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Department of Physics     PCD_STiAP_Self_Assesment_2 
IIT-Madras               70 marks 

 

Q1.  [a]  The radial part of the Schrodinger differential equation for the Hydrogen atom  

                is written below with an unknown ‘C’: 

                2

2 2

1 ( ) 2
( ) ( ) ( ) 0

d dR r m
r C r E V r R r

r dr dr

 
    

 
. 

 

               Find C and express your answer here: ( )C r 
2

( 1)
( )

l l
R r

r


 , Centrifugal term 

                                                                                                                                                              2 marks 
 

Q1.  [b]  The radial part of the Schrodinger differential equation for the Hydrogen atom, 

               inclusive of the ‘centrifugal’ term ( )C r has eigenvalues E which can be written as 

               one the two expressions given below.  

               Place a tick mark  in the box corresponding to the correct expression below:    

                                                                      

,

   independent of    

   depending on    

n

n

E E

E E

 

 
 

                                                                                                                                                              2 marks 
 

Q1.  [c] (i) The Casimir operator for the SO(3) symmetry group of the Hydrogen atom 

                     is______J
2
______________ and its eigenvalues is ( 1)j j   

              (ii) One of the two Casimir operators for the SO(4) symmetry group of the Hydrogen 

                     atom is: 2 2

1c I K   and its eigenvalues are: 2 ( 1)i i  ; 2 ( 1)k k   

              (iii) The other Casimir operator for the SO(4) symmetry group of the Hydrogen 

                      atom is: 2 2

2c I K   and its eigenvalues are: 2 ( 1)i i  ; 2 ( 1)k k   

                                                                                                                                                              6 marks 

 

Q2.  [a] When the angular momentum is half-integer, place a tick mark  in the box  

              corresponding to the correct expression below, ( )RU   being the rotation operator 

               corresponding to rotation through the angle  :    

                                                                      

     

     

         

         

R R

R R

U ( 2 ) U ( )

or

U ( 2 ) U ( )

 

                                                                                                                                                              
           Write your ‘proof’ in the space below: 
 

For half integer angular part 
1

2
J   
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      U( 2 ) U( )          5 marks 

 

 

 

Q2.  [b]  (i) The ‘orbital angular momentum selection rule’ for electric dipole transition is: 

 

                                                                                                            0, 1l    

              (ii) The ‘spin angular momentum selection rule’ for electric dipole transition is: 

 

                                                                                                            0s   

              (iii) The ‘total angular momentum selection rule’ for electric dipole transition is: 

 

                                                                                                            0, 1j    

              (iv) The Wigner-Eckart theorem is: 

 
5 marks 

 
 

Q3(a).  Obtain the matrix representation for the operator x yJ J iJ    in the common 

eigenbasis of 2 , zJ J  for the case of spin-half angular momentum and write the required matrix 

representation in the space below: j=1/2; m=1/2,-1/2 ; 2 dimensional basis 
 

 
 

1 1 1 1
, , ,

2 2 2 2
 

 



 

 
 

 
 
   
  

1 1 1 1 1 1 1 1
, J , , J ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
, J , , J ,

2 2 2 2 2 2 2 2

 ----------- (1) 

 
2

ˆ      2ˆ ˆ2 ,  e eR z

z
z

i e i
U e


   

 
   

    cos sinz zi  

 

1 0 1 0
 cos sin

0 1 0 1

cos 0

0 cos

1 1
1

1 1

i 





      
       

       

 
  

 

   
     

   


( )

( )
'

' ' ' '
2 ' 1

k

qk

q

j T j
j m T jm j m mq

j




 
ˆ    

2ˆ  e
i

RU

 





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



 
 

  
  

0 0

1 1 1 1
, J , 0

2 2 2 2

 ----------- (2) 

 , 1 1 ( 1)j m J jm j j m m       

From eq (2)  
 

1 1 1 1 1 1 1 1 3 1
, , 1 1

2 2 2 2 2 2 2 2 4 4
J

   
            

   
 

 



 
  

 

0 0

1 0
 

 
4 marks 

 

Q3(b).  It is given that ( ) *

m mm' m'

m'

Y ( ) D (R)Y ( ' ')


      we have expanded the spherical 

         harmonic function using the Wigner D functions. Find mY ( )  corresponding to a 

         point on the Z’ axis. Give your answer in the space below: 

 

 ( ) *

m mm' m'

m'

Y ( ) D (R)Y ( ' ')


     

 

For a point on 'Z axis ; ; ' 0        

 

 ( ) *

' '

'

( ) ( ) 0 'm mm lm

m

Y D R Y 


     ----------- (1) 

For every value of l and 'm ;   ' '0

2 1
0 '

