 e
−a1t and σ2

X(t) =
a2

2a1

(
1− e−2a1t

)
.

This is the Ornstein-Uhlenbeck distribution (or rather, the corresponding
PDF). The claim is that it is the PDF of the only continuous stochastic process
that is stationary, Markov, as well as Gaussian. As t→∞, this conditional PDF
tends to the stationary PDF

p(x) =
√
a1/(πa2) e−a1x

2/a2 .

73



The autocorrelation function of the Ornstein-Uhlenbeck process has
already been stated to be a decaying exponential function of t. Let’s see how this
comes about.

The first step is to recognize that the mean value of the process, as opposed
to the conditional mean µX(t) = 〈X(t)〉 = x0 e

−a1t found above, is actually zero.
This is easily done, because all that is needed is a further averaging of 〈X(t)〉
over all initial conditions weighted with the stationary density p(x0). But the
latter is a Gaussian centered at x0 = 0 , and hence a symmetric function of x0 .
Therefore the full, or unconditional, average of X is zero. The autocorrelation
function is then given by

CX(t) = 〈X(0)X(t)〉 =

∫ ∞
−∞

dx0

∫ ∞
−∞

dx x x0 p(x , t |x0) p(x0).

F 42. Use the expressions found above for p(x , t |x0) and p(x0) and carry out
the integrations over x and x0 to obtain

CX(t) =
a2

2a1

e−a1t.

Hint: The calculation becomes much easier if you carry out the integration over
x first. Shift the variable of integration from x to x− µX(t).

Doob’s Theorem: This result establishes the assertion made earlier, namely,
that the autocorrelation function of the OU process is a decaying exponential
function of time, with a correlation time given by 1/a1 . There is an interesting
exact result in this regard, known as Doob’s Theorem:

• The only continuous, stationary, Gaussian process with an exponentially
decaying autocorrelation is the OU process.

All the qualifying clauses are necessary, as omitting any one of them yields
counter-examples. For instance:

—The dichotomous Markov process is stationary and exponentially correlated,
but it is a jump process and not a continuous process. It is certainly not Gaussian.

—The Wiener process (or Brownian motion), whose probability density satisfies
the standard diffusion equation, is continuous, Gaussian and Markov, but not
stationary. It is not exponentially correlated.
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—There is a whole class of stochastic processes that are continuous, stationary,
Markov and exponentially-correlated. This class of processes includes, but is not
restricted to, Gaussian Markov processes. The Gaussian member of this class
of processes is precisely the OU process. These processes have stationary PDFs
that satisfy the differential equation

dp(x)

dx
=
A(x)

B(x)
p(x),

where A(x) and B(x) are polynomials in x of degree no greater than 1 and 2,
respectively. Further, (i) the solution p(x) must have finite first and second mo-
ments, and (ii) B(x)p(x) must vanish at the end-points of the range of x.

F 43. Setting A(x) = a0 + a1 x and B(x) = b0 + b1 x + b2 x
2, show that five

distinct nontrivial possibilities arise. (Clearly, the Gaussian corresponds to the
case a0 = 0, a1 < 0, b0 > 0, b1 = b2 = 0.)

4.6 Velocity distribution in a gas

The Fokker-Planck equation arose originally in the context of the velocity dis-
tribution of the molecules of a classical ideal gas in thermal equilibrium at a
temperature T . From elementary statistical physics, you know that the normal-
ized stationary PDF of each Cartesian component of the velocity of a molecule
is a Gaussian. For notational simplicity, let us denote any one of the Cartesian
components of the velocity of a molecule by U (or u, depending on whether we are
talking about the random variable or its value). The stationary or equilibrium
PDF of U is given by

p(u) =
( m

2πkBT

)1/2

exp
{
− mu2

2kBT

}
,

where m is the mass of a molecule and kB is Boltzmann’s constant. It is quite nat-
ural to ask a related question: Suppose we focus on any one particular molecule
(the ‘tagged’ particle), and find that its instantaneous velocity component at
t = 0 is equal to u0. How does its velocity distribution change with time, and
attain the Maxwellian form as t → ∞? This simple-looking question already
takes us beyond the purview of equilibrium statistical mechanics, as it involves
the time-dependent conditional probability density p(u , t |u0).

The simplest model that describes the physical situation is based on a random
or stochastic differential equation for the velocity of the tagged particle, called
the Langevin equation. It then turns out that the velocity component U(t)
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of the tagged particle is a stationary, Gaussian, Markov process. Its conditional
probability density satisfies the Fokker-Planck equation

∂

∂t
p(u , t |u0) = γ

∂

∂u
[u p(u , t |u0)] +

γkBT

m

∂2

∂u2
p(u , t |u0).

Here γ is a positive constant with the physical dimensions of [time]−1. It is
directly proportional to the viscosity of the fluid. It is evident that U(t) is an
Ornstein-Uhlenbeck process, with

a1 = γ and a2 = 2γkBT/m .

The conditional mean and variance of the velocity are therefore given by

µU(t) = u0 e
−γt and σ2

U(t) =
kBT

m

(
1− e−2γt

)
.

We can now write down the normalized fundamental solution to the Fokker-
Planck equation with the initial condition

p(u , 0 |u0) = δ(u− u0)

and natural boundary conditions

p(u , t |u0)→ 0 as u→ ±∞.

It is the Ornstein-Uhlenbeck distribution

p(u , t |u0) =
{ m

2πkBT
(
1− e−2γt

)}1/2

exp
{
−

m
(
u− u0 e

−γt)2

2kBT
(
1− e−2γt

)}.
F 44. Verify that the expression above satisfies the Fokker-Planck equation.

The autocorrelation function of the velocity component is, as expected, a
decaying exponential in t. Setting a1 = γ and a2 = 2γkBT/m in the expression
for the autocorrelation function of the Ornstein-Uhlenbeck process, we get

CU(t) =
kBT

m
e−γt (t ≥ 0).

It is immediately evident that 1/γ is the correlation time of the velocity process.
It is the characteristic relaxation time (or equilibration time) over which the
velocity ‘thermalizes’, starting from any specified initial value u0.

Finally, in the interests of technical accuracy I must mention that the forego-
ing model (as it stands) is too simplistic to be directly applicable to an individ-
ual molecule as the tagged particle. The Langevin equation and the associated
Fokker-Planck equation are actually more appropriate for describing the random
motion of a much more massive tagged particle moving in a fluid of much less
massive molecules.
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4.7 Solution for an arbitrary initial velocity distribution

The solution of the Fokker-Planck equation written down above corresponds to
a ‘sharp’ initial condition, namely, p(u , 0 |u0) = δ(u − u0). This means that it
is, in fact, the fundamental Green function for the differential operator in the
Fokker-Planck equation. Hence it can be used to write down the solution for an
arbitrary initial distribution of velocities, because the Fokker-Planck equation is
a linear equation.

Let the initial distribution be given by the normalized PDF pinit(u0). Then
the PDF of the velocity component at any time t > 0 is given by the expression

p(u, t) =
{ m

2πkBT
(
1− e−2γt

)}1/2
∫ ∞
−∞
du0 exp

{
−

m
(
u− u0 e

−γt)2

2kBT
(
1− e−2γt

)}pinit(u0).

This solution exhibits two interesting properties:

(i) Regardless of the initial density pinit(u0), the solution tends to the station-
ary Gaussian PDF p(u) as t→∞.

(ii) Suppose the initial probability density is the Maxwellian distribution it-
self, i.e., pinit(u0) = p(u0). Then p(u, t) remains equal to p(u) at all times.

F 45. Verify the statements (i) and (ii) above. They show how robust and
stable the state of thermal equilibrium is.

4.8 Diffusion of a harmonically bound particle

Another physical example of the Ornstein-Uhlenbeck distribution arises from the
diffusion equation for a harmonically bound particle. The particle undergoes
Brownian motion on a line, the x-axis, say, while it is under the influence of a
harmonic oscillator potential 1

2
mω2x2. (The natural frequency of the oscillator

is ω.) The particle is also subject to a frictional force −mγẋ(t) arising from the
medium in which it moves (a fluid in thermal equilibrium at temperature T ),
where γ is a positive constant with the physical dimensions of [time]−1. We are
interested in the conditional PDF p(x, t |x0) of the position X(t) of the particle,
given that it starts at t = 0 from some point x0 .

Recall from elementary physics that a linear harmonic oscillator is under-
damped when γ < 2ω, and overdamped when γ > 2ω. It turns out that, in the
overdamped case, and at sufficiently long times (specifically, for γt � 1), the
PDF p(x, t |x0) satisfies the following partial differential equation:

∂

∂t
p(x, t |x0) =

ω2

γ

∂

∂x

[
x p(x, t |x0)

]
+
kBT

mγ

∂2

∂x2
p(x, t |x0).
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This is an example of a diffusion equation for the positional PDF in the presence
of an applied force or in an external potential. (Such an equation is called a
Smoluchowski equation.) The partial differential equation satisfied by p(x, t |x0)
is clearly a Fokker-Planck equation, with coefficients given by

a1 = ω2/γ and a2 = 2kBT/(mγ) .

Thus X(t) is an Ornstein-Uhlenbeck process, under the conditions mentioned
above. For this reason, the Ornstein-Uhlenbeck process itself is sometimes called
the oscillator process.

The fundamental solution of the Fokker-Planck equation for p(x, t |x0) is a
Gaussian with conditional mean and variance given by

µX(t) = x0 e
−ω2t/γ and σ2

X(t) =
kBT

mω2

(
1− e−2ω2t/γ

)
.

Letting t→∞ in this solution, we get

lim
t→∞

p (x, t |x0) = p(x) =
( mω2

2πkB T

)1/2

exp
{
− mω2x2

2kBT

}
.

This is just the normalized stationary or equilibrium PDF that we would write
down in the canonical ensemble in equilibrium statistical mechanics.

I reiterate that the Fokker-Planck equaltion and its Gaussian solution written
down above are not exact relations for the positional PDF p(x, t |x0) of a har-
monically bound diffusing particle. They are approximations that are only valid
in the highly overdamped case, and at times t � γ−1. Only under these cir-
cumstances does the position variable X(t) become a stationary Markov process,
with an autocorrelation function given by the decaying exponential

CX(t) =
kBT

mω2
e−ω

2t/γ.

