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Module 3: Recording and play back theories 

Lecture 11: The Writing process 

Objectives: 

We have so far discussed various types of magnetic materials and the electronic structure 

of the magnetic materials.In magnetic recording, the understanding of the writing process 

of information on the magnetic medium and the methods to retrieve the recorded 

information from the medium are one of the core parts of the magnetic recording [1]. 

Hence, in this module, we shall first cover 

(1) Writing process, which includes 

a. Introduction 

b. Definition of a transition length 

c. The Demagnetization field 

d. Nature of the magnetic transitions 

e. Williams-Comstock model for writing  

f. Effect of imaging from the head and transition relaxation 

g. Different types of writing process  

and then discuss  

(2) Play-back theories 

a. Read back voltage, 

b. Wallace solution, 

c. Reciprocity principle, 

d. Readback from single transition, 

e. Pulse width and current optimization, 

f. Magnetoresistive readback 

to retrieve the information from the recorded medium. 
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Introduction:  

The magnetic recording process converts electric current signal into an equivalent 

magnetization in the magnetic materials placed on a medium (tape or disk). This process 

is done with the help of a transducer which transforms the electrical signal into a 

magnetic field through which the medium to write the information passes. 

The criterion for magnetic recording on to a media coating is quite simple: if the applied 

field magnitude H(x,y) from the recording head at the element vol is greater than the 

switching field (HCi), then the particles within the vol will switch its magnetization in 

accordance with the applied field. On the other hand, when vol has moved away from 

the strong magnetic field and if the applied field H(x,y) is less than HCi, then the particles 

will no longer follow the field and their magnetization have been frozen at the point 

where H(x,y) became just less than HCi. 

Definition of a transition length: 

Let us consider a disk medium moving with a constant speed under the head magnetic 

field. Now, the magnetization of the medium would also act as a source of an additional 

field, i.e., the demagnetization field, along with the head field. Hence, one needs to 

understand response of the medium for the write field and then incorporate the 

demagnetization field in the writing process. 

 

Figure 11.1: Head fields from the ring type head. 

 

Hx=  constant 

gap 
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Figure 11.2: Schematic of initiation of writing process. 

First we shall assume that the medium only responds to the longitudinal component of the 

head field and the contour of the head field lines for the x-direction (Hx) being constant 

are circles with the centers located along the y-axis as shown in Figure 11.1. Now, we 

shall consider that the medium is initially magnetized in the positive direction, i.e., in its 

remnant state (state 1) as shown in Figure 11.2. With increasing the head field in the 

negative direction, the magnetization in the medium takes down any value along its 

hysteresis loop. Now, if we decrease the head field to zero, then the magnetization of the 

medium follow the arrow marks, i.e., along its minor loop. The contour that ends up in a 

completely demagnetized state had to have been driven slightly beyond coercivity value 

(HC), which is often referred as remnant coercivity (HCr). A careful view along the 

medium as shown in Figure 11.2(b) reveals that at the location 2, the magnetization is 

reduced from the remnant state, but still in the positive direction, whereas the 

magnetization at location 3 has been reversed partially. This clearly indicates that there is 

a length over which the transition from the negative to positive direction occurs. This can 

be determined as follows, 

𝑑𝑀

𝑑𝑥
=

𝑑𝑀

𝑑𝐻
 ×

𝑑𝐻

𝑑𝑥
 (11.1) 
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Assuming that the terms on the right hand side of the eqn.(11.1) are constant, the 

transition length can be estimated to be 

𝑎 =
𝑀𝑅

 
𝑑𝑀
𝑑𝐻

 ×
𝑑𝐻
𝑑𝑥

 
 (11.2) 

This clearly indicates the requirement of a square hysteresis loop and high field gradient 

in writing sharp transitions.Since the magnetization varies spatially through the transition 

region, a demagnetization field will be generated. Therefore, the field at the locations 2 

and 3 will not be zero, except at the centres of the transition. This suggests that the 

estimation of demagnetization field is important, which is discussed below. 

The Demagnetization field: 

When a specimen is magnetized, a self-field is developed within the specimen, which 

opposes the magnetizing field. This is typically called as demagnetization field. We shall 

briefly cover as it plays an important role in the magnetization process. Consider a 

uniformly magnetized specimen with a volume V and surface S. Its magnetization 𝑀   gives 

rise to surface poles, which in turn gives rise to a demagnetization field 𝐻𝑑
      within the 

specimen. The field 𝐻𝑑
      is proportional to 𝑀   , but in the opposite direction. For example, 

𝐻𝑑
      = −𝑁 𝑀    (11.3) 

 
𝐻1

𝐻2

𝐻3

 = − 

𝑁𝑥𝑥 𝑁𝑦𝑥 𝑁𝑧𝑥

𝑁𝑦𝑥 𝑁𝑦𝑦 𝑁𝑧𝑦

𝑁𝑧𝑥 𝑁𝑧𝑦 𝑁𝑧𝑧

  
𝑀1

𝑀2

𝑀3

  (11.4) 

Where 𝑁  is the demagnetization factor tensor that relates the demagnetization field with a 

specimen magnetization.The tensor function of position is given by [2] 

𝑁  𝑟 = −
1

4𝜋
 𝑑3𝑟′∇′  ∇′  

1

𝑟 − 𝑟′
   (11.5) 
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This tensor is given by an integral over the object volume and can be evaluated either 

inside or exterior to the body. The value of tensor 𝑁  significantly depends on the 

specimen shape, which are difficult to obtain in closed-form. It may be calculated exactly 

for an ellipsoidal shape only. In many symmetrical materials such as any ellipsoids of 

revolution, the demagnetization factor tensor only has three principal components, i.e., 

 
𝐻1

𝐻2

𝐻3

 = −  
𝑁1 0 0
0 𝑁2 0
0 0 𝑁3

  
𝑀1

𝑀2

𝑀3

  (11.5) 

Where N1 + N2 + N3 = 1 (in SI) and N1 + N2 + N3 = 4 (Gaussian). The demagnetization 

factors for the selected shapes are summarized in Table 11.1. 

Table 11.1: Demagnetization factors (in Gaussian units) of selected shapes: 

Shape N1 N2 N3 

Sphere 4/3 4/3 4/3 

Long Cylinder along z-axis 2 2 0 

Infinite plate normal to z-axis 0 0 4 

Strip film normal to z-axis 

(with t – thickness, W – Width, L – Length; tWL) 

0 8t/W 4 

 

A detailed calculation of demagnetization factor for various objects can be found in 

Ref.[2]. Note that the infinite plate has no demagnetization within its x-y plane but suffers 

a 4 demagnetization factor (Gaussian unit) on magnetization components out of the 

plane. A sphere suffers a 4/3 factor in all directions. A long cylinder has no 

demagnetization along its axis, but suffers 2 in the x and y directions of its cross 

sections.  

The demagnetization field obtained from the Maxwell equation is given as 

∇. 𝐻   = −4𝜋 ∇. 𝑀    (11.6) 
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In the absence of the currents, 𝐻   =0 and the field can be derived from a scalar 

potential, 𝐻   =– . Combining this field with the Maxwell equation given in eqn.(11.6) 

results the Poisson equation, 

∇2𝜑 = −4𝜋 ∇. 𝑀    (11.7) 

which has the solution, 

𝜑 𝑟  = −  
∇′ . 𝑀(𝑟′)             

|𝑟 − 𝑟′    |
𝑑3𝑟′     (11.8) 

Therefore, the demagnetization field from eqn.(11.6) becomes 

𝐻𝑑 𝑟  = −  
∇′ . 𝑀(𝑟)           (𝑟 − 𝑟 ′    )

|𝑟 − 𝑟′    |3
𝑑3𝑟′     (11.9) 

It is well known that the demagnetizing field associated with a uniform magnetized 

ellipsoidal sample is −4πNM inside the sample. For a solid sphere, the demagnetizing 

factor N is 1/3. In spherical coordinates (r,,), the divergence of magnetization is 

described as [3], 

   ∇. 𝑀   =  
1

𝑟2

𝜕

𝜕𝑟
 𝑟2𝑀𝑟 +  

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
 sin 𝜃 𝑀𝜃 +  

1

𝑟 sin 𝜃

𝜕𝑀𝜑

𝜕𝜑
 (11.10) 

 

Figure 11.3: A sphere of radius a with an uniform permanent magnetization of magnitude M. 

 



NPTEL – Physics – Physics of Magnetic recording 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                                   Page 7 of 58 

For a uniformly magnetized sphere of radius a, as shown in Figure 11.3, 

𝑀𝑟 = 𝑀 cos Θ𝜃(𝑎 − 𝑟) 

   𝑀Θ = 𝑀 sin Θ𝜃 𝑎 − 𝑟  

𝑀𝜑 = 0 

(11.11) 

whereθ(a – r) is the theta function, 

𝜃 𝑎 − 𝑟 =   
1
0
 𝑟 < 𝑎

𝑟 > 𝑎
 (11.12) 

Therefore,  

∇. 𝑀   = −𝑀 cos Θ  𝛿 𝑟 − 𝑎  (11.13) 

Combining eqn.(11.13) with the spherical harmonic expansion [3] results, 

1

|𝑟 − 𝑟′    |
=    

4𝜋 

2𝑙 + 1
 

𝑙

𝑚=−𝑙

∞

𝑙=0

𝑟<
𝑙

𝑟>
𝑙+1 𝑌𝑙

𝑚 ∗
 𝜃′ , 𝜑′ 𝑌𝑙

𝑚 𝜃, 𝜑  (11.14) 

Only the l=1, m=0 term survives the integral for φ(r), whichresults 

𝜑 𝑟 =  
4𝜋𝑀

3
𝑎2  

𝑟<

𝑟>
2 cos 𝜃 (11.15) 

Where r< is smaller than r, i.e., inside the sphere and r> is larger than a, i.e., outside the 

sphere.This potential gives the constant demagnetizing field inside the sphere and the 

familiar dipole field outside. 