4
lm m

l
Y  




    ---------------- (2) 

( )*

0

2 1
( ) ( )

4
m m

l
Y D R




  -------------- (3) 

We know that,  ( )

m m'm m'

m'

Y ( ' ') D (R)Y ( )


     

        ( )

0 m'0 m'

m'

for m 0:  Y ( ' ') D (R)Y ( )


         from eq (3) 
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*

0 lm' m'

m'

4
Y ( ' ') Y ( , )Y ( )

2l 1


     


  

Using m instead of m’ and substituting Legendre polynomial  

      m
m

*
m

2 1 4
P cos ' Y , Y

4 2 1

 
    

   

      m
m

*
m

4

2 1
P cos ' Y , Y






      

 
           4 marks 

Q3(c).  Is the transition ( j=0 )  ( j=0 ) allowed as per the dipole selection rules? Explain 

your answer in the space below: 

 

The transition (j=0)      (j=0) cannot take place under any selection rules. Since this transitions 

do not possess a net orbital angular momentum. 

From triangular law of inequality, we have ' 1 'j j j j     For ( j=0 )  ( j’=0 ) 

      ' 0j j  ; This is not greater or equal to unity. 

Therefore, the selection rule is violated. 

 
2 marks 

Q4.   A point mass particle whose rest-mass is m and energy E moves at a constant velocity v 

(with respect to an inertial frame S) in a ‘zero-potential’ region. Given:  2 21 1   v c .  

Place a tick mark  in the ‘appropriate True/False boxes’ below:  

2 According to classical non-relativistic mechanics,    False (a) E mc True  

       Give a brief reason justifying your answer in the little space below & if false, rectify the statement: 

 
1/2

2
2 2

2
1

v
E mc mc

c




 
   

 
 

       
2 2

2

2 2

1 1
1 .........

2 4

v v
mc

c c

 
    
 

 

In Classical non-relativistic mechanic, v c  

 
2

2

2

1
1

2

v
E mc

c

 
   

 
  2 21

2
E mc mv    

    

dr
 According to classical relativistic mechanics, the 4-velocity is given by      False

dt
(b) True

 
       Give a brief reason justifying your answer in the little space below & if false, rectify the statement: 

 

The four velocity is given by ( 0,1,2,3)   , where 
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1 2 3
0 1 2 3; ; ;

dx dx dx
c

dt dt dt
             

,
dr

c
dt

    

 

 According to relativistic mechanics, the 'momentum' is given by    False (c) p v True  

       Give a brief reason justifying your answer in the little space below & if false, rectify the statement: 

 

Proper momentum; ( 0,1,2,3)p    

 
1 2 3

0 1 2 3; ; ;
dx dx dx

p m c p m p m p m
dt dt dt

        

,p m c m v    

 

2

2

 According to quantum relativistic mechanics, the leading term in the relativistic 

v
      correction to the kinetic energy goes as    False

(d)

. True
c

 

       Give a brief reason justifying your answer in the little space below & if false, rectify the statement: 
2.K E E mc   

1/2
2

2 2

2
1

v
mc mc

c



 
   

 
 

2 2
2 2

2 2

1 1
1 .........

2 4

v v
mc mc

c c

 
     

 
 

2 2
2

2 2

1 1
.........

2 4

v v
mc

c c

 
   

 
 

                       

 The spin-orbit interaction for an electron in 10 excited state is just as strong as 

       that for the electron in the ground state 1 for the H atom    False





(e) n

n . True
 

       Give a brief reason justifying your answer in the little space below & if false, rectify the statement: 

 

 
 

2

3
1 1

4
    

1
2 1

2



 
    

   
 

  
 

spin orbit n

j( j ) ( )

H E Z

n

 

2

1
spin orbitH

n
  

10 marks 
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Q5. The first Foldy-Woutheysen transformation of the Dirac Hamiltonian 

 
 

  

2

2

       

                                    where  and 

H mc c p eA e

mc c p eA e
 

for an electron in an EM field is effected through the operator 
1 22

 


i
S

mc
.  