Note, too, that the existence of the stationary Gaussian PDF p(x) has another
implication. It means that, in stark contrast to a free particle, a harmonically
bound particle in thermal equilibrium with a heat bath does not undergo any
long-range diffusion at all! The variance of its displacement does not increase
linearly with t — in fact, it does not diverge like any power of t. Instead, it
saturates (as t → ∞) to the value kBT/mω

2. This expression is precisely what
you would write down based on an elementary application of the equipartition
theorem, according to which 1

2
mω2〈x2〉 = 1

2
kBT .

The quiz that follows covers both the topics discussed in the foregoing, as well
as the topics dealt with in the rest of this course.
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Quiz

I. Are the statements in quotation marks true or false?

1. Consider the set of n independent random variables X1, ..., Xn, where Xj

can take the value 1 with probability pj, and the value −1 with probability
qj = 1− pj, with 0 < pj < 1. Let Zn = X1 +X2 + · · ·+Xn.

“The variance of Zn is equal to 4
n∑
j=1

pj qj.”

2. A random variable n takes values in the set of non-negative integers, and
has a geometric distribution with mean value µ.

“Every cumulant of n is equal to µ.”

3. “If m and n are independent Poisson-distributed random variables, so is
αm+ (1− α)n, where 0 < α < 1 is a constant.”

4. “If µ and ν are the respective mean values of two independent Poisson-
distributed random variables m and n, the variance of the random variable
m− n is |µ− ν|.”

5. “If µ and ν are the respective mean values of two independent Poisson-
distributed random variables m and n, the mean value of (m+ n)2 is equal
to (µ+ ν)2.”

6. Let X be a random variable, and let Y = X + c where c is a constant.

“Except for the first cumulant, every cumulant of Y is equal to the corre-
sponding cumulant of X.”

7. Let ξ be a random variable with a Gaussian distribution.

“For every positive integer n, ξ can be written as the sum of n random
variables, each with a Gaussian distribution.”
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8. Let X denote a random variable.

“The quantity 〈X4〉 − 3〈X2〉2 can never be negative.”

9. Let X be a Gaussian random variable with zero mean and unit variance.

“The normalized PDF ρ(u) of the random variable U = 1/X2 has a leading
asymptotic behaviour proportional to 1/u3/2 as u→∞.”

10. Let X1, X2, . . . denote a set of random variables.

“If the correlation 〈XiXj〉 is proportional to δij, then X1, X2, . . . must nec-
essarily be statistically independent random variables.”

11. The characteristic function of a random variable X with PDF p(x) is de-
fined as the Fourier transform p̃(k) =

∫∞
−∞dx e

−ikx p(x) ≡ 〈e−ikX〉.

“If the imaginary part of p̃(k) vanishes identically, we may conclude that
X and −X are identically distributed.”

12. “If p̃(k) is a characteristic function, so is the function |p̃(k)|2.”

13. Let X ∈ [0,∞) be a random variable with a normalized PDF p(x) = e−x.

“The random variable ξ = e−X is uniformly distributed in [0, 1].”

14. A random variable X is Cauchy-distributed, with a PDF given by p(x) =
λ/[π(x2 + λ2)], where λ is a positive constant.

“The reciprocal of X is also Cauchy-distributed.”

15. “If a random variable can be written as the sum of n iidrv where n is a
given positive integer, then it is k-divisible for all integer values of k in the
range 1 ≤ k ≤ n.”
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16. “All stable distributions are infinitely divisible.”

17. “An infinitely divisible distribution must necessarily be n-divisible for every
positive integer n.”

18. Let {tj} (where j runs over the integers and tj−1 < tj) denote a Poisson
sequence of instants of time. That is, the random instants tj are uncorre-
lated with each other, and the probability that r such instants occur in any
time interval (t0, t0 + t) is a Poisson distribution, given by e−λt (λt)r/r!. Let
the random variable n(0, t) denote the number of instants tj that lie in the
time interval (0, t), and let 0 < t ′ < t.

“n(0, t) and n(0, t ′) are independent random variables.”

19. Continued: “〈n2(0, t)〉 = λt(λt+ 1).”

20. Continued: “The autocorrelation 〈n(0, t ′)n(0, t)〉 is an exponentially de-
caying function of (t− t ′).”

21. Let ξ(t) denote a stationary dichotomous Markov process that switches
from the value c1 to the value c2 at a mean rate λ1, and from c2 to c1 at a
mean rate λ2. Let δξ(t) = ξ(t)− 〈ξ〉.

“〈δξ(t1) δξ(t2)〉 is an exponentially decaying function of |t1− t2| for all finite
positive values of λ1 and λ2.”

22. “If X(t) is a continuous Markov process, all its joint probability densities
can be expressed in terms of its probability density p1(x, t) and its two-time
conditional probability density p2(x, t|x ′, t ′).”

23. Consider a random walk in continuous time on an infinite linear lattice
whose sites are labelled by the integer j. Let P (j, t) be the probability that
the walker is at the site j at time t, given that P (j, 0) = δj,0.

“If the walk is unbiased, the probability P (0, t) decays to zero like t−1/2 as
t→∞.”
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24. Continued: “If the walk is unbiased, the probability P (j, t) for j 6= 0
decays to zero exponentially (apart from an inverse power of t) as t→∞.”

25. Continued: “If the walk is biased, the probability P (j, t) decays to zero
exponentially (apart from an inverse power of t) as t→∞, for all j.”

26. A particle undergoes unbiased diffusion on the infinite line −∞ < x < ∞,
starting from x = 0 at t = 0. Its positional PDF p(x, t) satisfies the diffu-
sion equation ∂p/∂t = D∂2p/∂x2.

“The mean time for the particle to reach the point x = a (where a > 0) for
the first time is proportional to a2.”

27. Let ξ(t) satisfy the Langevin equation ξ̇ = f(ξ) + g(ξ) η(t), where f and
g are, in general, sufficiently smooth and differentiable functions of ξ. η(t)
is a Gaussian white noise, i.e., it is a Gaussian, stationary, Markov process
with zero mean and autocorrelation 〈η(t) η(t ′)〉 = δ(t− t ′).

“Since f and g do not have any explicit dependence on t, it follows that
ξ(t) must be a stationary process.”

28. Continued: “ξ(t) is a Markov process if and only if f is at most a linear
function of ξ, and g is a constant independent of ξ.”

29. Continued: “For any f and g, ξ(t) is a Markov process and its conditional
PDF p satisfies the Fokker-Planck equation

∂p

∂t
= − ∂

∂ξ
(fp) +

1

2

∂2

∂ξ2
(g2p).′′

30. Continued: “For any f and g, lim
t→∞

p(ξ, t|ξ0) always exists, and is given by

lim
t→∞

p(ξ, t|ξ0) = p(ξ),

where p(ξ) is a normalizable stationary PDF.”

31. Continued: “For any f and g, the autocorrelation function of ξ(t) is of the
form 〈ξ(0) ξ(t)〉 = 〈ξ2〉 e−λt where λ is a positive constant.”
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32. Continued: “For any f and g, the functional form of the conditional PDF
of ξ is a Gaussian, since the noise η is a Gaussian random process.”

33. “A one-dimensional, continuous, stationary Gaussian process whose auto-
correlation function is an exponentially decaying function of time with a
single relaxation time is necessarily the Ornstein-Uhlenbeck process.”

34. “A one-dimensional, continuous, stationary Markov process whose autocor-
relation function is an exponentially decaying function of time with a single
relaxation time is necessarily a Gaussian process.”

35. Consider a harmonically bound particle of mass m moving on the x-axis.
The natural frequency is ω0, and the damping constant is γ. In the high-
friction approximation, the Langevin equation satisfied by the position x(t)
of the particle is given by

ẋ = −ω
2
0

γ
x+

(2kBT

mγ

)1/2

η(t),

where η(t) is a zero mean, δ-correlated Gaussian white noise.

“x(t) is a stationary random variable, with a conditional PDF p(x, t |x0)
that is given by an Ornstein-Uhlenbeck distribution.”

36. Continued: The autocorrelation function 〈x(0)x(t)〉 decays exponentially
to zero from an initial value kB T/(mω

2
0), with a relaxation time γ/ω2

0.”

37. A particle undergoing unbiased diffusion on the x-axis starts from the origin
at t = 0. Its position X(t) is given to be a Wiener process.

“The autocorrelation function 〈X(t)X(t ′)〉 is a function of the time differ-
ence |t− t ′|.”

38. Continued: “X(t) is a continuous, Gaussian, Markov process whose sample
paths are not differentiable almost everywhere.”

39. Continued: “The mean number of times that X(t) takes the value 0 in any
finite interval of time (0, T ) is infinite.”
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40. Let V (t) denote an Ornstein-Uhlenbeck process. Consider the process X(t)
whose increment is given by dX(t) = V (t) dt.

“X(t) is a continuous, non-stationary, non-Markov process.”

41. The power spectral density of stationary random process X(t) is defined as

SX(ω)
def.
= lim

T→∞

∣∣∣ ∫ T

0

dt eiωtX(t)
∣∣∣2.

“If the random process is ergodic, then SX(ω) can be expressed in terms of
an average over the realizations of X(t) as

SX(ω) = (1/π)

∫ ∞
0

dt 〈X(0)X(t)〉 cos ωt.”

42. f(t) is a pulse shape defined for t ≥ 0, and {tj} is a Poisson sequence of
instants of time with a mean separation 1/ν. Let {hj} be a set of iidrv.

Consider the random process ξ(t) =
∞∑

j=−∞
hj f(t− tj).

“According to the generalization of Campbell’s Theorem, the rth cumulant
of ξ(t) is given by

κr = ν 〈hr〉
∫ ∞
−∞

dt |f(t)|r

if and only if the pulse has a compact shape, i.e., if and only if f(t) vanishes
identically for t greater than some finite value τ .”

43. Continued: “If 〈ξ〉 = 0, the power spectral density Sξ(ω) is proportional to

|f̃(ω)|2, where f̃(ω) is the Fourier transform of f(t).”

44. Let X(t) be a continuous, differentiable, stationary, Gaussian random pro-
cess with zero mean and autocorrelation function C(t) = 〈X(0)X(t)〉. The
variance of X(t) is therefore σ2

X = C(0).

“The random process V (t) = Ẋ(t) is also a stationary Gaussian process,
with a variance given by σ2

V = −
[
d2C(t)/dt2

]
t=0

.”
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45. Continued: “The mean number of zero-crossings of X(t) (i.e., the mean
number of times that X(t) takes the value 0) in a time interval (0, T ) is
given by 〈N(0; 0, T )〉 = (σV T )/(πσX).”