References: 

[1]. R. M. White, Introduction to Magnetic Recording, IEEE, 1985. 

[2]. H. Neal Bertram, Theory of magnetic recording, Cambridge University Press, 1994. 

[3]. J.D. Jackson, Classical Electrodynamics, 3
rd

 Edition, Wiley-India, 2007, Chap5. 
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Module 3: Recording and play back theories 

Lecture 12: Nature of the transitions in the writing process – 

Part 1 

Infinitely sharp transition in the horizontal magnetization: 

The nature of the transition between the bits in a recorded medium plays a major role on 

the nature of the magnetic interaction between the bits and the stray field from the written 

information. Let us assume that the transition between the bits is infinitely sharp in the 

horizontal magnetization as shown in Figure 12.1: 

 

Figure 12.1: Infinitely sharp transition in the horizontal magnetization. 

Then 

∇. 𝑀   =   ∇.  𝑀 Θ −𝑥  − 𝑀 Θ 𝑥   𝒙 =  −2𝑀𝛿(𝑥) (12.1) 

and hence the demagnetization field from eqn.(11.6) is  

𝐻𝑑 𝑥, 𝑦 𝑥 =  −2𝑀    
𝑥 𝑑𝑦′  𝑑𝑧′

 𝑥2 +   𝑦 − 𝑦′ 2 + 𝑧′2
 

3
2

 

𝛿
2

−
𝛿
2

𝑤
2

−
𝑤
2

 (12.2) 

Here, w is the trackwidth and  is the medium thickness. If we assume that the value of 

wis the longest dimension, and taking w→∞; the eqn.(12.2) turns out to be  

𝐻𝑑 𝑥, 𝑦 𝑥 =  −4𝑀   
𝑥 𝑑𝑦′

𝑥2 +  𝑦 − 𝑦′ 2
 

𝛿
2

−
𝛿
2

 (12.3) 

 

-/2 

/2 

(x,y) 
y 

x 
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The above equation is two-dimensional problem.Taking y = 0 in the mid-plane of the 

medium, the eqn.(12.3) changes to  

𝐻𝑑 𝑥, 0 𝑥 =  −8𝑀 tan−1  
𝛿

2𝑥
  (12.4) 

which has its maximum value, 4πM,at the discontinuity as shown in Figure 12.2. 

 

Figure 12.2: Variation of demagnetization field around the transition. 
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The lowering of the energy associated with this discontinuity is possible, if one 

adoptsdifferenttypes of magnetization configuration at the transition. Figure 12.3 shows 

one such configuration, called as zig-zagtransition wall. 

 

Figure 12.3: Zig-Zagtransition in the horizontal magnetization. 
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The Arctangent transition: 

The zig-zag wall shown in the figure 12.3 reduces the magnetic pole density, as the poles 

are now spread over a finite distance. However, this arrangement increases the wall 

energy, which eventually determines the shape of the wall. In order to simply the 

understanding, we shall assume that the amplitude of magnetization has the arctangent 

form rather than considering any complex wall configuration. In such case, the 

magnetization along the x-direction is  

𝑀𝑥 𝑥 = −
2𝑀

𝜋
tan−1  

𝑥

𝑎
  (12.5) 

Where a is the transition length, which is an adjustable parameter. The bigger it is, the 

wider the transition. Taking a = 0, the transition becomes an ideal sharp step transition. 

Figure 12.4 depicts both the types of transition. 

 

Figure 12.4:Variation of magnetization in Step and Zig-Zag transition. 

 

The longitudinal gradient of the arctangent transition is 

𝜕𝑀(𝑥)

𝜕𝑥
=

2𝑀

𝜋

𝑎

𝑥2 + 𝑎2
 (12.6) 
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Substituting eqn.(12.5) in eqn.(11.6) results [1,2] 

𝐻𝑑 𝑥, 𝑦 𝑥 = 4𝑀  tan−1  
 
𝛿
2 + 𝑦 𝑥

𝑥2 + 𝑎2 +  
𝛿
2 + 𝑦 𝑎

 

+ tan−1  
 
𝛿
2 − 𝑦 𝑥

𝑥2 + 𝑎2 +  
𝛿
2 − 𝑦 𝑎

   

(12.7) 

and 

𝐻𝑑 𝑥, 𝑦 𝑦 = 2𝑀

 
 
 
 
𝑙𝑛

 

 
𝑥2 +   

𝛿
2 + 𝑦 + 𝑎 

2

𝑥2 +   
𝛿
2 − 𝑦 + 𝑎 

2

 

 

 
 
 
 
 (12.8) 

For calculational convenience, Hdx may also be written [1], 

𝐻𝑑 𝑥, 𝑦 𝑥 = −4𝑀  tan−1  
 𝑎 +

𝛿
2 + 𝑦 

𝑥
 + tan−1  

 𝑎 +
𝛿
2 − 𝑦 

𝑥
 

− 2 tan−1  
𝑎

𝑥
   

(12.9) 

Figure12.2 shows the variation of Hdx(x,0), where the maximum occurs at  

𝑥𝑚𝑎𝑥 = ±𝑎  1 +  
𝛿

2𝑎
  (12.10) 

It may be noted there is also a vertical demagnetization field, Hd(x,y)y, which is largest at 

the surface of the medium. Nevertheless, this large field is generally ignored as we 

considered that the medium responds only to the longitudinal field. 

References: 

[1]. R.I. Potter, J. Appl. Phys. 41 (1970) 1647. 

[2]. IBM San Jose Technical Report TR 02 (1969) 465. 
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Module 3: Recording and play back theories 

Lecture 13: Nature of the transitions in the writing process – 

Part 2 

Now, it is important to highlight the amplitude of the demagnetization field compared to 

the coercivity of the medium. If the demagnetization field exceeds the coercivity, then the 

magnetization will readjust itself to lower this field. Therefore, the transition length can 

be determined by equating the maximum value of Hd(x,0)xto the coercivity of the 

medium. For the current transition type, the minimum transition length can be found by 

substituting the maximum value of x [Eqn.(12.10)] in the eqn.(12.7) , 

𝐻𝑑 𝑥, 0 𝑥 = 4𝑀  tan−1  
 
𝛿
2 𝑥

𝑥2 + 𝑎2 +
𝛿
2 𝑎

 + tan−1  
 
𝛿
2 𝑥

𝑥2 + 𝑎2 +
𝛿
2 𝑎

   (13.1) 

𝐻𝑑 𝑥, 0 𝑥 = 8𝑀  tan−1  
 
𝛿
2 𝑥

𝑥2 + 𝑎2 +
𝛿
2 𝑎

   

𝐻𝑑 𝑥, 0 𝑥 = 8𝑀

 
 

 

tan−1

 
 
 
  

𝛿
2 𝑎  1 +  

𝛿
2𝑎 

𝑎2  1 +  
𝛿

2𝑎 + 𝑎2 +
𝛿
2 𝑎

 
 
 
 

 
 

 

   ⟹ 

 

𝐻𝑑 𝑥, 0 𝑥 = 𝐻𝐶 = 8𝑀

 
 

 

tan−1

 
 
 
 

𝛿

4𝑎  1 +  
𝛿

2𝑎  
 
 
 

 
 

 

 (13.2) 
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Upon inverting the eqn.(13.2), the minimum transition length is found to be [1], 

tan  
𝐻𝐶

8𝑀
 =

𝛿

4𝑎  1 +  
𝛿

2𝑎 

 

𝑎  1 +  
𝛿

2𝑎
 

1
2

=
𝛿

4

cos  
𝐻𝐶

8𝑀 

sin  
𝐻𝐶

8𝑀 
 

Expanding the left hand side as power series gives,  

⟹ 𝑎 +
𝛿

4
=

𝛿

4

cos  
𝐻𝐶

8𝑀 

sin  
𝐻𝐶

8𝑀 
 

 

𝑎𝑚𝑖𝑛 =
𝛿

4
 

cos  
𝐻𝐶

8𝑀 

sin  
𝐻𝐶

8𝑀 
− 1  (13.3) 

𝑎𝑚𝑖𝑛 =  

𝛿

4
 cosec  

𝐻𝐶

8𝑀
 − 1 ,         

𝐻𝐶

𝑀
< 4𝜋 

0,                                       
𝐻𝐶

𝑀
≥ 4𝜋

  (13.4) 

For the thin media with a>>, the eqn.(13.2) turns out to be 

𝐻𝐶 =
2𝛿𝑀

𝑎𝑚𝑖𝑛
;  

∴ tan−1

 
 
 
 

𝛿

4𝑎  1 +  
𝛿

2𝑎  
 
 
 

=
𝛿

4𝑎
 

 

𝑎𝑚𝑖𝑛 =
2𝛿𝑀

𝐻𝐶
 (13.5) 
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Since amin in eqn.(13.5) represents the closest approach of any two magnetic reversals, the 

high density magnetic recording requires a small value of amin, which means that one 

needs a thin media () with high coercivity(HC) and a moderate remanent magnetization 

for generating the readback signal. Therefore, it is clear that a medium with higher 

coercivityand a moderate magnetization would be more appropriate for the high density 

recording. 