Find the coefficients X,B and C in the following expression: 

   2     
 
      i S,H X B C ,  

NOTE: You may use additional space at the end of this book, or a supplement (which also must 

be submitted), but the final answer MUST be given below in the space provided: 

 

  2

22


  
      
 

i
i S,H i , mc

mc
 

2

2 2 22 2 2  

       
          
     

, mc , ,
mc mc mc

 

 

     2 2

2 2

1 1 1

2 2 2
           

mc mc
   

  

  
 

 

     2 2

2 2

1 1 1

2 2 2
        

mc mc
 

 

   
2

2 2

1

2 


      i S,H ,

mc mc
 

 

2 2

1
1

2


   X ;B ;C

mc mc
 

 
10 marks 

 

Q6(a).  Consider 2-electron wavefunction  1 21 2 1 2( , ) ( , ) ( , )q q r r      made up as an 

antisymmetrized product of 1-electron spin-orbitals  , , ( ) ( )
i i l si i

jn l m m jr   . Now, if the two-

electron state has for its spin-part the function given by 2 1 1 2( , ) ( , )       ,  write its 

spatial-part 1 2( , )r r  in the blank space below: 

 

1 2( , )r r   1 2( , )r r  

2 marks 

Q6(b). Find the basis of spatial functions in which the coulomb interaction 121 r has a 

diagonal representation and write your answer in the blank space below: 

 

The required two-dimensional basis is:  
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 1 2 2 11 2 1 2( ) ( ), ( ) ( )r r r r    In this basis the coulomb interaction is not diagonal; so operate 

2 2

1 11

1 12
T 

 
  

 
on the basis to diagonalize.  

 =
1 2

2 1

1 2

2 2

1 2

( ) ( )

( ) ( )

r r
T

r r

 

 


 
 
  

 

=
1 2 2 1

1 2 2 1

1 2 1 2

1 2 1 2

( ) ( )  ( ) ( )1

2 ( ) ( ) + ( ) ( )

r r r r

r r r r

   

   

 
 
  

= 
Triplet

Single





 
 
 

 

 
2 marks 

Q6(c). Write in the space below the mathematical equality that expresses the Koopmans 

theorem and explain each term that goes into the equation. 

    1( )

( 0)
   

k

NN

k kk
n

E E   



     

1
st
 term: Energy equation for N electron system 

2
nd

 term: Energy term for N-1 electron system, i.e after removal of one electron from kth 

orbital under frozen orbital approximation 

The difference gives the energy of the kth orbital of the system.  being the Lagrange 

variational multiplier;  nk occupation no: of kth electron. 
 

3 marks 

Q6(d). Explain, in the space below, what is meant by the ‘frozen orbital approximation’. 

 

Variations in the single particle orbitals are made one at a time, which is to say that the other 

N-1 orbitals are considered ‘frozen’ during the consideration of variation in each orbital.  

 
3 marks 

 

Q7 Fill in the blanks below: 

(i) Given that the total electron scattering wavefunction is: 

   

 

1
(2 1) (cos ) ( cos )

2

l l

Tot

i kr i kr

l l l

l

c l P e P e
ikr

r

 



 
     

 






. 

 

                 As per the ‘outgoing’ wave boundary conditions, 
( )li k

lc e


 .  

 

(ii) As per the ‘ingoing’ wave boundary conditions, 
( )li k

lc e


 . 

 
(iii) The physical dimensions of the quantity 

2
2

ik r0qA ( )
ˆf | e | i 2 ( )

mc

 
    

 

  

 
are:  T-1 (transition probability per unit time) 
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(iv) In the presence of an electric field, the lifetime of the 2s state of the hydrogen atom 

would  (place a tick mark in the appropriate box below): 

 ,            ,                 decrease or remain same or increase , as compared 

to the atom being just by itself in vacuum. 
Reason (state in the space below): 
 
In the presence of the applied electric field, the metastable 2s state develops some 
character of the unstable 2p state. This results in a slight shortening of the lifetime 
of the 2s state via a radiative (2s, 2p) mixed state to 1s transition. 

3+2=5 marks for Q7. 
 

Q8. Express the coupled angular momentum with 
1 1

,
2 2

j m    as a linear combination 

of direct product vectors resulting from the coupling of two angular momenta 1 2

1
1,

2
j j  . 

Use the CGC tables given below and write your answer in the space provided below that: 

 
 

 

Write your answer in this box: 

 
 

Given 1/ 2; 1/ 2j m    

For 1/ 2m   the values 1m and 2m can take are -1,1/2 and 0,-1/2 

The direct product equation is given by  

 

1 2

1 1 1 1
1 0

2 2 2 2
C C     From the table C1 and C2 can be found. 
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C1: Given j1 = 1 and j=1/2 ; m2 = ½ and m = -1/2  

 

1

1

1

1 11 1
22 22

2 1 2 1 1 3

j m

C
j

 
     
      

 
 

 

C2: Given j1 = 1 and j=1/2 ; m2 = -1/2 and m = -1/2 

 

 

1

2

1

1 11 1
12 22

2 1 2 1 1 3

j m

C
j

 
     
    

 
 

 

1 1 2 1 1 1
1 0

2 2 3 2 3 2
       

 

 

 

 

1 1 1
1,

2 2 2

 
  

  
  , = 

2 1 1 1
1 0

3 2 3 2
     

5 marks. 

 