46. A particle undergoes dichotomous (or persistent) diffusion on the x-axis. Its
velocity V (t) is a stationary, symmetric dichotomous Markov process that
switches randomly between the values c and −c at a mean rate ν, where
c is a positive constant. Let pR(x, t) and pL(x, t) denote, respectively, the
joint position and velocity PDFs p(x, V = c, t) and p(x, V = −c, t). The
initial conditions on these PDFs are given to be

pR(x, 0) = pL(x, 0) = 1
2
δ(x).

“With the initial conditions as given above, pR(−x, t) = pL(x, t).”

47. Continued: The total positional PDF is p(x, t)
def.
= pR(x, t) + pL(x, t).

“Although neither pR(x, t) nor pL(x, t) is a symmetric function of x, their
sum p(x, t) is a Gaussian in x, with a peak at x = 0 for all t > 0.”

48. Continued: “For all t > 0, the mean squared displacement

〈x2(t)〉 def.
=

∫ ∞
−∞

dx x2 p(x, t) = 2Dt,

where D = c2/(2ν).”

49. Continued: The speed of the particle undergoing dichotomous diffusion is
always c, whether it is moving to the right or to the left on the x-axis.

“Hence the mean first-passage time to start at the origin and reach the
point a > 0 for the first time is a finite quantity proportional to a/c.”

50. Consider a simple random walk in discrete time on an infinite linear lattice
whose sites are labelled by the integers. It is given that the probability of
a step to the right is α, while that of a step to the left is β = 1− α, where
0 < α < 1. The random walk starts at some arbitrary site j at time n = 0.

“The total probability of the walker ever returning to the site j is equal to
1 only if α = β.”
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51. Continued: “The total probability of the walker ever visiting the site j − 1
is equal to 0 if α > 1

2
.”

52. Continued: “When α = β, the probability that the walker returns to the
site j for the first time at time n = 4 is given by F (j, 4 | j) = 1

8
.”

53. Continued: “When α = β, the probability F (j, n | j) that the walker re-
turns to the site j for the first time at time n decreases, for very large n,
like 1/

√
n.”

54. Consider an unbiased continuous time random walk (CTRW) on a linear
lattice, with a normalized waiting-time density given by ψ(t) = 1/T for
0 ≤ t ≤ T , and ψ(t) = 0 for t > T , where T is a positive constant.

“The leading asymptotic behavior of the mean squared displacement in the
long-time limit is ∼ t/T .”

55. Continued: If the waiting-time density ψ(t) decays like 1/t1+γ as t → ∞,
where 0 < γ < 1, then the mean squared displacement ∼ t1+γ in the long-
time limit.”
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II. Fill in the blanks in the following.

1. A random variable X can take on the values 1 and −1, with respective
probabilities α and 1− α, where 0 < α < 1. The characteristic function of
X is p̃(k) = · · ·

2. The moment generating function of the random variable X is given by
f(z) = 〈zX〉, where the average is over all realizations of the random vari-
able. Let Y be the random variable kX+ l, where k and l are given positive
integers. In terms of f , the moment generating function of Y is φ(z) = · · ·

3. Consider the set of n independent random variables X1, ..., Xn, where each
Xj can take the value a (where a > 0) with probability pj, and the value b
(where |b| ≤ a) with probability qj = 1− pj, with 0 < pj < 1.

Let Zn = X1 + X2 + · · · + Xn. For a fixed value of a, the largest possible
value of the variance of Zn occurs when

pj = · · · , and is given by
[
Var (Zn)

]
max

= · · ·

4. Let m and n be two independent Poisson-distributed random variables with
respective mean values µ and ν. Then, for any given positive integer l,

Pr (|m− n| = l) = · · ·

5. Consider a collection of independent particles in which each particle has a
set of energy levels available to it. Let ε be one such energy level. The
probability that a particle has energy ε is proportional to e−β(ε−µ), where
β > 0 and µ < 0 are constants. There is no restriction on how many
particles can occupy the energy level ε, i.e., the number of particles in the
energy level ε can be 0, 1, 2, . . . ad infinitum. The mean and variance of the
number of particles in the level ε are then

〈n(ε)〉 = · · · and Var [n(ε)] = · · ·

6. Let n be a random variable with a probability distribution given by the
negative binomial distribution with mean µ and parameter N . This has
the characteristic function

p̃(k) =
( N

N + µ− µ e−ik
)N
.

Therefore n is N -divisible into N iidrv, each of which has a geometric distri-
bution. If m is one such component, the normalized probability distribution
of m is given by Pm = · · ·
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7. Let Xj (j = 1, 2, . . . , n) be iidrv, each with a uniform distribution in [0, 1].
Then the random variable

ξ = lim
n→∞

an

{( n∑
j=1

Xj

)
− bn

}
has a normal distribution, where an = · · · and bn = · · ·

8. Let X be a Gaussian random variable with mean µ = 0 and variance σ2 = 1.
Consider the random variable Y = eX . The PDF of Y is ρ(y) = · · · , and
its mean and variance are 〈Y 〉 = · · · and Var (Y ) = · · ·

9. Let X and Y be independent Gaussian random variables, each with zero
mean and unit variance. The PDF of the ratio Z = X/Y is then given by
p(z) = · · ·

10. Let Xj (j = 1, 2, . . . , n) be independent Gaussian random variables with
〈Xj〉 = µj and VarXj = σ2

j . The cumulant generating function of the ran-
dom variable Zn = X1 +X2 + · · ·+Xn is then given by KZn(u) = · · ·

11. Let X and Y be iidrv, each uniformly distributed in [0, 1]. The PDF of
their product Z = XY is given by

p(z) = · · · , and Pr
(
Z ≤ 1

2

)
= · · ·

12. X1, X2, . . . , Xn are iidrv taking values in (−∞,∞). The PDF of Xj is p(x),
and its cumulative distribution function (CDF) is

Pr (Xj ≤ x) =

∫ x

−∞
dx ′ p(x ′) ≡ F (x).

Let Mn = max (X1, X2, . . . , Xn). In terms of F (x) and p(x), the CDF of
Mn is · · · and its PDF is · · ·

13. Continued: Let mn = min (X1, X2, . . . , Xn). In terms of F (x) and p(x), the
CDF of mn is · · · and its PDF is · · ·

14. Let {tj} (where j runs over the integers and tj−1 < tj) denote a Poisson
sequence of instants of time: the random instants tj are uncorrelated with
each other, and the probability that r such instants occur in any time
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interval (t0, t0 + t) is a Poisson distribution, given by e−λt (λt)r/r!. Let the
random variable n(0, t) denote the number of instants tj that lie in the
time interval (0, t), and let δn(0, t) ≡ n(0, t)− 〈n(0, t)〉. Then the first four
moments of δn(0, t) are

〈δn(0, t)〉 = · · · , 〈[δn(0, t)]2〉 = · · · , 〈[δn(0, t)]3〉 = · · · , 〈[δn(0, t)]4〉 = · · ·

15. Continued: Let 0 < t ′ < t. Then

〈δn(0, t ′) δn(0, t)〉 = · · · , so that 〈n(0, t ′)n(0, t)〉 = · · ·

Further,
〈[δn(0, t ′)]2 δn(0, t)〉 = · · ·

16. Consider a symmetric dichotomous Markov process (DMP) that jumps be-
tween the values +1 and −1 at a mean rate ν. Let n(t) be the number of
jumps in the time interval (0, t). The mean value of the random variable
X(t) = (−1)n(t) is 〈X(t)〉 = · · · , and its variance is VarX(t) = · · ·

17. Continued: The conditional probabilities corresponding to this symmetric
DMP are given by

P (+, t2 |+, t1) = P (−, t2 | −, t1) = e−ν(t2−t1) cosh ν(t2 − t1)

P (+, t2 | −, t1) = P (−, t2 |+, t1) = e−ν(t2−t1) sinh ν(t2 − t1),

where + and − denote +1 and −1, respectively, and t1 ≤ t2. The joint
two-time probabilities are therefore given by

P (+, t2 ; +, t1) = · · · , P (−, t2 ; −, t1) = · · ·
P (+, t2 ; −, t1) = · · · , P (−, t2 ; +, t1) = · · ·

18. Continued: Let t1 < t2 < t3. The joint three-time probability

P (+, t3 ; −, t2 ; +, t1) = · · ·

19. Let j be an integer-valued random variable corresponding to a birth-and-
death process in discrete time n (= 0, 1, 2, . . . ). At each time step, j either
increases by 1 with a probability α, or decreases by 1 with a probability β,
or remains at the same value with a probability γ, such that α+β+ γ = 1.
Hence the probability P (j, n) that the random variable has a value j at
time n satisfies the recursion relation P (j, n) = · · ·
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20. The population n of a certain animal species in a habitat is a random
variable that can take on the values 0, 1, . . . , N . Let P (n, t) denote the
probability that there are n animals at time t. Taking into account the
limited food supply and competition for food among the animals, it is found
that the transition rate from n to n+1 is αn = λ(N−n), and that from n to
n− 1 is βn = µn, where λ and µ are positive constants with the dimensions
of [time]−1. (Thus there is no transition from 0 to −1, or from N to N + 1,
as required.) Assume that n(t) is a Markov process. In terms of the explicit
expressions given above for αn and βn, the master equation is

dP (n, t)

dt
= · · · (1 ≤ n ≤ N − 1).

21. Continued: The master equations satisfied by P (0, t) and P (N, t) are

dP (0, t)

dt
= · · · and

dP (N, t)

dt
= · · ·

22. Continued: As t → ∞, the distribution P (n, t) (0 ≤ n ≤ N) tends to a
stationary distribution that is a normalized binomial distribution, given by
Pst(n) = · · ·

23. Continued: Hence the mean population in the stationary state is given by
〈n〉st = · · · , while its variance is given by [Var (n)]st = · · ·

24. The master equation satisfied by the conditional PDF of a stationary, con-
tinuous Markov process is

∂

∂t
p(x, t |x0) =

∫
dx ′

{
p(x ′, t |x0)w(x |x ′)− p(x, t |x0)w(x ′ |x)

}
.