Sinusoidal variation in magnetization: 

The demagnetization field also can be evaluated for a sinusoidal variation of 

magnetization, which is given as 

𝑀𝑥(𝑥) =  𝑀 sin 𝑘𝑥 (13.6) 

 

wherek= 2π/λ and the demagnetization field from eqn.(11.6) is defined as 

𝐻𝑑(𝑥, 𝑦, 𝑧 = 0)𝑥 =  −𝑘𝑀  
cos 𝑘𝑥′  𝑥 − 𝑥′ 𝑑𝑥′𝑑𝑦′𝑑𝑧′

  𝑥 − 𝑥′ 2 +  𝑦 − 𝑦′ 2 + 𝑧′ 2 
3
2

 (13.7) 

As considered earlier in lecture 12 that the trackwidth (W) is much larger than the 

thickness of the medium() gives, 

𝐻𝑑 𝑥, 𝑦 𝑥 =  2𝑘𝑀  cos 𝑘𝑥′  tan−1  
 𝑦 −

𝛿
2 

𝑥 − 𝑥′
 − tan−1  

 𝑦 +
𝛿
2 

𝑥 − 𝑥′
  𝑑𝑥′

∞

−∞

 (13.8) 

𝐻𝑑 𝑥, 𝑦 𝑥 =  −2𝜋𝑀 sin 𝑘𝑥  2 − 𝑒
−𝑘 𝑦+

𝛿
2
 
− 𝑒

𝑘 𝑦−
𝛿
2
 
  (13.9) 

The demagnetization field can be calculated both at the mid plane and at either surface of 

the medium as a function of wavelength of the medium. 

Taking y = 0 in the mid plane, the eqn.(13.9) becomes,  

𝐻𝑑(𝑥, 0)𝑥 = −2𝜋𝑀 sin 𝑘𝑥  2 − 𝑒−
𝑘𝛿
2 − 𝑒−

𝑘𝛿
2  

= −12.56 𝑀 sin 𝑘𝑥  1 − 𝑒−
𝑘𝛿
2   

(13.10) 
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On the other hand, the demagnetization field at either surface (y = ± δ/2) turns out to be, 

𝐻𝑑  𝑥, ±
𝛿

2
 

𝑥
= −2𝜋𝑀 sin 𝑘𝑥  2 − 𝑒−𝑘𝛿 − 𝑒−𝑘𝛿  

= −6.28 𝑀 sin 𝑘𝑥  1 − 𝑒−𝑘𝛿   

(13.11) 
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Figure 13.1: Variation of demagnetization field associated with the horizontal sinusoidal magnetization distribution. 

The variations of demagnetization field at the mid plane and at the surface are shown in 

Figure 13.1. It is clearly seen from the figure that with increasing k, the demagnetization 

field reaches to 12.56Mat the mid plane, while on the surface a maximum of 6.28M was 

observed.  

References: 

[1]. R.I. Potter, J. Appl. Phys. 41 (1970) 1647. 
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Module 3: Recording and play back theories 

Lecture 14: Model for the writing process 

William–Comstock (WC) Model 

In order to understand the role of various parameters in different recording 

configurations, one needs to obtain an analytic form for the transition length that 

incorporates both the head field and the demagnetization field. An analytical model was 

first proposed by Williams and Comstock [1] with few assumptions, which provides an 

insightful and relatively simple analysis of write process. In this lecture, we shall discuss 

the WC model for the writing process.  

 

Figure 14.1: Variation of magnetization, head field, and the demagnetization field along the center plan of the magnetic 

medium. The dashed line indicates the transition center. 
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Figure 14.1 shows the schematic of the write process in the longitudinal recording along 

with the variation of field along the x direction. The first assumption considered in the 

model is that the zig-zag nature of the magnetic transition is ignored and the shape of the 

transition is assumed to be Arctangent function. The second assumption is that the written 

magnetization pattern is represented by Mx(x) which produces the demagnetization field 

Hd(x). At a given point x in the magnetic medium, the demagnetization field and the head 

field together determine Mx(x) through the intrinsic M-H loop Mx(H) of the recording 

medium. Therefore, 

𝐻 𝑥 = 𝐻𝑡𝑜𝑡  𝑥 = 𝐻𝑥 𝑥 + 𝐻𝑑 𝑥  

𝑀𝑥 𝑥 = 𝑀𝑥 𝐻𝑡𝑜𝑡  𝑥  = 𝑀𝑥  𝐻𝑥 𝑥 + 𝐻𝑑 𝑥   
(14.1) 

The second assumption rests on the first assumption that the shape of the magnetization is 

already known to calculate the demagnetization field based on the following longitudinal 

gradient of the magnetization given as, 

𝑑𝑀𝑥

𝑑𝑥
=

𝑑𝑀𝑥

𝑑𝐻𝑡𝑜𝑡

𝑑𝐻𝑡𝑜𝑡

𝑑𝑥
=

𝑑𝑀𝑥 𝐻 

𝑑𝐻
 
𝑑𝐻𝑥 𝑥 

𝑑𝑥
+

𝑑𝐻𝑑 𝑥 

𝑑𝑥
  (14.2) 
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The eqn.(14.2) suggests that a sharp transition means a larger magnetization gradient. 

Since the demagnetization field opposes the head field gradient, the demagnetization field 

tends to broaden the transition in the write process. Hence, it should be considerably 

small. 

 

Figure 14.2: Definition of various parameters characterizing the hysteresis loop. 
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The factor dM/dH brings in the role of the hysteresis loop. As the head approaches the 

point x0, the magnetization at that point moves away from its remanent value as 

illustrated on the hysteresis loop. To have zero remanence at this point after the removal 

of the field, one needs to overshoot to some point Iso that it returns to zero along a minor 

loop path characterized by a slope χ. The slope of the major loop at the point I is 

 𝑑𝑀

𝑑𝐻
 
𝐼

=  
𝑀𝑟

𝐻𝑐 1 − 𝑆∗ 
 (14.3) 

Where S* measures the squareness of the loop as defined in Figure 14.2 and the value of 

the field at I is 

𝐻𝑐𝑟 =
−𝐻𝑐

1 − 𝜒 1 − 𝑆∗ 
𝐻𝑐

𝑀

=  −
𝐻𝑐

𝑟
 (14.4) 

We have already discussed that to obtain a sharp transition the head field gradient should 

be at the maximum. Also, in general, the write field follows the write current almost 

instantaneously. Letus assume that the current into the head has been adjusted such that 

the maximum gradient also occurs at the transition, i.e, Hh= HI.In other wods, the 

optimum write current is given by the maximum field gradient requirement: 

 
𝑑2𝐻𝑥  𝑥, 𝑑 +

𝛿
2 

𝑑𝑥2
 

𝑥=𝑥0

= 0 (14.5) 

Now we shall use the WM model to derive the transition parameter written with a 

Karlqvist head with the head field given as  

𝐻𝑥 =
𝐻𝑔

𝜋
 tan−1  

𝑥 +
𝑔
2

y
 − tan−1  

𝑥 −
𝑔
2

y
   (14.6) 
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The derivative of the eqn.(14.6) is  

 𝑑𝐻𝑥

𝑑𝑥
 
𝑥0

=
𝐻𝑔

𝜋𝑦

 
 
 
 
 
 

1

1 +  
𝑥0 +

𝑔
2

y  

2 −
1

1 +  
𝑥0 −

𝑔
2

y  

2

 
 
 
 
 
 

=  
𝐻𝐶𝑄

𝑦
  (14.7) 

where Q is a function of y and x0 with typical values of 0.65 – 0.85. 

𝑄(𝑦) =
𝐻𝑔

𝜋𝐻𝐶
 

𝑦2

𝑦2 +  𝑥0 + 𝑔/2 2
−

𝑦2

𝑦2 +  𝑥0 − 𝑔/2 2
  (14.8) 

The magnetization gradient at the transition center at the instant of transition formation is  

 𝑑𝑀𝑥

𝑑𝑥
 
𝑥0

=
2𝑀𝑟

𝜋𝑎
 (14.9) 

The demagnetization field along the center of the medium is given as [2] 

𝐻𝑑(𝑥) =
2𝑀

𝜋
 tan−1  

𝑥 − 𝑥0

𝑎
 − tan−1  

𝑥 − 𝑥0

𝑎 + 𝛿/2
   (14.10) 

Taking derivative of eqn.(14.10) at the transition center gives 

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 

x=0,y=0
= −

2𝑀

𝜋
 

1

𝑎
−

1

𝑎 + 𝛿/2
  

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 

x=0,y=0
= −

𝑀

𝜋
 

𝛿

𝑎 𝑎 + 𝛿/2 
  

 

 𝑑𝐻𝑑 𝑥 

𝑑𝑥
 

x=0,y=0

= −4𝑀𝑟  
𝛿

𝑎𝐼  𝑎𝐼 +
𝛿
2
 
  (14.11) 

The gradient of the demagnetizing field for small medium thickness is 

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 
𝑥0

= − 
4𝑀𝑟𝛿

𝑎2
 (14.12) 
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Combining all these derivatives (eqns.(14.3), (14.7), (14.9), and (14.12) and substituting 

in eqn.(14.2) leads to the transition length at I, 

2𝑀𝑟

𝜋𝑎
=

𝑀𝑟

𝐻𝑐 1 − 𝑆∗ 
 
𝐻𝐶𝑄

𝑦
−

4𝑀𝑟𝛿

𝑎2
  (14.13) 

Multiplying by a
2
 on both sides of the eqn.(14.13) and re-arranging the terms gives 

2𝑎𝑀𝑟

𝜋
=

𝑀𝑟

𝐻𝑐 1 − 𝑆∗ 

𝐻𝐶𝑄𝑎2

𝑦
−

𝑀𝑟

𝐻𝑐 1 − 𝑆∗ 
4𝑀𝑟𝛿 

Re-arranging gives  

 

𝑎2 −
2 1 − 𝑆∗ 𝑦

𝜋𝑄
𝑎 −  

2𝑀𝑟𝛿

𝐻𝐶
  

2𝑦

𝑄
 = 0 (14.14) 

The above equation is a quadratic equation, which has a solution, as given below, 

𝑎 =
 1 − 𝑆∗ 𝑦

𝜋𝑄
+   

 1 − 𝑆∗ 𝑦

𝜋𝑄
 

2

+  
2𝑀𝑟𝛿

𝐻𝐶
  

2𝑦

𝑄
  (14.15) 

where y is taken as the distance from the head pole tip to the center of the medium, y = d 

+ /2 and d is the magnetic spacing between the head and medium. In order to achieve a 

higher linear density, we need to reduce the value of a as much as possible, which leads 

to the following requirements: 

(1) Large medium coercivity, 

(2) Small Mr product (but sufficient enough to maintain readback signal level). 

