Lecture 1: Complexity in physical
systems: various forms

The complexity manifest itself in diversified forms in nature which leads to
its many definitions, based on the type of a system and its interaction with
its environment [1, 2, 3, 4, 5, 6, 7, 8. In general, it can be defined as a mea-
sure of the relationships among various parts of the system, their variations
due to randomness, or emergence of coherent patterns out of randomness due
to various constraints and also to the ability of frequent switching among such
patterns. In particular, ”complexity” has a definition specific to the scientific
area. For example, In physical systems, complexity is defined based on na-
ture and strength of the interactions, scattering of particles due to interactions
and stochasticity, and, effect of system parameters e.g dimensionality, system
size, temperature etc. In computational complexity theory, it is a measure of
the resources (time involved, memory-space as well hardware) required for the
execution of an algorithm and is therefore a relative property. In information
processing, it measures the amount of information transmitted by an object and
detected by an observer. In mathematical sciences, complexity is a measure as-
sociated with finite semi-groups, automata, graph and network theory etc. The
complexity in economy describes the variants and their impacts in various fields
such as product portfolio, technologies, markets and market segments, locations,
manufacturing network, customer portfolio, IT systems, organization, processes
etc. In this course, we restrict ourselves to the study of complexity in physical
systems.

The complexity can also be described as an emerging phenomenon as a
system goes from microscopic dimensions to macroscopic dimensions, adding
more and more sub-units and the interactions among them. The emergence
phenomenon leads to division of complexity into two broad types [1, 2, 3]:

Organized Complexity

The non-random, or correlated, local interactions within a sub-unit lead to
creation of local structures which can then interact with other local structures.
The collective expression of the rules governing the individual parts can be very
different from their individual expression. As a consequence, the combination



of all these structures can behave in a way very different from the individual
parts, it can also manifest properties not dictated by them. The complexity
in the combination therefore emerges as a consequence of the organization of
varios sub-units and is referred as organized complexity. The world around us
is full of the examples of organized complexity e.g emergence of regularity or
order through structural pattern formation in biological systems in which many
subunits conspire with each other in an intricate yet cohesive way to create such
an order. Another example is the emergence of order in dynamical systems etc.

Disorganized Complexity

Disorganized Complexity refers to a system consisting of many components,
often with largely random or approximately known interactions. The lack of
detailed information about the interactions among components leads to unpre-
dictability of the system-behavior. As a consequence, the properties of the
system can be best described only by statistical tools. One important charac-
teristic of the disorganized complexity is that the properties often show scale
independence and universal features. In this course, our main focus is the study
of disorganized complexity in physical systems.

Examples

Some examples of natural complex physical systems from widely diverse areas
are strongly interacting quantum many body systems e.g nano-systems, disor-
dered systems e.g industrial Glass, chaotic systems, the human brain and the
financial markets. This can further be explained by a brief discussion of four
cases with different origins of complexity:

(i) Noise due to particle-particle interactions

The exact analysis of the physical properties of a typical clean many body
system e.g. nuclei, atoms, molecules etc is often not possible and one has to
apply various approximation techniques, linear response theories and perturba-
tion schemes. The complexity in these systems originates in the complicated
interactions among various system sub-units. Even if the nature of their inter-
actions is known and the equations of motion can be described exactly, the large
number of subunits and their dynamics often renders their solution technically
impossible.

Consider the Hamiltonian of a system of N > 2 quantum particles subjected
to pairwise inverse-square interactions e.g N electrons subjected to coulomb



interactions.
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Although the Hamiltonian is exactly described by eq.(2), an exact calculation
of its matrix elements in a generic basis is still not possible. The complexity here
arises due to each particle being subjected to multiple interactions due to other
particles which is further complicated if the particles are moving. The local
variation in particle density or nature of the local interactions also adds up to
complexity of the system: If the local interactions are complicated in a specific
part of the system, the evaluation of the corresponding matrix elements of the
Hamiltonian becomes technically difficult. As a consequence, these elements
can be determined only within a certain degree of accuracy and can best be
described by a probability density. However the system may also contain parts
where interactions are simple and the related matrix elements can exactly be
calculated. The Hamiltonian then turns out to be a matrix with both random
and non-random elements

(i) External disorder potential

Recent advances in nanotechnology and quantum information theory have
motivated an extensive research on the topic of wave transport through dis-
ordered regions. The random distribution of impurities in such systems give
rise to fluctuations in transport properties from sample to sample. The fluc-
tuations can also be observed in a single disordered sample under an external
perturbation or a slight variation of a system parameter.

The simplest model of a non-interacting disordered system is a particle of
mass m moving in a random, white-noise potential V(r) (also known as the
standard Anderson model) :

H= p—m + V() 2)

where V(r) is described only in a statistical way, that is, by its disordered
averaged -value and the variance:

<V(I‘)> = 0,
(V). V{)) = ér—r') 3)
where 0(x) refers to the Dirac-delta function. This can describe, for example,

the dynamics of electrons in a disordered nano-device e.g a quantum dot, an
essential component of many modern day technologies. As the model describes



a single-particle dynamics, it is valid under independent electrons approxima-
tion. However an analysis of the physical properties of the electrons within
this simplified model still requires statistical tools. The origin of complexity in
this case can be explained as follows: The motion of an electron in a periodic
lattice with no disorder can be described by plane waves, extended through-
out the system and the energy levels can be modeled by the standard band
theory of solid. However, the waves associated with the electrons moving in a
crystal with random impurities get randomly scattered which results in their
partial or full localization or extended behavior based on the degree of disorder.
In a real-space basis, the wave-function of the electron therefore has varying
strengths of its components. The random real-space scattering must also affect
the Hamiltonian, the latter being the generator of the wave-function dynamics.
As a consequence, the Hamiltonian matrix can be either sparse (for two or more
dimensional lattice), banded (for one-dimension) or full (that is, same order
of magnitude for all elements) with its non-zero elements best described by a
probability distribution.