A simple model that is very useful in many physical situations is as follows:
The transition rate w(x |x ′) from x ′ to x is independent of the initial value
x ′, and is a function of the final value x alone. Hence w(x |x ′) = λu(x),
where λ is a constant with the dimensions of 1/[time]. Using the fact that∫
dx ′ p(x ′, t |x0) = 1 (conservation of probability), the master equation then

simplifies to ∂p/∂t = · · ·

25. Continued: Taking the t → ∞ limit of this equation, the left-hand side
vanishes, while p(x, t |x0) → p(x), the stationary PDF of X. It follows
that u(x) must be p(x), apart from a normalization constant

∫
dx u(x),

which can be taken to be unity. Hence u(x) = p(x). The problem re-
duces to solving the differential equation for p(x, t |x0) (e.g., by using
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Laplace transforms), given the normalized PDF p(x). The initial condi-
tion is p(x, 0 |x0) = δ(x− x0). The solution is p(x, t |x0) = · · ·

The form of this solution is much simpler than that of the Ornstein-Uhlenbeck
PDF. The Markov process X(t) is called a Kubo-Anderson process.

26. Continued: To find the autocorrelation function of X, first find the condi-
tional average for a given X(0) = x0, according to

X(t)X(0)
def.
=

∫
dx x x0 p(x, t |x0).

This gives X(t)X(0) = · · · .

Next, averaging over the initial value x0 with the PDF p(x0), we have

〈X(t)X(0)〉 =

∫
dx0X(t)X(0) p(x0).

Therefore 〈X(t)X(0)〉 = · · ·

Subtracting out 〈X〉2 def.
=
∫
dx x2 p(x), we have

〈
(
X(t)− 〈X〉

)(
X(0)− 〈X〉

)
〉 = e−λt Var (X),

showing that the Kubo-Anderson process is exponentially correlated.

27. Continued: It is clear that the Kubo-Anderson process is a generalisation of
the dichotomous Markov process. A further generalization is the so-called
kangaroo process. Here, instead of taking the transition probability per
unit time to be w(x |x ′) = λu(x) where λ is a constant rate, one allows for
an initial-state-dependent transition rate λ(x ′). The transition probability
per unit time then has the factorized form w(x |x ′) = λ(x ′)u(x). Once
again, this leads to a simplification of the master equation. We now have

∂

∂t
p(x, t |x0) = u(x)

∫
dx ′ λ(x ′) p(x ′, t |x0) − λ(x) p(x, t |x0)

∫
dx ′ u(x ′).

Passing to the limit t→∞, we find

u(x) =
λ(x)

〈λ〉
p(x), where 〈λ〉 def.

=

∫
dx λ(x) p(x).
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〈λ〉 obviously represents the mean transition rate. Take the Laplace trans-
form of the master equation (with respect to t). Define the function

φ(s) = 1− 1

〈λ〉

∫
dx

λ2(x) p(x)

s+ λ(x)
≡ 1− 1

〈λ〉

〈
λ2

s+ λ

〉
.

The solution for the Laplace transform of the conditional PDF p(x, t |x0)
is then found to be p̃(x, s |x0) = · · ·

28. Continued: The autocorrelation function corresponding to a kangaroo pro-
cess is of interest in physical applications. Formally, we have

C(t) = 〈X(t)X(0)〉 =

∫
dx0

∫
dx x0 x p(x, t |x0) p(x0).

The Laplace transform of the autocorrelation function is therefore

C̃(s) =

∫
dx0

∫
dx x0 x p̃(x, s |x0) p(x0).

Let the random variable X take values in (−∞,∞), and assume that both
p(x) and λ(x) are even functions of x. The autocorrelation function is then
given by a superposition of decaying exponentials, given by C(t) = · · ·

29. A particle undergoes diffusion on the xy-plane, starting from the origin at
t = 0. The normalized PDF of its position (X, Y ) at any time t > 0 is given
by

p(x, y, t) = (4πDt)−1 e−(x2+y2)/(4Dt),

where D is the diffusion constant. The normalized PDF of the random
variable U = X2 + Y 2 is ρ(u, t) = · · ·

30. Let v denote a Cartesian component of the velocity of a particle of mass m
in a fluid in thermal equilibrium at temperature T . The autocorrelation of
v is found to be 〈v(0)v(t)〉 = (kBT/m) e−γ|t| where γ is a positive dissipation
constant. Hence the mean squared displacement of the particle at any time
t > 0 is given by

〈
(
x(t)− x(0)

)2〉 = · · ·

31. The velocity autocorrelation function of a particle undergoing diffusion on
the x-axis is found to be 〈v(t0) v(t0 + t)〉 = a2/(t2 + τ 2), where a and τ
are positive constants. The diffusion constant of the particle is therefore
D = · · ·
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32. The autocorrelation function of a continuous, stationary stochastic process
ξ(t) with zero mean is given to be 〈ξ(0)ξ(t)〉 = 〈ξ2〉 e−α|t| cos βt, where α
and β are positive constants. The power spectral density of ξ,

Sξ(ω)
def.
=

1

2π

∫ ∞
−∞

dt eiωt 〈ξ(0)ξ(t)〉,

is therefore given by Sξ(ω) = · · ·

33. The velocity v of a particle of mass m in a fluid at temperature T satisfies
the Langevin equation

mv̇ = −mγv + (2mγkBT )1/2η(t),

where γ is the dissipation constant, and the noise η(t) is a vector-valued,
stationary, Markov, Gaussian process. Its Cartesian components ηj(t) sat-
isfy

〈ηj(t)〉 = 0, 〈ηj(t) ηk(t ′)〉 = δkj δ(t− t ′) (j, k = 1, 2, 3).

Then the autocorrelation functions

〈v(0) · v(t)〉 = · · · and 〈v(0)× v(t)〉 = · · ·

34. Continued: Suppose the particle has an electric charge q. In the presence of
an applied magnetic field B, the Langevin equation for its velocity becomes

mv̇ = −mγv + q (v ×B) + (2mγkBT )1/2η(t).

The Fokker-Planck equation satisfied by the conditional probability density
p(v, t|v0) is ∂p/∂t = · · ·

In vector form, denoting by ∇v the gradient operator with respect to the
components of v, this equation is ∂p/∂t = · · · , which simplifies a bit to
give ∂p/∂t = · · ·

35. Continued: Let the magnetic field be directed along the unit vector n (so
that B = Bn), and let ωc = qB/m denote the cyclotron frequency of the
charged particle in the magnetic field. The autocorrelation of the velocity
of the particle in the presence of the magnetic field is then given, for t ≥ 0,
by

Cij(t)
def.
= 〈vi(0) vj(t)〉 =

kBT

m
e−γt

{
· · ·
}

Using the stationarity of the velocity process and the time-reversal proper-
ties of the reversible and irreversible parts of the drift terms in the Langevin
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equation, it can be shown that the expression for Cij(t) for all t involves
only the replacement of the factor e−γt by e−γ|t| in the result found for
t > 0. The terms in the curly brackets remain unchanged. Observe that
the symmetric part of the tensor Cij(t) is an even function of t, while the
antisymmetric part of the tensor is an odd function of t.

36. Continued: Hence, in the presence of a constant magnetic field, the auto-
correlation functions

〈v(0) · v(t)〉 = · · · and 〈v(0)× v(t)〉 = · · ·

37. Continued: The Kubo-Green formula for the diffusion tensor now becomes

Dij = 1
2

∫ ∞
0

dt [Cij(t) + Cij(−t)] = 1
2

∫ ∞
0

dt [Cij(t) + Cji(t)].

Using the explicit result for Cij(t). the diffusion tensor is given by Dij = · · ·

38. Continued: The expression for Dij shows how the diffusion coefficient in
the direction of the field (the longitudinal coefficient) differs from that in
the plane normal to the field (the transverse coefficient). To see this explic-
itly, consider the case n = (0, 0, 1). The longitudinal and transverse and
longitudinal diffusion coefficients are then given by

Dlong = · · · and Dtrans = · · ·

The effective diffusion constant in the presence of a magnetic field can then
be identified with the help of the asymptotic behaviour of the mean squared
displacement, according to 〈r2(t)〉 = 〈x2(t)〉 + 〈y2(t)〉 + 〈z2(t)〉 ∼ 6Deft t.
This gives Deff = · · ·

39. Continued: The dynamic mobility tensor of the particle is given by

µij(ω) =
1

kBT

∫ ∞
0

dt eiωt 〈vi(0) vj(t)〉.

Using the expression found above for 〈vi(0) vj(t)〉, the dynamic mobility in
the presence of a magnetic field is given by µij(ω) = · · ·
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40. Let X(t) denote the position of a particle undergoing free diffusion on the x-
axis. Thus X(t) is a Brownian motion, satisfying the stochastic differential
equation (or Itô equation)

dX(t) =
√

2DdW (t).

Here W (t) is a Wiener process, satisfying

〈W (t)〉 = 0, 〈W (t)W (t ′)〉 = min (t, t ′).

The master equation for the PDF p(x.t) of X is of course the diffusion
equation,

∂p

∂t
= D

∂2p

∂t2
.

Let ρ(ξ, t) denote the PDF of the random variable ξ = Xn, where n is a
positive integer. It follows from the diffusion equation for p(x, t) that ρ(ξ, t)
satisfies the master equation ∂ρ/∂t = · · ·

41. Continued: Hence the stochastic differential equation (or Itô equation) sat-
isfied by ξ(t) is dξ(t) = · · ·

42. A particle undergoes dichotomous (or persistent) diffusion on the x-axis.
Its velocity V (t) is a stationary, symmetric dichotomous Markov process
that switches randomly between the values c and −c at a mean rate ν,
where c is a positive constant. It is convenient to write the joint PDF of
the position X and velocity V as

p(x, V = c, t) ≡ pR(x, t) and p(x, V = −c, t) ≡ pL(x, t),

the subscripts R and L standing for ‘right-moving’ and ‘left-moving’, re-
spectively. These PDFs satisfy the coupled partial differential equations( ∂

∂t
+ c

∂

∂x

)
pR = ν (pL − pR) and

( ∂
∂t
− c ∂

∂x

)
pL = ν (pR − pL).

The positional PDF of the particle is

p(x, t)
def.
= pR(x, t) + pL(x, t).