(3) Small magnetic spacing 

(4) Large coercivity squareness S*. A range of 0.7 to 0.9 is required typically for 

recording with significantly less media noise. It should be noted that the large 

value of S* indicate the good exchange interaction between the grains, which 

induces additional noise called media noise.  
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Hence, for a square M – H loop, S* = 1, eqn.(14.15) becomes, 

𝑎 =   
2𝑀𝑟𝛿

𝐻𝐶
  

2𝑦

𝑄
  (14.16) 

This is an equation widely used for calculating the transition length in the magnetic 

recording.  

References: 

[1]. M.L. Williams, and R.L. Comstock, AIP Conf. Proc. 5 (1971) 738. 

[2]. S.X. Wang, A. M. Taratorin, Magnetic information storage technology, Academic 

press, New York, 1999, Chap 2. 

 

  



NPTEL – Physics – Physics of Magnetic recording 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                                   Page 24 of 58 

Module 3: Recording and play back theories 

Lecture 15: Effect of imaging from the head and the relaxation 

of transition parameter 

When a transition is under a recording head, the transition shape can be modified due to 

the imaging effect of the recording head, which is made of high permeability materials. 

The imaging effect is schematically shown in Figure 15.1.  

 

Figure 15.1: Imaged transition of a high permeability recording head. Negative charges are imaged into positive charges in 

the head. 

A negative magnetic charge at y = 0 will have an positive magnetic charge at y = 2d +  

and the field from the image charge modifies the transition shape significantly. Therefore, 

the demagnetization field in the medium is reduced to 

𝐻𝑑
𝑛𝑒𝑡 =  𝐻𝑑 𝑥  

𝑦=𝑑+
𝛿
2

−  𝐻𝑑 𝑥  
𝑦=−𝑑−

𝛿
2

 (15.1) 

The second terms comes from the imaged transition. Considering the demagnetization 

field along the center of the medium, 

𝐻𝑑 𝑥 =
2𝑀

𝜋
 tan−1  

𝑥 − 𝑥0

𝑎
 − tan−1  

𝑥 − 𝑥0

𝑎 +
𝛿
2

   (15.2) 
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and taking derivative of eqn.(15.2) at the transition center gives 

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 
𝑥=0

= −
2𝑀

𝜋
 

1

𝑎
−

1

𝑎 + 𝛿/2
  

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 
𝑥=0

= −
𝑀

𝜋
 

𝛿

𝑎 𝑎 + 𝛿/2 
  

(15.3) 

Recalculating the demagnetization field for the net demagnetization field due to the 

imaging effects results us, 

 𝑑𝐻𝑑
𝑛𝑒𝑡

𝑑𝑥
 

x=0

= −
𝑀

𝜋
 

𝛿

𝑎𝑖𝑚  𝑎𝑖𝑚 +
𝛿
2 

 +
𝑀

𝜋
 

𝛿

 𝑎𝑖𝑚 + 2𝑑 + 𝛿 2 −  
𝛿
2 

2  (15.4) 

where,aim represents the transition parameter after taking the image effect into 

consideration. For thin medium, the eqn.(15.4) can be approximated to  

 𝑑𝐻𝑑
𝑛𝑒𝑡

𝑑𝑥
 

x=0

= −
𝑀𝛿

𝜋
 

1

𝑎𝑖𝑚
2 −

1

 𝑎𝑖𝑚 + 2𝑑 + 𝛿 2
  (15.5) 

We know that if the magnetic medium has a nearly square loop, then the following 

relation must hold: 

𝑑𝐻𝑥

𝑑𝑥
+

𝑑𝐻𝑑

𝑑𝑥
= 0 (15.6) 

This means that from eqn.(14.7), 

−
𝐻𝐶𝑄

𝑦
=

 
 
 

 
 −

𝑀𝛿

𝜋𝑎2
                𝑤𝑖𝑡𝑕𝑜𝑢𝑡 𝑖𝑚𝑎𝑔𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡

−
𝑀𝛿

𝜋
 

1

𝑎𝑖𝑚
2 −

1

 𝑎𝑖𝑚 + 2𝑑 + 𝛿 2
     𝑤𝑖𝑡𝑕 𝑖𝑚𝑎𝑔𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡

  (15.7) 

Therefore, the transition parameter without imaging effect is related to that considering 

imaging effect by the following relations: 

1

𝑎2
=

1

𝑎𝑖𝑚
2 −

1

 𝑎𝑖𝑚 + 2𝑑 + 𝛿 2
 (15.8) 
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Therefore, the net imaging effect reduces the transition parameter written by a recording 

head because aim<a. This imaging effect is quite significant when d is small (d~ ), but 

negligible, when d> 3.In this scenario, what would be the final transition parameter in 

the recording after the relaxation? This can be calculated by analysing the magnetization 

nature after relaxation. The relaxed magnetization Mf is related to the initial 

magnetization M through a minor loop susceptibility of , as shown in Figure14.2: 

𝑀𝑓 − 𝑀 = 𝜒 𝐻𝑑𝑓 − 𝐻  (15.9) 

whereHdf and H are the final demagnetization field after relaxation and the total field at 

the instant of formation of transition, respectively. Taking derivative both sides with 

respect to x gives, 

𝑑𝑀𝑓

𝑑𝑥
−

𝑑𝑀

𝑑𝑥
= 𝜒  

𝑑𝐻𝑑𝑓

𝑑𝑥
−

𝑑𝐻

𝑑𝑥
  

𝑑𝑀𝑓

𝑑𝑥
−

𝑑𝑀

𝑑𝑥
= 𝜒 

𝑑𝐻𝑑𝑓

𝑑𝑥
−

𝑑𝐻

𝑑𝑀

𝑑𝑀

𝑑𝑥
  

(15.10) 

Assuming that the initial and final transition centres are close (where  becomes small), 

and the eqn.(15.10) simplifies to (following the eqns.(14.9) and (14.3)) 

2𝑀

𝜋𝑎𝑓
−

2𝑀

𝜋𝑎
= 𝜒  

𝑀𝛿

𝜋𝑎𝑓
2 −

𝐻𝑐 1 − 𝑆∗ 

𝑀

2𝑀

𝜋𝑎
   ⟹ 

2𝑀

𝜋𝑎𝑓
−

2𝑀

𝜋𝑎
=

𝑀𝛿𝜒

𝜋𝑎𝑓
2 −

2𝜒𝐻𝑐(1 − 𝑆∗)

𝜋𝑎
 

Multiplying by [/(2M)] on both side of the equation provides 

1

𝑎𝑓
−

1

𝑎
=

𝛿𝜒

2𝑎𝑓
2 −

𝜒𝐻𝑐(1 − 𝑆∗)

𝑀𝑎
 

Rearranging the terms gives 

0 =
𝛿𝜒

2𝑎𝑓
2 −

1

𝑎𝑓
+

1

𝑎
 1 −

𝜒𝐻𝑐(1 − 𝑆∗)

𝑀
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From eqn.(14.4), the parameters within the square bracket of the above equation can be 

correlated to r and the equation turns out to be 

0 =
𝛿𝜒

2𝑎𝑓
2 −

1

𝑎𝑓
+

𝑟

𝑎
 (15.11) 

Rearranging the eqn.(15.11) results, 

𝑎𝑓
2 −

𝑎

𝑟
𝑎𝑓 −

𝛿𝜒

2

𝑎

𝑟
= 0 (15.12) 

This is aquadratic equation on final transition parameter after relaxation. Solving the 

eqn.(15.11) provides the positive solution for the final transition parameter. 

𝑎𝑓 =
𝑎

2𝑟
+   

𝑎

2𝑟
 

2

+
𝛿𝜒

2

𝑎

𝑟
 (15.12) 

This provides afa, only when << 1 and r 1. Otherwise, the final relaxed transition 

parameter is always greater than the initial value written. This analytical result shows that 

it is important to have a sharp head field gradient (large Q), a very square M-H loop (S* 

 1), a small demagnetization field (4M<<HC), and considerably thin medium in 

obtaining high densities. 
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Module 3: Recording and play back theories 

Lecture 16: Different types of writing process 

Perpendicular versus In-plane Recording: 

There are two types of magnetic recording processes: one is longitudinal recording, 

where the information is written on the magnetic medium using longitudinal field of the 

recording head and written bits are oriented along the film plan direction, another process 

is perpendicular recording, where the medium is written by the perpendicular field 

emerging out of the head and the written bits are aligned perpendicular to the disk plane. 

WC model was used to compare the transition length of the perpendicular and in-plane 

magnetic recording [1]. This constitutes a nice example of the usefulness of this model. 