(i41) Chaotic dynamics

The classical Hamiltonian dynamics of a typical system can reveal two differ-
ent types of motion : the regular motion of integrable systems and the chaotic
motion of nonintegrable systems [9]. The harmonic oscillator and the Kepler
problem show regular motion, while a periodically driven pendulum or an au-
tonomous conservative double pendulum can display chaotic dynamics. To iden-
tify the type of motion of a given system, one may look at a bundle of trajectories
originated from a narrow cloud of points in phase space. For regular motion,
the distance between any two trajectories may increase like a power of time.
For chaotic case on the other hand, the distance between any two such trajec-
tories grows exponentially with time, the growth rate is the so called Lyapunov
exponent.

Chaotic systems are deterministic, dynamical systems, with their future be-
havior fully determined by their initial conditions, and without any random
elements. However small differences in initial conditions lead to widely diverg-
ing trajectories for chaotic systems. This extreme sensitivity to initial conditions
renders long-term prediction of their dynamics impossible. Thus although the
chaotic phenomena obeys a deterministic law but its future is probabilistic and
not predictable. The unpredictability of a given clean system is caused not by
the many degrees of freedom but its non-linearity.

Consider a particle moving inside a clean stadium billiard shape geometry.
Unlike previous examples, this system had no many body interactions or im-
purity scattering. The dynamics of the particle is also governed by a simple
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fining geometry. The multiple scattering of the particle from the boundaries
leads to chaotic dynamics and introduces unpredictability.

(iv) Biological Systems

A typical biological system is a combination of various units, with com-
plicated, often not well-known, interactions among them. Variation of these
interaction over time, an important part of the evolutionary process, leads to
emergence of complexity in the living beings [6, 7, 8]. Here we consider three
examples:

The human brain and those phenomena that result from its activity form
the most complex systems known to exist in the universe. The brain of a living
being is the tool which controls the manner in which neurons are connected
to each other and has a strong influence on the dynamics that emerge from it.
Since begining of life, the brain has evolved from simple networks of neurons
to complex networks, with most of the rules governing this evolutionary pro-
cess still unknown. Systematic investigations of neuronal connectivity and of
large-scale inter-regional pathways in animals reveal that the topology of these
networks is neither entirely random nor entirely regular. The details analysis
show that these networks show small-world properties (similar to many other
complex networks), revealing a tendency of a high degree of clustering, with
short path lengths linking individual components. These structural character-
istics in turn govern the functions of the brain.

A cell, the basic unit of all organs of living beings, is another important
example of biological complexity. The latter originates through the interactions
and inter-dependence of many functionally diverse units or modules e.g. pro-
teins, DNA, RNA and small molecules. An important characteristic of such
modular systems is collectivity: the properties of elements in the same module
are more similar than the elements from different modules (which in fact is the
basis of a separate function of each module). The properties of a cell therefore
can be modeled by complex networks of modules, with each module acting as
a a sub-network that structurally has more links within itself than links with
other sub-nets.

The functionally of a cell-module is governed by the expression of genes in
a DNA which leads to formation of amino acid sequences that are the basic
building blocks of proteins. The message contained in a DNA then manifests
itself through a specific structure of protein which in turn determines its func-
tionality. In fact, the protein after its birth, acts as a feedback and leads to
creation of new copies of the parent DNA. The structure of a protein is de-
termined purely by the amino acid sequences, and its function depends on the
ability of the protein to fold rapidly to its native structure. The folding process
is governed by many parameters, e.g. the sequence of amino acids, intermolec-



ular interactions, the solvent, temperature and chaperon molecules which make
it a complex process, still not fully understood. However the complexity results
in a well-known pre-determined configuration, despite availability of an infinite
number of possibilities of the protein.

(iv) Complex adaptive systems

A complex adaptive system (CAS) is a combination of individual agents,
free to act in ways that are not always totally predictable, with their actions
inter-connected such that one agent’s action can influence that of others [5].
Each agent can also operate according to its own strategy, i.e set of rules for
the response to environment and can also have its own interpretation of events.
The rules and interpretations of one agent need not be explicit, may or may not
be shared by others, and could change over time. to change. As the agents can
change themselves, share their strategies, learn and adapt to each other as well
as to their environment, their combination is referred as a complex adaptive
system. Examples of complex adaptive systems are wide-ranging e.g the stock
market, a business industry, a social organization, a colony of ants, the immune
system etc.

A CAS is an inherently self-organizing system, with order as its inherent
property, and governed by the interactions among agents. Its behavior however
is an emergent, non-linear phenomenon, with its origin in the time-varying na-
ture of the interactions among agents. The non-linearity manifests itself through
drastic changes in system behavior even for seemingly small changes in their in-
teractions. The possibility of changes in the agents themselves further adds up
to complexity of a CAS and it can exhibit novel behaviors. Although novelty
and non-linearity makes the detailed behavior of a CAS fundamentally unpre-
dictable, the useful information about its average behavior can still be derived
through statistical tools.

The stock market is a good example of a CAS with a wide range of agents e.g
buyers, sellers, companies and regulators who can act independently as well as
act in a shared, common way. Each such agent is governed by another complex
system i.e human brain which acts based on its capacity of the interpretation of
the signals (i.e information) received; the actions of agents are therefore sensitive
to the complexity of their brain. The unpredictability of the specific actions of
each stock-agent over time as well as their impact on the other’s actions makes
the stock market a complex, non-linear system. The average behavior of the
stock market however is known to show universal, predictable trends.
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