Now consider the case in which the particle starts at t = 0 with position
X = 0 and velocity V = c, i.e., it starts in the right-moving state. The
initial conditions on the PDFs pR(x, t) and pL(x, t) are therefore

pR(x, 0) = δ(x) and pL(x, 0) = 0.
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It follows that the initial conditions on their time derivatives are given by[∂pR(x, t)

∂t

]
t=0

= · · · and
[∂pL(x, t)

∂t

]
t=0

= · · ·

Hence the initial conditions on the positional PDF p(x, t) and its time
derivative are

p(x, 0) = · · · and
[∂p(x, t)

∂t

]
t=0

= · · ·

43. Continued: From the coupled differential equations for pR and pL, it is
easily shown that each of the PDFs pR(x, t), pL(x, t) and p(x, t) satisfies
the second-order partial differential equation( ∂2

∂x2
+ 2ν

∂

∂t
− c2 ∂2

∂x2

)
f(x, t) = 0,

where f stands for pR, or pL, or p. The mean displacement and mean
squared displacement at any time t ≥ 0 are, by definition, the first and
second moments

〈X(t)〉 def.
=

∫ ∞
−∞

dx x p(x, t) and 〈X2(t)〉 def.
=

∫ ∞
−∞

dx x2 p(x, t).

It follows from the differential equation for p(x, t) that these moments sat-
isfy the second-order ordinary differential equations

d2

dt2
〈X(t)〉 = · · · and

d2

dt2
〈X2(t)〉 = · · ·

44. From the initial conditions on p(x, t) and ∂p(x, t)/∂t, it follows that the
initial conditions satisfied by 〈X(t)〉 and 〈X2(t)〉 are

〈X(0)〉 = · · · and
[d〈X(t)〉

dt

]
t=0

= · · ·

and

〈X2(0)〉 = · · · and
[d〈X2(t)〉

dt

]
t=0

= · · ·

Hence the solutions for the first and second moments of X(t) are

〈X(t)〉 = · · · and 〈X2(t)〉 = · · ·

The variance of X(t) is therefore VarX(t) = · · ·
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45. Continued: Let the random variable N(0; 0, T ) denote the number of cross-
ings of the origin (the point x = 0) by the particle in the time interval
(0, T ) in the case of dichotomous diffusion, with the initial conditions al-
ready specified. The mean value of N(0; 0, T ) can then be shown to reduce
to the expression

〈N(0; 0, T )〉 = 1
2
ν

∫ T

0

dt e−νt [I0(νt) + I1(νt)] = 1
2

∫ νT

0

du e−u [I0(u) + I1(u)],

where Ij is the modified Bessel function of the first kind and of order j.
Using the asymptotic form of Ij(u) as u → ∞, it follows that the leading
large-T behaviour of the mean number of zero-crossings in (0, T ) is given
by 〈N(0; 0, T )〉 ∼ · · ·

46. Continued: Further, the variance of N(0; 0, T ) can be shown to reduce to
the expression

Var [N(0; 0, T )] = νT − 2〈N(0; 0, T )〉.

The standard deviation ∆N(0; 0, T ) is of course the square root of the
variance of N(0; 0, T ). It follows that the relative fluctuation in N(0; 0, T )
tends to the limiting value

lim
T→∞

∆N(0; 0, T )

〈N(0; 0, T )〉
= · · ·

47. Consider a finite linear lattice comprising the sites 0, 1, 2, . . . , j. A random
walker executes a simple unbiased random walk in discrete time on this lat-
tice, by making nearest-neighbor jumps from any site to its neighbouring
sites at the end of every time step. The random walk is a Markov chain.
Let Tk denote the mean time for the walker to reach the end-point j for the
first time, starting from any site k. It is obvious that Tj = 0 by definition.

The recursion relation satisfied by Tk for 1 ≤ k ≤ j − 2 is Tk = · · · , while
those satisfied by T0 and Tj−1 are T0 = · · · and Tj−1 = · · ·

The solution for Tk (where 0 ≤ k ≤ j) is Tk = · · ·

48. Consider an unbiased simple random walk in discrete time on an infinite
linear lattice whose sites are labelled by the integers. The random walk
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starts at time n = 0 from the site 0. The probability that the walker is at
any site j at time n is given by the binomial distribution

P (j, n | 0) =

{
nC(n−j)/2 2−n, if |j| ≤ n and n− j is even

0 otherwise.

P (0, n | 0) is the probability of a return (not necessarily the first return!) to
the origin at time n. The generating function of this distribution is

π00(z)
def.
=

∞∑
n=1

P (0, n | 0) zn = · · ·

[
You will need the formula

∞∑
k=1

2kCk
(

1
2
z
)2k

=
1−
√

1− z2

√
1− z2

.
]

Now let F (0, n | 0) be the probability that the first return to the origin
occurs at time n. The corresponding generating function is

φ00(z)
def.
=

∞∑
n=1

F (0, n | 0) zn.

From the result found above for π00(z), it follows that φ00(z) = · · ·

Hence the mean first-return time or mean recurrence time to the origin is
〈t(0 | 0)〉 = · · ·

On an infinite lattice, owing to translational invariance, π00(z) = πjj(z),
and hence φ00(z) = φjj(z), for any site j.

49. Continued: P (1, n | 0) is the probability that the walker, having started at
site 0, is at the neighbouring site 1 at time n. The generating function of
P (1, n | 0) is

π10(z)
def.
=

∞∑
n=1

P (1, n | 0) zn = · · ·

[
You will need the formula

∞∑
k=1

2k−1Ck−1

(
1
2
z
)2k−1

=
1−
√

1− z2

z
√

1− z2
.
]

Now consider the probability F (1, n | 0) that the walker is at the site 1 for
the first time at time n. The corresponding generating function of this
distribution is given by

φ10(z)
def.
=

∞∑
n=1

F (1, n | 0) zn.
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It follows from the results for π10(z) and π11(z) that φ10(z) is given by
φ10(z) = · · ·

Hence the mean first-passage time to go from the site 0 to the site 1 is
〈t(1|0)〉 = · · ·

50. Continued: The recurrence-time distribution F (0, n | 0) = · · · and the first-
passage-time distribution F (1, n | 0) = · · ·

51. The backward Kolmogorov equation is a very useful tool in the deter-
mination of first-passage times in the case of Markov chains and Markov
processes. Here is a general formulation applicable to Markov chains, and
hence to discrete-time Markovian random walks on a lattice (or a graph,
more generally). Let j, k, l, . . . label the states of a Markov chain (or ver-
tices of a graph, or ‘sites’). For simplicity let’s consider a finite chain and a
transition matrix that connects each site k to a set of specified sites that we
shall call the ‘nearest neighbors’ of the site k. Let νk be the number of such
sites, i.e., the coordination number of the site k. A jump (or a one-time-step
transition) can from each site k to any one of its nearest-neighbor (nn) sites
with probability 1/νk. There is also some specified set of sites {α} that
are traps: the Markov chain (or random walk) ends when any one of the
trap sites is reached. The task is to determine the probability distribution
F (n, k) of the time-to-trapping tk from any starting site k, and hence the
mean time-to-trapping. F (n, k) is the probability that, starting from k,
the random walk hits a trap site at time n. It is the first-passage time (or
hitting time, or trapping time) distribution. By definition, F (n, α) = δn,0
for each of the trap sites.

We can show that F (n, k) satisfies the discrete version of the backward
Kolmogorov equation, as follows. The first jump from k can only occur
to one of its nearest-neighbor sites (with probability 1/νk). It is therefore
clear that, for n ≥ 0,

F (n+ 1, k) =
1

νk

∑
l

F (n, l) where l is a nearest-neighbour of k,

because after the first time step, n time steps are left. Let us introduce
the notation 〈kl〉 to indicate that l is a nearest neighbor of k, and δ〈kl〉 to
denote the corresponding Kronecker delta (= 1 if l is a nearest neighbor
of k, and = 0 if it is not). Using the summation convention for repeated
indices,

F (n+ 1, k) =
1

νk
δ〈kl〉 F (n, l), for n ≥ 0.
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Therefore

F (n+ 1, k)− F (n, k) =
{ 1

νk
δ〈kl〉 − δkl

}
F (n, l) ≡ ∆kl F (n, l).

The quantity in curly brackets, ∆kl, is the discrete analog of the Lapla-
cian operator at the site k. The equation above is the discrete analog of
the backward Kolmogorov equation for the first-passage-time distribution
F (n, k) on the Markov chain (or graph).

The general qth moment of the first-passage time (or time-to-trapping) is
of course defined as

T
(q)
k =

∞∑
n=0

nq F (n, k) =
∞∑
n=1

nq F (n, k),

because F (0, k) ≡ 0 as long as k is not a trap site α. For a trap site α, of

course, we have T
(q)
α ≡ 0 for every q ≥ 1. Since first passage from any site

k to a trap site α is a sure event, we have

T
(0)
k =

∞∑
n=0

F (n, k) =
∞∑
n=1

F (n, k) = 1.

The quantity of primary interest is the mean first-passage time, or mean
time-to-trapping starting from any site k, given by the first moment of
F (n, k), i.e.,

T
(1)
k ≡ 〈tk〉 =

∞∑
n=0

nF (n, k).

This quantity satisfies the equation ∆kl T
(1)
l = · · ·

52. Continued: Multiplying the equation ∆kl F (n, l) = F (n+ 1, k)−F (n, k) by
nq (where q is any positive integer) and summing over n, the qth moment of

the time to trapping satisfies the equation ∆kl T
(q)
l = · · · . In particular, the

second moment of the time-to-trapping satisfies the equation ∆kl T
(2)
l = · · · .

53. Continued: Let’s apply the foregoing to a simple unbiased random walk on
a finite linear lattice whose sites are labelled by the integers from −j to j,
these two end points being traps. Let T

(1)
k be the mean time for a walker

starting from any site k (where −(j − 1) ≤ k ≤ (j − 1)) to reach a trap
site for the first time. The backward Kolmogorov equation for the mean
first-passage time becomes · · · = · · · , showing that the second difference
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of T
(1)
k (with respect to k) is a constant. Hence T

(1)
k must be a quadratic

function of k. Further, it has the obvious symmetry property T
(1)
k = T

(1)
−k ,

because the traps are situated symmetrically on either side of the site 0, at
±j. Finally, T

(1)
k satisfies the boundary conditions T

(1)
±j = 0. Using these

facts, the explicit solution for the mean time-to-trapping is T
(1)
k = · · ·

54. Continued: Continuing with the random walk on a linear lattice considered
in the preceding question, the difference equation satisfied by the second
moment of the time-to-trapping is

1
2

(
T

(2)
k−1 + T

(2)
k+1

)
− T (2)

k = · · · .

Thus, the second difference of the quantity T
(2)
k is a quadratic function of k.