In-plane recording Case:  

A small gap of the Karlqvist head field was taken by Middleton and Wright [1] for the 

head field, which is defined as[from eqn.(14.6)], 

𝐻𝑥 =
𝐻𝑔

𝜋
 tan−1  

 𝑥 +
𝑔
2 

y
 − tan−1  

 𝑥 −
𝑔
2 

y
   (16.1) 

Expanding the arctangent function for the limit g 0, we get 

tan−1  
 𝑥 +

𝑔
2 

y
 = tan−1  

𝑥

y
 +

𝑦𝑔
2

𝑥2 + 𝑦2
+ ⋯ 

𝐻𝑥 =
𝐻𝑔

𝜋
 tan−1  

𝑥

y
 +

𝑦𝑔
2

𝑥2 + 𝑦2
−  tan−1  

𝑥

y
 −

𝑦𝑔
2

𝑥2 + 𝑦2
   

 

𝐻𝑥 = 𝑔
𝐻𝑔

𝜋

𝑦

𝑥2 + 𝑦2
 (16.2) 

Taking gradient of the head field gives, 

𝑑𝐻𝑥

𝑑𝑥
= −

𝑔𝐻𝑔

𝜋

2𝑥𝑦

 𝑥2 + 𝑦2 2
 (16.3) 
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The above equation has its maximum value at 𝑥 = 𝑦 3. IfHg is adjusted such that Hx has 

the value –HI–HC at a point where the gradient has its maximum, then eqn.(16.2) turns 

out to be  

−𝐻𝐶 = 𝑔
𝐻𝑔

𝜋

𝑦

3𝑦2 + 𝑦2
  

𝐻𝑔 = −
4𝜋

𝑔
𝐻𝐶𝑦 (16.4) 

Substituting eqn.(16.4) in eqn.(16.3) results, 

 𝑑𝐻𝑥

𝑑𝑥
 
𝑚𝑎𝑥

= −
𝑔

𝜋
 −

4𝜋

𝑔
𝐻𝐶𝑦 

2𝑦 3𝑦

 3𝑦2 + 𝑦2 2
 

 𝑑𝐻𝑥

𝑑𝑥
 
𝑚𝑎𝑥

=
 3

2
 
𝐻𝐶

𝑦
  

(16.5) 

If the hysteresis loop is very square so that dM/dH is very large, then if dM/dx is to have a 

reasonable value, then we must have 

𝑑𝐻𝑥

𝑑𝑥
=  −

𝑑𝐻𝑑 𝑥 

𝑑𝑥
 (16.6) 

The derivative of the demagnetization field along the center of the medium is given as 

(following eqn.(14.10) and (14.11)) 

 𝑑𝐻𝑑(𝑥)

𝑑𝑥
 
𝑥=0,𝑦=0

= −4𝑀𝑟  
𝛿

𝑎𝐼 𝑎𝐼 + 𝛿/2 
  (16.7) 

where,aIdenotes the “longitudinal” transition length.Substituting eqns.(16.5) and (16.7) in 

eqn.(16.6) gives  

 3

2
 
𝐻𝐶

𝑦
 = 4𝑀𝑟  

𝛿

𝑎𝐼 𝑎𝐼 + 𝛿/2 
   

Re-arranging the above equation results, 

𝑎𝐼
2 +

𝛿

2
𝑎𝐼 −

4𝑀𝑟𝛿𝑦

 3𝐻𝐶

= 0 
(16.8) 
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This is a quadratic equation for the longitudinal transition length and gives a general 

solution as 

𝑎𝐼 =  −
𝛿

4
+  𝛿2

16
+

8𝑀𝑟  𝑑 +
𝛿
2 𝛿

 3𝐻𝑐

 (16.9) 

In the limit of a thin medium, this above eqn.(16.9) is in consistent with the WC model 

result, described in eqn.(14.15). 

Perpendicular recording case: 

For perpendicular recording, one can write the medium using either a ring head or a 

single pole head. In such scenario, the head field gradients due to the ring type and single 

pole heads are 

 
𝑑𝐻𝑦

𝑟𝑖𝑛𝑔

𝑑𝑥
 

𝑚𝑎𝑥

=  
1

2 3

𝐻𝑐

𝑦
 (16.10) 

 
𝑑𝐻𝑦

𝑝𝑜𝑙𝑒

𝑑𝑥
 

𝑚𝑎𝑥

=  
 3

2

𝐻𝑐

𝑦
 (16.11) 

It is clear from the above equations that the single pole head has a larger field gradient at 

the point where the transition occurs. 

The demagnetization field associated with a vertical arctangent transition is  

𝐻𝑑𝑦 =  −4𝑀0  tan−1  
𝑥0

𝑎𝑣 +  𝑦0 −
𝛿
2 

 + tan−1  
𝑥0

𝑎𝑣 +  𝑦0 +
𝛿
2 

   (16.12) 

where av is the transition length, M0 ≤ Mr depending on the coercivity, i.e., if HC>4πMr 

then M0 = Mr , but if HC<4πMr then M0 = HC /4π. That is, far from the transition, i.e., as 

|x0| becomes large, Hd goes to -4πM0. Hence, the demagnetization field gradient is 

𝑑𝐻𝑑𝑦

𝑑𝑥
=  −

8𝑀0

 𝑎𝑣 +
𝛿
2 

 (16.13) 
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For Ring Heads: 

Equating the eqns.(16.10) and (16.13) for the field gradients gives the transition length 

for the ring heads. 

1

2 3
 

𝐻𝑐

𝑑 +
𝛿
2

 =
8𝑀0

 𝑎𝑣
𝑟𝑖𝑛𝑔

+
𝛿
2 

 ⟹ 

 𝑎𝑣
𝑟𝑖𝑛𝑔

+
𝛿

2
 = 16 3

𝑀0

𝐻𝑐
 𝑑 +

𝛿

2
  ⟹ 

𝑎𝑣
𝑟𝑖𝑛𝑔

= −
𝛿

2
+ 16 3

𝑀0

𝐻𝑐
 𝑑 +

𝛿

2
 ⟹ 

(16.14) 

 

𝑎𝑣
𝑟𝑖𝑛𝑔

=  
𝛿

2
 16 3

𝑀0

𝐻𝑐
− 1 + 16 3

𝑀0𝑑

𝐻𝑐
 (16.15) 

For Pole heads: 

Equating the eqns.(16.11) and (16.13) for the field gradients gives the transition length 

for the pole heads. 

 3

2
 

𝐻𝑐

𝑑 +
𝛿
2

 =
8𝑀0

 𝑎𝑣
𝑝𝑜𝑙𝑒

+
𝛿
2 

 ⟹ 

 𝑎𝑣
𝑝𝑜𝑙𝑒 +

𝛿

2
 =

16

 3

𝑀0

𝐻𝑐
 𝑑 +

𝛿

2
  ⟹ 

𝑎𝑣
𝑝𝑜𝑙𝑒 = −

𝛿

2
+

16

 3

𝑀0

𝐻𝑐
 𝑑 +

𝛿

2
 ⟹ 

(16.16) 

𝑎𝑣
𝑝𝑜𝑙𝑒 =  

𝛿

2
 

16

 3

𝑀0

𝐻𝑐
− 1 +

16

 3

𝑀0𝑑

𝐻𝑐
  ⟹ 

𝑎𝑣
𝑝𝑜𝑙𝑒 =  

𝛿

2
 

4

 3𝜋

4𝜋𝑀0

𝐻𝑐
− 1 +

4

 3𝜋

4𝜋𝑀0

𝐻𝑐
𝑑 

(16.17) 
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Eqn.(16.15) reveals that the longitudinal transition length increases with increasing the 

thickness of the medium and also for the increase in (M0/HC). On the other hand, 

eqn.(16.17) indicates that the transition length gets shorted as the medium gets thicker. 

This arises from the fact that 4M0 is always less than HC and hence, the term 

 
4

 3𝜋
  

4𝜋𝑀0

𝐻𝑐
 < 1. The above results suggest that it is not the demagnetization fields 

themselves which are important, but rather their gradients. Therefore, the larger gradient 

makes the pole heads preferable for writing on a vertical medium.  

Fields due to a finite gap of the head: 

It is generally assumed that the track widths are considerably larger as compared to the 

gap length or flying height so that the fields are virtually constant over the width of the 

track so that two-dimensional can be applied. The constant potential pole pieces are taken 

to be infinitely long in the recording direction. In order to study in detail the 

approximations were taken into far field, near field and medium field approximations. 

We shall briefly look at these approximations and analyse the variation of lone of 

constant potential with these approximations. 
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Far field approximation: 

If the gap is assumed to be infinitesimally small [2] and the poles are infinitely long as 

shown in Fig. 16.1, the lines of constant potential (LCP) in the regime above the head are 

radially directed emanating from the gap and increase linearly with angle. Therefore, the 

field lines are circular coincident with the field magnitude contour. Utilizing the path 

integral and taking the integration path to be a field line at a fixed radial distance r from 

one potential face to the other provides, 

 𝐻(𝑟)           =
𝑁𝐼𝐸

𝜋𝑟
 (16.18) 

Where NI is the magmetomotive force and E is head efficiency. 

 

Figure 16.1: Potential lines and field contour for far field approximation [2]. 
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Medium range approximation (Karlqvist field): 

The far field approximation is not accurate in the vicinity of the gap. Hence, it is assumed 

that the head is infinitely long and wide with an infinitely deep gap. The only length 

parameter is the gap length as given in Figure 16.2. The field above the head can be 

calculate using eqns.(12.7)and (12.8). Unfortunately, the potential variation across the 

gap is not known in advance. 

 

Figure 16.2: Gap region fields and potentials. Hg is the deep gap field, and g is the gap length so that Hg = NIE/g. 

