Department of Physics Indian Institute of technology Madras Select/Special Topics in Classical Mechanics Self-Assessment-2 (Questions)

<u>NOTE</u>: Symbols/notations used in this question paper have their usual meanings, as used in our course.

- 1. State whether the following statements are 'TRUE' or 'FALSE' <u>and give reason</u>. The reason should be short, but as rigorous as you can provide.
 - a. For a particle of mass m moves in a region of space where the potential is described

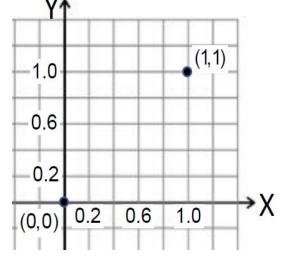
by $U(x, y) = -U_0 \exp\left[-\frac{(x^2 + y^2)}{2L^2}\right]$, the point (x=0, y=0) is a 'saddle point' (given: U_0 & L are positive constants).

b. If a vector field \vec{A} is both irrotational $(\vec{\nabla} \times \vec{A} = \vec{0})$ and solenoidal $(\vec{\nabla} \cdot \vec{A} = 0)$, then it must be identically equal to the *null vector*.

2. A position-dependent force field is given by the expression $\vec{F} = A(x-y)\hat{e}_x + (x+y)\hat{e}_y$. It is given that $|\Delta| = \pm 1$

|A| = +1.

- (a) What is/are the dimension(s) of A?
- (**b**) The given force acts on a particle, moving it along a closed path described by the two curves:


 $y = x^2$, traversed from (0,0) to (1,1),

and

 $y^2 = x$ traversed from (1, 1) to (0, 0).

Sketch the closed path on the graph sheet in the margin. Write your name

here:

and **<u>submit this graph</u>** along with the rest of the answer book when you finish the exam.

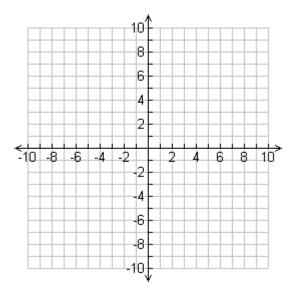
(c) Determine the work $\oint \vec{F} \cdot \vec{dI}$ done by the above force over the closed path described above.

(d) <u>Without</u> determining the curl of this force (i.e. without finding $\vec{\nabla} \times \vec{F}$), can you tell if the force is irrotational or not? Explain how!

3. A scalar field $\psi(x, y)$ is given by the expression $\psi(x, y) = \psi_0 \exp(x^2 + y^2 - 4x - 8y)$,

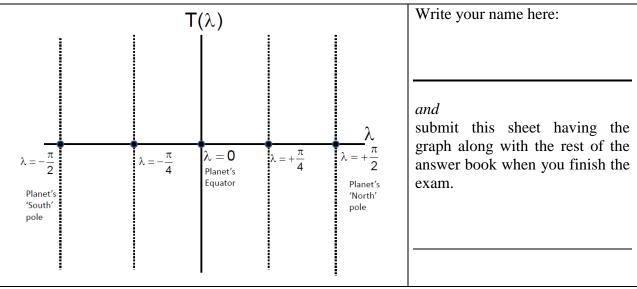
where ψ_0 is a constant having suitable

dimensions.


(a) Obtain the equipotential curve for

$$\psi = \psi_0$$

(b) Sketch the vector field $\vec{\nabla}\psi$ at $\psi = \psi_0$. Write your name


here:_____

and **<u>submit this graph</u>** along with the rest of the answer book when you finish the exam.

- 4 (a) Determine the divergence of the vector point function described by: $\vec{A}(\hat{r}) = (r \cos \theta) \hat{e}_r + (r \sin \theta) \hat{e}_{\theta} + (r \sin \theta \cos \phi) \hat{e}_{\phi}$
 - (b) Find the flux of the above vector field over a *closed* surface that encloses a hemisphere of radius R resting on the xy-plane, with its center at origin and located in the region $z \ge 0$.
- 5 A planet in a remote galaxy rotates rapidly about its own axis. It completes one full rotation in one second. Sketch $T(\lambda)$ vs λ for this planet, where $T(\lambda)$ is the time period for the rotation of a

Foucault pendulum set in motion on this planet, λ is the latitude; $-\frac{\pi}{2} \le \lambda \le \frac{\pi}{2}$.