Hence the general solution for T
(2)
k must be a quartic function of k. Using

the symmetry property T
(2)
k = T

(2)
−k and the boundary condition T

(2)
±j = 0,

the explicit solution for the mean squared time-to-trapping is T
(2)
k = · · ·

55. Continued: The variance of the time-to-trapping tk from the site k is there-
fore Var (tk) = · · · . Hence the relative fluctuation, defined as the ratio of
the standard deviation of tk to its mean value, is given by ∆tk/〈tk〉 = · · ·

56. Consider an unbiased continuous time random walk (CTRW) on an infinite
linear lattice whose sites are labelled by the integer j ∈ Z. The walk starts
from the site 0 at t = 0. The normalized waiting time density of the time
between successive jumps is ψ(t), and the mean time between jumps is

τ
def.
=

∫ ∞
0

dt t ψ(t) = −
[
dψ̃(s)/ds

]
s=0

,

in terms of the Laplace transform ψ̃(s) of ψ(t). When ψ(t) has any func-
tional form other than an exponentially decaying function of t, the random
walk becomes a non-Markovian process. That is, a CTRW is Markovian if
and only if ψ(t) is of the form λ e−λt.

Let W (n, t) be the probability that exactly n jumps occur in the time in-

terval t. Its Laplace transform is given by W̃ (n, s) = · · ·

57. Continued: The random walk is unbiased, so that the probability of a jump
from site j to j + 1 or to j − 1 is equal to 1

2
. The generating function for
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a single step is therefore g(z) = 1
2

(z + z−1), and that for n steps is [g(z)]n.
That is, the probability Pn(j) that the walker is at j after n steps is the
coefficient of zj in the expansion of [g(z)]n in powers of z. Equivalently,∑

j∈Z

Pn(j) zj = [g(z)]n.

Turning to continuous time, the probability P (j, t) that the walker is at the
site j at time t is therefore

P (j, t) =
∞∑
n=0

Pn(j)W (n, t), so that P̃ (j, s) =
∞∑
n=0

Pn(j) W̃ (n, s).

Let
L(z, t) =

∑
j∈Z

P (j, t) zj

be the generating function of the probability distribution P (j, t). Combin-

ing the results in the foregoing, its Laplace transform L̃(z, s) is given by

the explicit expression L̃(z, s) = · · ·

58. Continued: The Laplace transform of the mean displacement in time t is
given by

L[〈j(t)〉] =
[
∂L̃(z, s)/∂z

]
z=1

= · · · .

The Laplace transform of the mean squared displacement in time t is there-
fore given by L[〈j2(t)〉] = · · ·

59. The leading asymptotic (t → ∞) behaviour of the mean squared displace-
ment is therefore given by 〈j2(t)〉 ∼ · · ·

60. Continued: Suppose the Laplace transform of the normalized waiting-time
density has a small-s behaviour given by ψ̃(s) = 1−csγ+ higher powers of s.
The leading long-time behavior of the mean squared displacement is then
given by 〈j2(t)〉 ∼ · · ·

61. Consider the Bernoulli shift map of the unit interval, given by the recursion
relation xn+1 = f(xn) = 2xn mod 1, where n = 0, 1, 2, . . . and x0 ∈ [0, 1].
Let the unit interval be partitioned into two cells L = [0, 1

2
] and R = (1

2
, 1].

The normalized invariant density of the map is given to be ρ(x) = 1. The
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invariant measures of the two cells are therefore given by µL =
∫
L
dx = 1

2

and µR =
∫
R
dx = 1

2
. We are interested in the statistics of recurrences to

the cell R, say. Let

w̃n
def.
= P (L, n− 1;L, n− 2; · · · ;L, 1;L, 0)

be the joint probability that the system starts in L (the complement of R)
at time 0 and remains in L at times 1, 2, . . . , n − 1. Then w̃n is given by
the multiple integral w̃n = · · · .

62. Continued: Evaluating the integral, the explicit expression for this joint
probability is w̃n = · · · . Hence the normalized sojourn probability in L is
H̃n = · · ·

63. Continued: The escape time probability distribution of the time of escape
out of L is defined as the conditional probability

Ẽn
def.
= P (R, n;L, n− 1; · · · ;L, 1|L, 0).

In terms of the quantities {w̃n}, this is given by Ẽn = · · · . The final result

for this quantity is Ẽn = · · · .

64. Continued: The distribution of the time of recurrence to R is defined as the
conditional probability

Rn
def.
= P (R, n;L, n− 1; · · · ;L, 1|R, 0).

In terms of the quantities {w̃n}, this is given by Rn = · · · . The final result
for the recurrence time distribution is Rn = · · · . Hence the mean time of
recurrence to R is · · ·

65. Continued: The partitioning of the unit interval into the cells L and R
in the Bernoulli shift map is a Markov partition, in the following sense:
The dynamics of transitions between the cells L and R turns out to be
just that of a two-state Markov chain with the one-step conditional prob-
abilities P (L, 1|L, 0) = . . . , P (L, 1|R, 0) = · · · , P (R, 1|L, 0) = · · · and
P (L, 1|L, 0) = · · · playing the role of the transition probabilities.

66. Continued: As already stated, the recurrence time distribution for the cell
R is defined as the conditional probability P (R, n;L, n − 1; · · · ;L, 1|R, 0).
Evaluating this quantity under the assumption that the process is a Markov
chain with transition probabilities as found above, the expression obtained
for Rn is · · ·
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Quiz: Solutions

I. True or false:

1. True

2. False

3. False

4. False

5. False

6. True

7. True

8. False

9. True

10. False

11. True

12. True

13. True

14. True

15. False

16. True

17. True

18. False

19. True

20. False

21. True

22. True

23. True

24. False
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25. True

26. False

27. False

28. False

29. True

30. False

31. False

32. False

33. True

34. False

35. True

36. True

37. False

38. True

39. True

40. True

41. True

42. False

43. True

44. True

45. True

46. True

47. False

48. False

49. False

50. True
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51. False

52. True

53. False

54. True

55. False

II. Fill in the blanks:

1. p̃(k) = α e−ik + (1− α) eik.

2. φ(z) = 〈zY 〉 = zl f(zk).

3. pj = 1
2
,
[
Var (Zn)

]
max

= na2.
.

4. Pr (|m− n| = l) = e−(µ+ν)[(µ/ν)l/2 + (ν/µ)l/2] Il(2
√
µν).

5. 〈n(ε)〉 =
1

eβ(ε−µ) − 1
, Var [n(ε)] =

eβ(ε−µ)

[eβ(ε−µ) − 1]2
.

6. Pm =
N

(N + µ)

( µ

N + µ

)m
.

7. an =
√

12/n and bn = n/2.

8. ρ(y) =
1

y
√

2π
e−

1
2

(ln y)2 , 〈Y 〉 =
√
e , Var (Y ) = e(e− 1).

9. p(z) =
1

π

1

(x2 + 1)
.

10. KZn(u) =
n∑
j=1

[
uµj + 1

2
u2σ2

j

]
.

11. p(z) = − ln z, Pr
(
Z ≤ 1

2

)
= 1

2
(1 + ln 2).
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12. The CDF of Mn is [F (x)]n. Its PDF is n[F (x)]n−1 F ′(x) = n[F (x)]n−1 p(x).

13. The CDF of mn is 1− [1− F (x)]n. Its PDF is n[1− F (x)]n−1 p(x).

14. Since the instants {tj} are Poisson-distributed, it follows that the mean
value of the random variable n(0, t) is just 〈n(0, t)〉 = λt. Moreover, all its
cumulants are also equal to λt. Hence

〈δn(0, t)〉 ≡ 0, 〈[δn(0, t)]2〉 = 〈[δn(0, t)]3〉 = λt.

Further,
〈[δn(0, t)]4〉 − 3〈[δn(0, t)]2〉2 = λt,

so that
〈[δn(0, t)]4〉 = λt+ 3λ2t2.

15. Since (0, t ′) and (t ′, t) are non-overlapping intervals, n(0, t ′) and n(t ′, t)
are independent random variables, and hence so are δn(0, t ′) and δn(t ′, t).
Therefore

〈δn(0, t ′) δn(t ′, t)〉 = 〈δn(0, t ′)〉 〈δn(t ′, t)〉 ≡ 0.

But note that, when t ′ < t, we have

n(t ′, t) = n(0, t)− n(0, t ′), so that δn(t ′, t) = δn(0, t)− δn(0, t ′).

It follows that 〈δn(0, t ′) δn(0, t)〉 − 〈[δn(0, t ′)]2〉 = 0, so that

〈δn(0, t ′) δn(0, t)〉 = λt ′.

Therefore
〈n(0, t ′)n(0, t)〉 = λt ′ + λ2 t ′ t.

(More generally, 〈δn(0, t ′) δn(0, t)〉 = λ min (t ′, t).)

Similarly, using the fact that

〈[δn(0, t ′)]2 δn(t ′, t)〉 = 〈[δn(0, t ′)]2〉 〈δn(t ′, t)〉 ≡ 0,

it follows that

〈[δn(0, t ′)]2 δn(0, t)〉 = 〈[δn(0, t ′)]3〉 = λt ′.
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16. Since (−1)n = ±1 according as n is even or odd, we have

〈X(t)〉 = (+1)× Pr {n(t) is even}+ (−1)× Pr {n(t) is odd}

= e−νt (cosh νt− sinh νt) = e−2νt.

Since X2(t) ≡ 1, we have VarX(t) = 1− e−4νt.

17. The DMP is stationary, so that P (±, t1) = P (±) = 1
2
. Hence the joint

two-time probabilities are

P (+, t2 ; +, t1) = P (−, t2 ; −, t1) = 1
2
e−ν(t2−t1) cosh ν(t2 − t1)

P (+, t2 ; −, t1) = P (−, t2 ; +, t1) = 1
2
e−ν(t2−t1) sinh ν(t2 − t1).

18. Using the Markov property of the process, the joint three-time probability

P (+, t3 ; −, t2 ; +, t1) = 1
2
e−ν(t3−t1) sinh ν(t3 − t2) sinh ν(t2 − t1).

19. P (j, n) = αP (j − 1, n− 1) + β P (j + 1, n− 1) + γ P (j, n− 1).

20. For 1 ≤ n ≤ N − 1,

dP (n, t)

dt
= λ(N−n+1)P (n−1, t)+µ(n+1)P (n+1, t)−[λ(N−n)+µn]P (n, t).