Near Field approximation: 

Ruigrok – Westmijze [3] has introduced a simple analytic form for the near field of a 

finite gap head utilizing a conformal map solution for a finite gap head. They introduced 

a complex function W defined as 

𝑊 = 𝑈 + 𝑖𝑉 (16.19) 

Where V(x,y) is considered as a scalar potential and U(x,y) is the field stream function 

(flux lines). The transformation to the W plane, in normalized form (z by g/2 and W by 

NIE) is given by 

𝑧 = 𝑖𝑠𝑖𝑛𝑕(𝜋𝑊) (16.20) 
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By symmetry, the field across the gap (-g/2 <x<g/2) is longitudinal and is given simply as 

𝐻𝑥 𝑥 =
2𝐻𝑔

𝜋

1

 1 −  
2𝑥
𝑔  

2

 

(16.20) 

 

Figure 16.3: Surface longitudinal field component across the hap for the head. 

The exact form of field variation at the head surface with respect to the eqn.(16.20) is 

given in Fig.16.3. Ruigrok demonstrated that the exact surface field is given by half the 

Karlqvist field and half of the above thin gap field. 

𝐻𝑥 𝑥 =
𝐻𝑔

2

 

 
 
 

1 +
2

𝜋 1 −  
2𝑥
𝑔  

2

 

 
 
 

 (16.21) 
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The above equation yields Hx(0) = 0.82 Hg as does the exact field and becomes infinite at 

the corners. The above equation reveals that the form of approach to infinity varying as 

the square root of the distance from the corner is not exact. This is because for the 90 

corner of a real head the variation should be as the 3/2 power [4]. Nevertheless, the 

eqn.(16.21) follows the surface fields quite accurately and yields the values of Hx(0) Hg 

at 2x/g ~ 0.77, as indicated in Fig.16.3. This approximation clarifies the surface charge 

dilemma of the Karlqvist field.  

 

Figure 16.4: LCP for far-field, medium field (Karlqvist) and near-field (Westmijze) approximations for a two-dimensional 

head with infinitely long poles and infinitely deep gap. 

Fig.16.4 shows the summary of the various approximations for the LCP with two 

dimensional head with infinitely long poles and infinitely deep gap. Half the head is 

shown where the right core potential is V/(NIE) = -0.5 and the gap center line potential is 

V = 0.0. Deep inside the gap, far from the surface, the potential varies linearly: the 

potential lines are parallel to the gap faces and yield a deep gap field given by Hg= NIE/g. 

On the other hand, the potential at the surface does not vary linearly and the potential 

lines spread leaving the gap resulting in a slightly reduced field at the gap center and 

much increased field near the gap corners.  

 

 

 



NPTEL – Physics – Physics of Magnetic recording 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                                   Page 37 of 58 

In the magnetic recording process, the information is written in the form of 

magnetic bits oriented either in the film plane or perpendicular to the film plane. In 

general, there exists a considerable magnetic interaction between the neighbouring bits 

depending on its nature, i.e., 0 or 1. In the micromagnetic analysis it has been noticed that 

the fluctuations of the interbit magnetostatic interactions are a dominant aspect. Interbit 

interactions have been studied for single transition noise models involving non-linear bit 

shift by Middleton and Miles [5] and Semenov et al [6]. A more detailed discussion on 

the interbit interactions involving non-linear bit shift and overwrite process has been 

discussed by Neal Bertram [2] in chapter 9. 
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[5]. B.K.Middleton and J.J. Miles, Recording magnetization distribution in thin film 

media, IEEE Trans. Magn. 27 (1991) 4954. 

[6]. V. Semenov et al., The effect of coercive squareness on transition noise in thin metal 

media, Prog. Jap. Mag. Soc. Of Japan, 15 (1991) 251. 

Quiz: 

(1) What are the materials’ properties required to write the information with narrow 

transition length? 

(2) What are the different types of transitions considered for demonstrating the writing 

process? 

(3) How does the transition parameter relax by the effect of imaging from the write head 

made of high permeability material? 

(4) What are the physical limitations faced by the in-plane magnetic recording? 

(5) How does the transition length vary with the imaging effect? 
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Module 3: Recording and play back theories 

Lecture 17: The Read back Voltage 

In the earlier lectures, we have discussed the writing process in a magnetic medium. The 

written magnetic medium consists of magnetic bits either on the plane of the medium or 

perpendicular to the medium. The presence of such magnetization distribution in the 

medium generates “demagnetization” fields, which extend beyond the medium, as shown 

in Figure 17.1. If these field lines made to pass through a coil, which is moving at a speed 

relative to the medium, a voltage will be induced in the coil. Wallace has investigated the 

read back voltage for the first time in 1957 [1]. 

 

Figure 17.1: The demagnetization field emanating from the magnetization bits written in the magnetic medium. 
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Figure 17.2: The variation of magnetization inside the magnetic medium. 

The Wallace Solution: 

Wallace had assumed that the magnetization in the medium had the sinusoidal form 

longitudinally. The general interest is to consider the magnetic field above the medium, 

which can be expressed as discussed in the writing process. Hence, the fields at a point 

(x,y) above the medium are  

𝐻𝑥 𝑥, 𝑦 =  −2𝜋𝑀 sin 𝑘𝑥 𝑒−𝑘𝑦  𝑒𝑘
𝛿
2 − 𝑒−𝑘

𝛿
2  

𝐻𝑦 𝑥, 𝑦 =  −2𝜋𝑀 cos 𝑘𝑥 𝑒−𝑘𝑦  𝑒𝑘
𝛿
2 − 𝑒−𝑘

𝛿
2  

(17.1) 

Notice the exponential dependence on yis a general feature of Poisson’s equation in two 

dimensions.Wallace assumed that the reproduce head consists of a semi-infinite block of 

high permeability material with a flat face spaced at a distance dfrom the recording 

medium. Also, the block was assumed to be infinitely thick so that it collected all the 

field lines, and then thread through a coil wound around the block.The value of the 

induction B inside the block is easily obtained by the method of images [2] as, 

𝐵𝑥 𝑥, 𝑦 =  −  
2μ

μ + 1
 2𝜋𝑀 sin 𝑘𝑥 𝑒−𝑘𝑦  𝑒𝑘

𝛿
2 − 𝑒−𝑘

𝛿
2  (17.2) 

Then, the flux per unit width can be calculated as, 

Φ𝑥 =   𝐵𝑥𝑑𝑦
∞

𝑑+
𝛿
2

= − 
2μ

μ + 1
 2𝜋𝑀 sin 𝑘𝑥  𝑒𝑘

𝛿
2 − 𝑒−𝑘

𝛿
2  𝑒−𝑘𝑦 𝑑𝑦

∞

𝑑+
𝛿
2

 

Φ𝑥 =   𝐵𝑥𝑑𝑦
∞

𝑑+
𝛿
2

= −  
2μ

μ + 1
 2𝜋𝛿𝑀 𝑠𝑖𝑛(𝑘𝑥)  

𝑒−𝑘𝑑 − 𝑒−𝑘(𝛿+𝑑)

𝑘𝛿
  

(17.3) 
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If x = vt, and the width of the head is given as w, 

Φ𝑥 =  − 
2μ

μ + 1
 2𝜋𝑀𝑠𝑖𝑛(𝑘𝑣𝑡)  

𝑒−𝑘𝑑 − 𝑒−𝑘(𝛿+𝑑)

𝑘
  

𝑑Φ

𝑑𝑡
=  −  

2μ

μ + 1
 2𝜋𝑀𝑣  𝑒−𝑘𝑑 − 𝑒−𝑘(𝛿+𝑑) cos 𝜔𝑡 

(17.4) 

The voltage across the coils for the head with N turns and an efficiency of  turns out to 

be, 

𝑉 𝑡 =  𝑁𝜂
𝑑Φ𝑥

𝑑𝑡
= − 

2μ

μ + 1
 2𝜋𝑁𝜂𝑀𝑣  𝑒−𝑘𝑑 − 𝑒−𝑘(𝛿+𝑑) cos 𝜔𝑡 (17.5) 

The eqn.(17.5) reveals a number of features that are characteristics of magnetic 

recording. First issue is that there is a spacing loss: 

20 log10 𝑒−𝑘𝑑 =  −54.6  
𝑑

λ
 𝑑𝐵 (17.6) 

Another feature to note is the thickness dependence of the output voltage: 

 1 − 𝑒−𝑘𝛿  ≈ 𝑘𝛿 =
2𝜋𝛿

𝜆
=  

𝛿𝜔

𝑣
 (17.7) 
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Figure 17.3: Reciprocity between recording head and magnetic medium. 

Reciprocity principle: 

This principle is based on the fact that the mutual inductance between any two objects is 

one quantity and the same, i.e., M12 = M21. Let us consider two objects: one is a recording 

head and another is a magnetic element of recording medium located at (x,y,z) with a 

volume of dxdydz, as shown in Figure 17.3. The distance between the pole tip and the top 

of the magnetic recording layer can be taken as d and  is the thickness of the medium. If 

we assume that the magnetization in the medium is in horizontal direction, i.e., along the 

x-axis, then we need only a horizontal component of the magnetic field. If the coil has an 

imaginary write current i1, which produces a head field Hx, then the magnetic flux 

through the medium element due to the current i1, is  

𝑑Φ21 = 𝜇0𝐻𝑥 𝑥, 𝑦, 𝑧 𝑑𝑦𝑑𝑧 (17.8) 
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The equivalent current at the four surfaces (parallel to x-axis as shown in Figure 17.3) of 

the magnetic element is  

𝑖2 = 𝑀𝑥 𝑥 − 𝑥 , 𝑦, 𝑧 𝑑𝑥 (17.9) 

where 𝑥 = 𝑣𝑡  is the typical moving distance of the medium relative to the head. 

Therefore, the magnetic flux through the head coil due to the magnetic element, d12, is 

related to d21 by, 

𝑑Φ12

𝑖2
=

𝑑Φ21

𝑖1
 (17.10) 

By combining eqns.(17.8)-(17.10), the magnetic flux through the head coil due to the 

magnetic element dxdydzcan be given as 

𝑑Φ12 =
𝜇0𝐻𝑥 𝑥, 𝑦, 𝑧 

𝑖1
𝑀𝑥 𝑥 − 𝑥 , 𝑦, 𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 (17.11) 

Thus, the total magnetic flux through the head coil is expressed by head field per unit 

head current and the medium magnetization: 

Φ = 𝜇0  𝑑𝑥
∞

−∞

 𝑑𝑦
𝑑+𝛿

𝑑

 𝑑𝑧
∞

−∞

𝐻𝑥 𝑥, 𝑦, 𝑧 

𝑖
𝑀𝑥 𝑥 − 𝑥 , 𝑦, 𝑧  (17.12) 

The eqn.(17.12) is called as reciprocity formula or reciprocity principle.This equation can 

further be simplified by assuming that both the magnetization and head field are uniform 

over the data track (along the track width W) along the z-axis and the magnetization is 

uniform through the medium thickness along the y-axis, 

Φ = 𝜇0𝑊  𝑑𝑥
∞

−∞

 𝑑𝑦
𝑑+𝛿

𝑑

𝐻𝑥 𝑥, 𝑦 

𝑖
𝑀𝑥 𝑥 − 𝑥   (17.13) 

Subsequently, the readback voltage is given as (by the Faraday’s law): 

𝑉𝑥 𝑥  = −
𝑑Φ

𝑑𝑡
= −

𝑑Φ

𝑑𝑥 

𝑑𝑥 

𝑑𝑡
= −𝜇0𝑣𝑊  𝑑𝑥

∞

−∞

 𝑑𝑦
𝑑+𝛿

𝑑

𝐻𝑥 𝑥, 𝑦 

𝑖

𝑑𝑀𝑥 𝑥 − 𝑥  

𝑑𝑥 
 (17.14) 

As the derivative of magnetization represents the magnetic charge density, the 

eqn.(17.14) confirms the fact that the head field senses the moving magnetic charge. If 

the derivative of magnetization is zero or the velocity is zero, then there is no readback 

signal.  
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Module 3: Recording and play back theories 

Lecture 18: Readback from a single transition 

The reciprocity formula obtained in the earlier lecture would readily help to derive the 

readback voltage from various types of magnetic recording patterns. To begin with, let us 

consider a single magnetic transition made of either an infinitely sharp step transition or 

an arctangent transition. 

Infinitely sharp step transition: 

A single infinitely sharp step transition as discussed in Figure 12.4 with a moving 

center𝑥 = 𝑣𝑡 is expressed as 

𝑀𝑥 𝑥 − 𝑥  =  
−𝑀𝑟  𝑓𝑜𝑟 𝑥 < 𝑥 
𝑀𝑟   𝑓𝑜𝑟 𝑥 > 𝑥 

  (18.1) 

whereMr is the remanence magnetization of the medium. Then, 

𝑑𝑀𝑥 𝑥 − 𝑥  

𝑑𝑥 
= −

𝑑𝑀𝑥 𝑥 − 𝑥  

𝑑𝑥
= −2𝑀𝑟  δ 𝑥 − 𝑥   (18.2) 

where(x) is the -function (not the thickness of the medium). From the reciprocity 

formula, we then obtain, 

𝑉𝑥 𝑥  = 2𝜇0𝑣𝑊𝑀𝑟  𝑑𝑦
𝑑+𝛿

𝑑

𝐻𝑥 𝑥 , 𝑦 

𝑖
 (18.3) 

For thin medium with <<d, we get 

𝑉𝑥 𝑥  = 2𝜇0𝑣𝑊𝑀𝑟𝛿
𝐻𝑥 𝑥 , 𝑑 

𝑖
 

(18.4) 

The eqn.(18.4) reveals that the readback signal of a thin magnetic medium with an 

infinitely sharp magnetic transition is in the shape of the head field profile at the medium. 

Hence, the head field expression is often called head sensitivity function. 

 

 

 

 



NPTEL – Physics – Physics of Magnetic recording 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                                   Page 45 of 58 

Arctangent transition: 

In reality, the magnetic transition is not a sharp one (as discussed in the writing process), 

but rather a transition with a finite width. This could be approximated to an arctangent 

function (see Fig.12.4): 

𝑀𝑥 𝑥 − 𝑥  =
2𝑀𝑟

𝜋
tan−1  

𝑥 − 𝑥 

𝑎
  (18.5) 

wherea is the transition parameter. When a = 0, the arctangent function transfers into a 

step function.Following the reciprocity formula, Karlqvist equation, and the following 

identities: 

𝑑

𝑑𝑥
tan−1 𝑥 =

1

1 + 𝑥2
; 

 
1

𝑎2 +  𝑥 − 𝑥  2

∞

−∞

 tan−1  
𝑥 + 𝑐

𝑦
 − tan−1  

𝑥 − 𝑐

𝑦
  

=
𝜋

𝑎
 tan−1  

𝑥 + 𝑐

𝑦 + 𝑎
 − tan−1  

𝑥 − 𝑐

𝑦 + 𝑎
   

(18.6) 

The readback voltage can readily be obtained from an arctangent transition as 

𝑉𝑥 𝑥  = −𝜇0𝑣𝑊  𝑑𝑥
∞

−∞

 𝑑𝑦
𝑑+𝛿

𝑑

𝐻𝑥 𝑥, 𝑦 

𝑖

𝑑𝑀𝑥 𝑥 − 𝑥  

𝑑𝑥 
 

= 𝜇0𝑣𝑊  𝑑𝑥
∞

−∞

 𝑑𝑦
𝑑+𝛿

𝑑

 
𝐻𝑔

𝜋𝑖
 tan−1  

𝑥 +
𝑔
2

𝑦
 

− tan−1  
𝑥 −

𝑔
2

𝑦
    

2𝑀𝑟

𝜋

𝑎

𝑎2 +  𝑥 − 𝑥  2
   ⟹ 

=
2𝜇0𝑀𝑟𝑣𝑊𝑎𝐻𝑔

𝜋2𝑖
 𝑑𝑦

𝑑+𝛿

𝑑

 𝑑𝑥
∞

−∞

  
1

𝑎2 +  𝑥 − 𝑥  2
  tan−1  

𝑥 +
𝑔
2

𝑦
 

− tan−1  
𝑥 −

𝑔
2

𝑦
     ⟹ 
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=
2𝜇0𝑀𝑟𝑣𝑊𝑎𝐻𝑔

𝜋2𝑖

𝜋

𝑎
 𝑑𝑦

𝑑+𝛿

𝑑

 tan−1  
𝑥 +

𝑔
2

𝑦 + 𝑎
 − tan−1  

𝑥 −
𝑔
2

𝑦 + 𝑎
    ⟹ 

𝑉𝑥 𝑥  =
2𝜇0𝑀𝑟𝑣𝑊𝐻𝑔

𝜋𝑖
 𝑑𝑦

𝑑+𝛿

𝑑

 tan−1  
𝑥 +

𝑔
2

𝑦 + 𝑎
 − tan−1  

𝑥 −
𝑔
2

𝑦 + 𝑎
   (18.7) 

Or, we can write it as a general equation as 

𝑉𝑥 𝑥  =
2𝜇0𝑀𝑟𝑣𝑊

𝑖
 𝑑𝑦

𝑑+𝛿

𝑑

𝐻𝑥 𝑥 , 𝑦 + 𝑎 =
2𝜇0𝑀𝑟𝑣𝑊

𝑖
 𝑑𝑦

𝑑+𝑎+𝛿

𝑑+𝑎

𝐻𝑥 𝑥 , 𝑦  (18.8) 

This suggest that an arctangent transition at a magnetic spacing of d is equivalent to a 

step transition at an effective magnetic spacing of d+a. If the magnetic medium is thin 

enough (for <<d), then, 

𝑉𝑥 𝑥  = 2𝜇0𝑀𝑟𝑣𝑊𝛿
𝐻𝑥 𝑥 , 𝑑 + 𝑎 

𝑖
 (18.9) 

Hence, its peak voltage is 

𝑉𝑝𝑒𝑎𝑘 = 𝑉𝑥 𝑥 = 0 ≅ 4𝜇0𝑀𝑟𝑣𝑊𝛿
𝐻𝑔

𝜋𝑖
tan−1  

𝑔
2

𝑑 + 𝑎
  (18.10) 

The readback voltage pulse from an arctangent transition is in the shape of head field 

profile with an effective magnetic spacing of d+ a. 