21.
dP (0, t)

dt
= −λNP (0, t) +µP (1, t),

dP (N, t)

dt
= λP (N − 1, t)−µNP (N, t).

22. Pst(n) =
( µ

λ+ µ

)N (N
n

)(λ
µ

)n
.

23. 〈n〉st =
Nλ

λ+ µ
, [Var (n)]st =

Nλµ

(λ+ µ)2
.

24.
∂

∂t
p(x, t|x0) = λu(x)− λ p(x, t|x0)

∫
dx ′ u(x ′).
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25. p(x, t |x0) = δ(x− x0) e−λt + p(x) (1− e−λt).

26. X(t)X(0) = x2
0 e
−λt + x0〈X〉 (1− e−λt), where 〈X〉 =

∫
dx x p(x).

〈X(t)X(0)〉 = 〈X2〉 e−λt + 〈X〉2 (1− e−λt), where 〈X2〉 =
∫
dx x2 p(x).

27. p̃(x, s |x0) =
δ(x− x0)

s+ λ(x)
+

p(x)λ(x)λ(x0)

〈λ〉
(
s+ λ(x)

)(
s+ λ(x0)

)
φ(s)

.

When λ(x) = λ, a constant, the inverse Laplace transform is easily ob-
tained. It is just the conditional PDF of the Kubo-Anderson process found
earlier.

28. C(t) =

∫ ∞
−∞
dx e−λ(x) t x2 p(x).

C(t) is therefore given by a continuous superposition of decaying exponen-
tials in time. As a consequence, C(t) can exhibit diverse kinds of asymptotic
behaviour as t→∞. These include power-law decay, stretched-exponential
decay and exponential decay with a spectrum of relaxation times.

29. ρ(u, t) = (4Dt)−1e−u/(4Dt).

30. 〈
(
x(t)− x(0)

)2〉 =
kBT

mγ2

(
γt− 1 + e−γt

)
.

31. D =
πa2

2τ
.

32. Sξ(ω) =
α〈ξ2〉

2π

{ 1

α2 + (ω + β)2
+

1

α2 + (ω − β)2

}
.

33. 〈v(0) · v(t)〉 =
3kBT

m
e−γ|t|, 〈v(0)× v(t)〉 = 0.

34.
∂p

∂t
=

∂

∂vj

[(
γvj −

q

m
εjklvkBl

)
p
]

+
γkBT

m
δjk

∂2p

∂vj∂vk
.

In vector form, with ∇v standing for the gradient operator with respect to
the components of v,

∂p/∂t = γ∇v · (vp)− (q/m)∇v · [(v ×B) p] + (γkBT/m)∇2
v p.
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Using the fact that ∇v · (v ×B) ≡ 0, this equation simplifies to yield

∂p/∂t = γ∇v · (vp)− (q/m)(v ×B) · (∇v p) + (γkBT/m)∇2
v p.

35. We find, for t ≥ 0,

〈vi(0) vj(t)〉 =
kBT

m
e−γt

[
ni nj + (δij − ni nj) cos ωct− εijk nk sin ωct

]
.

For all t, we then have

〈vi(0) vj(t)〉 =
kBT

m
e−γ|t|

[
ni nj + (δij − ni nj) cos ωct− εijk nk sin ωct

]
.

36. Hence

〈v(0) · v(t)〉 =
kBT

m
e−γ|t| (1 + 2 cos ωct),

〈v(0)× v(t)〉 = −2kBTn

m
e−γ|t| sin ωct.

37. Dij =
kBT

mγ

{
ni nj + (δij − ni nj)

γ2

γ2 + ω2
c

}
.

38. When n = (0, 0, 1), the off-diagonal elements of Dij vanish, while the diag-
onal elements are given by

D33 = Dlong =
kBT

mγ
, D11 = D22 = Dtrans =

kBT

mγ

( γ2

γ2 + ω2
c

)
.

The diffusion coefficient in the direction of the field is therefore unaffected
by the field, while that in the plane transverse to the field is attenuated by
the factor γ2/(γ2 + ω2

c ). This is a consequence of the tendency of the mag-
netic field to turn the transverse component of the velocity around, leading
to orbital or cyclotron motion in the absence of thermal fluctuations.

Since 〈x2(t)〉 ∼ 2D11 t, 〈y2(t)〉 ∼ 2D22 t, 〈z2(t)〉 ∼ 2D33 t, we get

〈r2(t)〉 ∼ 6Deff t, where Deff =
kBT

mγ

(γ2 + 1
3
ω2

c

γ2 + ω2
c

)
.
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39. The dynamic mobility tensor in the presence of a magnetic field is given by

µij(ω) =
1

m

{ ni nj
(γ − iω)

+
(δij − ni nj)(γ − iω)

(γ − iω)2 + ω2
c

− εijk nk ωc

(γ − iω)2 + ω2
c

}
.

The first two terms in the curly brackets represent the symmetric part of
the tensor, while the third term represents the antisymmetric part.

40.
∂ρ

∂t
= −Dn(n− 1)

∂

∂ξ
[ξ(n−2)/n ρ] +Dn2 ∂2

∂ξ2
[ξ2(n−1)/n ρ].

41. dξ(t) = Dn(n− 1) ξ(n−2)/n dt+ n
√

2D ξ(n−1)/n dW (t).

42. Set t = 0 in the differential equations satisfied by pR(x, t) and pL(x, t) and
use the initial conditions pR(x, 0) = δ(x), pL(x, 0) = 0. This gives[

∂pR(x, t)/∂t
]
t=0

= −c δ ′(x)− ν δ(x),
[
∂pL(x, t)/∂t

]
t=0

= ν δ(x),

where δ ′(x) = (d/dx) δ(x). Hence the initial conditions on the positional
PDF p(x, t) are

p(x, 0) = δ(x),
[
∂p(x, t)/∂t

]
t=0

= −c δ ′(x).

43. The first moment 〈X(t)〉 satisfies the differential equation( d2

dt2
+ 2ν

d

dt

)
〈X(t)〉 = 0.

The second moment 〈X2(t)〉 satisfies the differential equation( d2

dt2
+ 2ν

d

dt

)
〈X2(t)〉 = 2c2.

44. The initial conditions on the first and second moments of X(t) are

〈X(0)〉 = 0,
[
d〈X(t)〉/dt

]
t=0

= c

and
〈X2(0)〉 = 0,

[
d〈X2(t)〉/dt

]
t=0

= 0.

Hence the solutions for 〈X(t)〉 and 〈X2(t)〉 are

〈X(t)〉 =
c

2ν

(
1− e−2νt

)
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and

〈X2(t)〉 =
c2

2ν2

(
2νt− 1 + e−2νt

)
.

The variance of X(t) is therefore

VarX(t) = 〈X2(t)〉 − 〈X(t)〉2 =
c2

4ν2

(
4νt− 3 + 4e−2νt − e−4νt

)
.

Note that the long-time behaviour of the variance is given by VarX(t) ∼
(c2/ν)t, which is linear in t. The process is therefore diffusive. With the
identification D = lim c2/(2ν) in the limit c → ∞, ν → ∞, this is in
complete agreement with the familiar result VarX(t) ∼ 2Dt for ordinary
diffusion in one spatial immersion.

45. Ij(u) ∼ eu/(2πu)1/2 as u→∞ for all finite j ⇒ 〈N(0; 0, T )〉 ∼ (2νT/π)1/2.

46. lim
T→∞

[∆N(0; 0, T )/〈N(0; 0, T )〉] = (1
2
π − 1)1/2.

47. The recursion relations satisfied by the mean first passage times {Tk} are

Tk = 1
2

(
Tk−1 + Tk+1

)
+ 1 (1 ≤ k ≤ j − 2)

T0 = T1 + 1

Tj−1 = 1
2
Tj−2 + 1.

The solution is Tk = j2 − k2, 0 ≤ k ≤ j.

48. The generating function of P (0, n | 0) is

π00(z) =
1−
√

1− z2

√
1− z2

.

The generating function of F (0, n | 0) is

φ00(z) =
π00(z)

1 + π00(z)
= 1−

√
1− z2.

Since φ00(1) = 1, a return to the origin is a sure event (i.e., it occurs with
probability 1). This is true for a return to any other site as well, by the
translational invariance of the infinite lattice. Hence an unbiased random
walk on a linear lattice is recurrent.
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The mean recurrence time, however, is infinite because

〈t(0 | 0)〉 = −
[dφ00(z)

dz

]
z=1

=∞.

Hence the random walk is null-recurrent.

49. The generating function of P (1, n | 0) is

π10(z) =
1−
√

1− z2

z
√

1− z2
.

The generating function of F (1, n | 0) is

φ10(z) =
π10(z)

1 + π11(z)
=

1−
√

1− z2

z

using the fact that π11(z) = π00(z).

Once again, the mean first-passage time from 0 to 1 is infinite, because

〈t(1 | 0)〉 = −
[dφ10(z)

dz

]
z=1

=∞.

50. The recurrence-time distribution is given by

F (0, 2n | 0) =
Γ
(
n− 1

2

)
2
√
π n!

, F (0, 2n− 1 | 0) = 0, where n ≥ 1.

The first-passage-time distribution is given by

F (1, 2n− 1 | 0) =
Γ
(
n− 1

2

)
2
√
π n!

, F (1, 2n | 0) = 0, where n ≥ 1.

Simplifying the gamma function, we may also write

F (0, 2n | 0) = F (1, 2n− 1 | 0) =
(2n− 2)!

22n−1 (n− 1)!n!
, n ≥ 1.

Observe that F (0, 2n | 0) happens to be equal to F (1, 2n − 1 | 0), although
the respective random walk paths contributing to the two distributions are
quite distinct from each other.
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51. Multiply both sides of the equation ∆kl F (n, l) = F (n + 1, k)− F (n, k) by
n, and sum over n. Then

∆klT
(1)
l =

∞∑
n=0

nF (n+ 1, k)− T (1)
k

=
∞∑
n=0

(n+ 1− 1)F (n+ 1, k)− T (1)
k = T

(1)
k − 1− T (1)

k = −1.

52. Similarly, multiplying both sides of the equation by nq and summing over
n gives

∆klT
(q)
l =

∞∑
n=0

nqF (n+ 1, k)− T (q)
k .

But nq = (n+ 1− 1)q =
∑q

r=0

(
q
r

)
(−1)r(n+ 1)q−r. Hence

∆klT
(q)
l =

q∑
r=1

(
q

r

)
(−1)r T

(q−r)
k , q ≥ 1.

Hence ∆klT
(q)
l is equal to a linear combination of the lower moments T

(r)
k

where r = 0, 1, 2, . . . , (q − 1). In particular, the second moment of the
time-to-trapping satisfies the equation

∆klT
(2)
l = −2T

(1)
k + 1.

53. In this case νk = 1
2

(each site has two nearest-neighbor sites), and the
backward Kolmogorov equation for the mean first-passage time is

∆kl T
(l)
l = 1

2

(
T

(1)
k−1 + T

(1)
k+1

)
− T (1)

k = −1.

Hence the second difference of T
(1)
k is a constant (i.e., it is independent

of k), which implies that T
(1)
k can only be a quadratic function of k, at

best. Moreover, T
(1)
k = T

(1)
−k , by an obvious symmetry (the traps are at

±j). Therefore T
(1)
k must be of the form ak2 + b. Since T

(1)
j ≡ 0, we have

b = −aj2, so that T
(1)
k = a(k2 − j2). Setting j = 1, the only non-trap site

is k = 0, and it is obvious that T
(1)
0 = 1 in this case. This gives a = −1. It

follows that the general solution is

T
(1)
k = j2 − k2.

Note, in particular, that T
(1)
0 = j2. In other words, the mean time to reach

a site at a distance j from the origin for the first time is just j2, as expected.
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54. The equation ∆klT
(2)
l = −2T

(1)
k + 1 becomes, in the present instance,

1
2

(
T

(2)
k−1 + T

(2)
k+1

)
− T (2)

k = 2(k2 − j2) + 1.

As the second difference of T
(2)
k is quadratic in k, T

(2)
k itself must be a

quartic in k. Since it must be a symmetric function of k, we have the
general form T

(2)
k = ak4 + bk2 + c. The boundary condition T

(2)
k = 0 leads

to T
(2)
k = a(k4−j4)+b(k2−j2). Substituting this in the difference equation

satisfied by T
(2)
k , we get a = 1

3
and b = 2

3
− 2j2. The solution for T

(2)
k is

then
T

(2)
k = 5

3
j4 − 2j2k2 + 1

3
k4 + 2

3
(k2 − j2).

55. The variance of the time-to-trapping is therefore

Var (tk) = T
(2)
k − [T

(1)
k ]2 = 2

3
(j2 − k2)(j2 + k2 − 1).

The relative fluctuation in tk is then

∆tk
〈tk〉

=
[2

3

(j2 + k2 − 1

j2 − k2

)]1/2

, −(j − 1) ≤ k ≤ (j − 1).

Note that, for a random walk starting at the origin (k = 0), the relative
fluctuation in the first-passage time is

√
(2/3), independent of j. Likewise,

if j →∞ while k remains finite, the relative fluctuation tends to
√

(2/3).

56. W̃ (n, s) =
[1− ψ̃(s)]

s
[ψ̃(s)]n.

57. L̃(z, s) =
[1− ψ̃(s)]

s [1− g(z) ψ̃(s)]
, where g(z) = 1

2
(z + z−1).

58. L[〈j(t)〉] =
[
∂L̃(z, s)/∂z

]
z=1

= 0, since
[
dg(z)/dz

]
z=1

= 0. Hence the mean
displacement 〈j(t)〉 = 0 for all t, as it must for an unbiased random walk.

Now,
[
∂2L̃(z, s)/∂z2

]
z=1

= L[〈j(j − 1)(t)〉] = L[〈j2(t)〉], since 〈j(t)〉 = 0.
We then find

L[〈j2(t)〉] =
ψ̃(s)

s [1− ψ̃(s)]
.

This is an exact result.
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59. The t → ∞ behavior of 〈j2(t)〉 is determined by the s → 0 behavior of
L[〈j2(t)〉]. Using the fact that

ψ̃(s) = 1− sτ +O(s2)

in the neighbourhood of s = 0, we get at once

L[〈j2(t)〉] ∼ 1

s2 τ
, so that 〈j2(t)〉 ∼ t

τ
.

In other words, a CTRW whose waiting-time density ψ(t) has a finite first
moment τ leads to normal diffusive behavior at long times.

60. If, near s = 0, we have ψ̃(s) = 1 − csγ + higher powers of s (where
0 < γ < 1), it follows that the leading term in L[〈j2(t)〉] is 1/(c sγ+1). Hence
the inverse Laplace transform has a leading long-time behavior given by

〈j2(t)〉 ∼ tγ,

i.e., it is sub-diffusive. This is an instance of anomalous diffusion. Note
that the small-s behavior of ψ̃(s) given above arises when ψ(t) has a power-
law tail, i.e., it decays to zero like 1/t1+γ as t→∞.

61. The sojourn probability in L is

w̃n =P
(
L, n− 1;L, n− 2; · · · ;L, 1;L, 0

)
=

∫
L

dx0 · · ·
∫
L

dxn−2

∫
L

dxn−1 ρ(x0) δ
(
x1 − f(x0)

)
· · · δ

(
xn−1 − f(xn−2)

)
.

Since f(x) = 2x when x ∈ L, and ρ(x0) = 1, this reduces to

w̃n =

∫ 1
2

0

dx0 · · ·
∫ 1

2

0

dxn−2

∫ 1
2

0

dxn−1 δ(x1 − 2x0) · · · δ(xn−1 − 2xn−2).

62. When each integral in the foregoing (starting with the integration over xn−1

is evaluated using a δ-function, the upper limit of integration in the next
integral is shrunk by a factor of 1

2
. The final result is

w̃n =

∫ 1/2n

0

dx0 =
1

2n
.
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Hence the normalized probability distribution of sojourn in L is

H̃n =
w̃n+1

w̃1

=
w̃n+1

µL
=

1

2n+1
× 2

1
=

1

2n
.

Since
∑∞

1 H̃n =
∑∞

1 2−n = 1, H̃n is properly normalized, as required.

63. The distribution of the time of escape out of L is given by

Ẽn
def.
= P (R, n;L, n− 1; · · · ;L, 1|L, 0) = H̃n−1 − H̃n =

1

2n−1
− 1

2n
=

1

2n
.

Again, the normalization condition
∑∞

1 Ẽn = 1 is satisfied. Hence the
mean time of escape out of L is

∑∞
n=1 n/2

n = 2.

64. In terms of the quantities {w̃n}, the distribution of the time of recurrence
to R works out to

Rn
def.
= P (R, n;L, n− 1; · · · ;L, 1|R, 0) =

(w̃n−1 − 2w̃n + w̃n+1)

(w̃0 − w̃1)
,

where w̃0 ≡ 1 and w̃1 = µL. Therefore the denominator in the expres-
sion above is w̃0 − w̃1 = µR. Since w̃n = 1/2n, we get Rn = 1/2n in
this instance. Once again, it is obvious that the normalization condition∑∞

1 Rn = 1 is satisfied. Further, the mean time of recurrence to R is given
by
∑∞

n=1 n/2
n = 2 = 1/µR, in accordance with Poincaré’s recurrence theo-

rem.

65. The map f(x) = 2x mod 1 comprises two branches, namely, fL(x) = 2x
when x ∈ L and fR = 2x− 1 when x ∈ R.

The one-step conditional probabilities are as follows:

P (L, 1|L, 0) =
P (L, 1;L, 0)

P (L)
=

1

µL

∫ 1
2

0

dx0

∫ 1
2

0

dx1 ρ(x0) δ
(
x1 − fL(x0)

)
= 2

∫ 1
4

0

dx0 = 1
2
,

P (L, 1|R, 0) =
P (L, 1;R, 0)

P (R)
=

1

µR

∫ 1

1
2

dx0

∫ 1
2

0

dx1 ρ(x0) δ
(
x1 − fR(x0)

)
= 2

∫ 3
4

1
2

dx0 = 1
2
,
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P (R, 1|L, 0) =
P (R, 1;L, 0)

P (L)
=

1

µL

∫ 1
2

0

dx0

∫ 1

1
2

dx1 ρ(x0) δ
(
x1 − fL(x0)

)
= 2

∫ 1
2

1
4

dx0 = 1
2
,

P (R, 1|R, 0) =
P (R, 1;R, 0)

P (R)
=

1

µR

∫ 1

1
2

dx0

∫ 1

1
2

dx1 ρ(x0) δ
(
x1 − fR(x0)

)
= 2

∫ 1

3
4

dx0 = 1
2
.

66. Consider the stationary Markov chain generated by the transition matrix

W =

(
P (L, 1|L, 0) P (L, 1|R, 0)

P (R, 1|L, 0) P (R, 1|R, 0)

)
=

(1
2

1
2

1
2

1
2

)
.

Observe that W is idempotent, i.e., W n = W for any positive integer n.
Hence, for each n ≥ 1 the conditional probabilities are given by(

P (L, n|L, 0) P (L, n|R, 0)

P (R, n|L, 0) P (R, n|R, 0)

)
= W n =

(1
2

1
2

1
2

1
2

)
.

Now consider the distribution of the time of recurrence to R. It is defined
as

Rn
def.
= P (R, n;L, n− 1; · · · ;L, 1|R, 0) =

P (R, n;L, n− 1; · · · ;L, 1;R, 0)

P (R)
.

But the joint probability P (R, n;L, n−1; · · · ;L, 1;R, 0) is identically equal
to

P (R, n|L, n− 1; · · · ;L, 1;R, 0)P (L, n− 1; · · · ;L, 1;R, 0).

Owing to the Markov property this product simplifies to

P (R, n|L, n− 1)P (L, n− 1; · · · ;L, 1;R, 0) = 1
2
P (L, n− 1; · · · ;L, 1;R, 0).

Reducing the joint probability P (L, n− 1; · · · ;L, 1;R, 0) in a similar man-
ner, and repeating the process, we finally arrive at

P (R, n;L, n− 1; · · · ;L, 1;R, 0) =
1

2n−1
P (L, 1;R, 0)

=
1

2n−1
P (L, 1|R, 0)P (R) =

1

2n
P (R).

Therefore Rn = 1/2n. But this is precisely the result already obtained by
a direct evaluation of the multiple integral resulting from the definition of
Rn. This corroborates the claim that the partitioning of the unit interval
into the cells L and R makes the coarse-grained dynamics of the Bernoulli
map equivalent to a Markov chain governed by the transition matrix W .
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