Now we shall consider a similar thin medium read by a small gap Karlqvist head. Then 

the readback voltage pulse is 

𝑉𝑥 𝑥  = 2𝜇0𝑀𝑟𝑣𝑊𝛿
𝐻𝑔

𝜋𝑖
tan−1  

𝑔 𝑑 + 𝑎 

𝑥 2 +  𝑑 + 𝑎 2 −  
𝑔
2 

2  

𝑉𝑥 𝑥  ≈ 2𝜇0𝑣𝑊𝑀𝑟𝛿
𝑔𝐻𝑔

𝜋𝑖

 𝑑 + 𝑎 

𝑥 2 +  𝑑 + 𝑎 2
 

(18.11) 
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This is a Lorentzian pulse, which can be written in the form of 

𝑉𝑠𝑝 𝑥 =
𝑉𝑝𝑒𝑎𝑘  

𝑃𝑊50

2  
2

𝑥2 +  
𝑃𝑊50

2  
2  (18.12) 

where, 𝑉𝑝𝑒𝑎𝑘 = 2𝜇0𝑣𝑊𝑀𝑟𝛿
𝑔𝐻𝑔

𝜋𝑖 𝑑+𝑎 
 is the pulse amplitude and PW50 = 2(d+a) is the 

pulse width at half-amplitude. This is often used in magnetic recording channel 

modelling. 
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Module 3: Recording and play back theories 

Lecture 19: Pulse width and Current Optimization 

The readback pulse width at half maximum is generally expressed as 

𝑃𝑊50 =  

=  𝑔2 + 4 𝑑 + 𝑎 2    𝑓𝑜𝑟 𝛿 ≪ 𝑑

=  4 𝑎 + 𝑑  𝑎 + 𝑑 + 𝛿     𝑓𝑜𝑟 𝑔 ≪ 𝑑

=  𝑔2 + 4 𝑎 + 𝑑  𝑎 + 𝑑 + 𝛿     𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙

  (19.1) 

The above expression breaks down when the thickness of the magnetic medium is high. It 

is clear from the eqn.(19.1) that a small gap length, transition parameter, medium 

thickness, and magnetic spacing are required to achieve a narrow pulse. An efficient head 

design to minimize the PW50 is given by 

𝑔 ≈  4 𝑎 + 𝑑  𝑎 + 𝑑 + 𝛿  (19.2) 

The Fourier transform with respect to 𝑥  of eqn.(18.8), i.e., the voltage pulse of a 

Karlqvist head reading an arctangent transition, gives 

𝑉𝑥 𝑘 =
2𝜇0𝑀𝑟𝑣𝑊

𝑖
 𝑑𝑦

𝑑+𝑎+𝛿

𝑑+𝑎

𝐹𝑇 𝐻𝑥 𝑥 , 𝑦    

𝑉𝑥 𝑘 =
2𝜇0𝑀𝑟𝑣𝑊

𝑖
 𝑑𝑦𝑔𝐻𝑔

sin  
𝑘𝑔
2  

 
𝑘𝑔
2  

𝑒−𝑘𝑦
𝑑+𝑎+𝛿

𝑑+𝑎

 (19.3) 

This gives us 

𝑉𝑥 𝑘 = 2𝜇0𝑀𝑟𝑣𝑊𝛿
𝑔𝐻𝑔

𝑖
 
sin  

𝑘𝑔
2  

 
𝑘𝑔
2  

  
𝑒−𝑘 𝑑+𝑎 − 𝑒−𝑘 𝑑+𝑎+𝛿 

 𝑘𝛿 
  (19.4) 
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At low frequencies the voltage is simply due to head differentiation, so it is proportional 

to velocity v, head efficiency, and number of coil turns. At higher frequencies the Fourier 

component drops due to the Wallace spacing loss and gap nulls.There are three loss terms 

associated with the above expression,  

(1) Spacing loss:  

As described in eqn.(19.4), the Fourier transform of the field not only decays with respect 

to xas exponentially (e
-k(d+a)

) as a function of y=d+a, but also decays exponentially with 

the wavevector (e
-k

). 

(2) Gap loss:  

The term sin(kg/2)/(kg/2) is originated from the Karlqvist head approximation. The head 

surface field is assumed to be a single square pulse, so its Fourier transform produces this 

gap loss term and gap nulls (kg = 2, 4, …). Considering the fact that the Karlqvist 

approximation is not precise, the first gap null actually occurs at kg 1.8 instead of 2. 

(3) Thickness loss: 

The term (1-e
-k

)/(k) is also originated from the Laplace equation. This reveals that the 

thinner the medium is, the closer the bottom of the medium is from the head, so the less 

the spacing loss is, i.e., the spacing loss occurs with increasing the medium thickness, as 

the field from the head may not reach the bottom of the medium. 

These loss mechanisms are universal in all the types of magnetic recording. Hence, the 

necessary considerations have to be taken care when designing and testing a magnetic 

recording system. 

Current Optimization: 

In the Williams-Comstock (WC) model discussed in lecture 14, it was assumed that the 

head field was adjusted such that the maximum in the head field gradient occurred where 

the head field itself was equal to that coercivity. Now, it would be interesting to 

deliberate how the output varies as a function of the head field Hg, or, equivalently, the 

input current. 
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The longitudinal head field function is 

𝐻𝑥 =  
𝐻𝑔

𝜋
 tan−1  

𝑥 +
𝑔
2

𝑦
 − tan−1  

𝑥 −
𝑔
2

𝑦
   (19.5) 

The centre of the transition occurs when Hh=−HI =−HCras discussed in the WC model. 

For a square loops having Hcr ≈ HC,the gradient of the head field function is 

𝑑𝐻𝑥

𝑑𝑥
=

𝐻𝑔

𝜋𝑦
 

𝑦2

 𝑥 +
𝑔
2 

2

+ 𝑦2

−
𝑦2

 𝑥 −
𝑔
2 

2

+ 𝑦2

  (19.6) 

If Hh = - HC, then one of the coordinates may be eliminated (consider eliminating x), 

then, eqn.(19.6) turns out to be, 

𝑑𝐻𝑥

𝑑𝑥
=

𝐻𝑔

𝜋𝑦
𝑠𝑖𝑛2  

𝜋𝐻𝐶

𝐻𝑔
  (19.7) 

The eqn.(19.7) suggests that the Hg must be more than HC. As Hg/HC increases beyond 2, 

the head field gradient goes through a maximum near 2.7. The centre of the transition 

also moves further from the gap edge as illustrated in Figure 19.1. 

 

Figure 19.1: Longitudinal field intensity at some point above the gap as a function of the deep-gap field. 
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If we again take an arctangent transition (similar to eqn.(18.5)), 

𝑀 =  
2𝑀𝑟

𝜋
 tan  

𝑥′

𝑎
  (19.8) 

then at the centre of the transition, at x = 0 we get 

 𝑑𝑀

𝑑𝑥′
 
𝑥 ′ =0

=
2𝑀𝑟

𝜋𝑎
 (19.9) 

Following the demagnetization field (eqn.(12.7)), the gradient of demagnetization field at 

the top surface of the medium (y = δ/2) and at the center of the transition is  

 𝑑𝐻𝑑

𝑑𝑥′
 

𝑥 ′ =0
𝑦=𝛿/2

=
4𝑀𝑟𝛿

𝑎(𝑎 + 𝛿)
 (19.10) 

Using the Williams-Comstock squareness parameter S* (eqn.(14.3)) 

𝑑𝑀

𝑑𝐻
=

𝑀𝑟

𝐻𝑐(1 − 𝑆∗)
 (19.11) 

The slope criterion is given as 

𝑑𝑀

𝑑𝑥
=  

𝑑𝑀

𝑑𝐻
 
𝑑𝐻𝑕

𝑑𝑥
+

𝑑𝐻𝑑

𝑑𝑥
  (19.12) 

Substituting eqns.(19.7), (19.9), (19.10), and (19.11) into eqn.(19.12) results 

2𝑀𝑟

𝜋𝑎
=

𝑀𝑟

𝐻𝑐(1 − 𝑆∗)
 
𝐻𝑔

𝜋𝑦
𝑠𝑖𝑛2  

𝜋𝐻𝐶

𝐻𝑔
 +

4𝑀𝑟𝛿

𝑎(𝑎 + 𝛿)
  (19.13) 

Taking the contribution from the last term in eqn.(19.13) to be small, and assuming y = 

dresults, 

2𝑀𝑟

𝜋𝑎
=

𝑀𝑟

𝐻𝑐(1 − 𝑆∗)

𝐻𝑔

𝜋𝑑
𝑠𝑖𝑛2  

𝜋𝐻𝐶

𝐻𝑔
  (19.14) 

𝑎 =
2 1 − 𝑆∗ 𝑑

 
𝐻𝑔

𝐻𝐶
 𝑠𝑖𝑛2  

𝜋𝐻𝐶

𝐻𝑔
 

 
(19.15) 
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Figure 19.2: Schematic drawing of output pulse amplitude as a function of record current for different record frequencies 

[1]. 

The eqn.(19.15) reveals the reciprocal dependence on the head field gradient, i.e., the 

transition length will have a minimum, when head field gradient is a maximum. A 

sharper transition means a larger output voltage. Figure 19.2 shows the output maximum 

as a function of the input current [1]. 

References: 

[1]. B.K. Middleton and P.L. Wisely, IEEE Conf. Proc. 35 (1976) 35. 
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Module 3: Recording and play back theories 

Lecture 20: Magnetoresistive readback 

In the earlier lectures, we have been discussing the ring and single-pole heads. They all 

rely on Faraday’s law: the output voltage is proportional to the rate of change of magnetic 

flux linking the head. With increasing the areal densities, the track widths become 

smaller, and as we move to smaller diameter size disks, these induction signals become 

weaker. Hence, they are not suitable for reading the signal from high density bits. An 

alternative and more promising approach for the detection lies in the magnetoresistive 

(MR) effect [1]. 

Magnetoresistivity: 

Magnetoresistance (MR) means the increase in the resistance of a metal and/or 

semiconductor when they are placed in a magnetic field. In the standard geometry, the 

field is transverse to the current and ∆ρ/ρ ~ H
2
. However, in a magnetic material, this MR 

is anisotropic, depending upon the direction of magnetization alignment with respect to 

the current direction and the origin of this anisotropy lies in spin-dependent scattering [2]. 

Here, let us briefly discuss how the resistance depends upon an applied field by 

considering a film of permalloy which has been deposited in a field so as to give it an 

easy axis. 

The anisotropy energy density may then be written 

𝐸𝐴 =  𝐾sin2𝜃 (20.1) 

where θ is the angle between the magnetization and the easy axis, as shown in Figure 

20.1. If an external field H0is applied perpendicular to this axis, then the Zeeman energy 

is  

𝐸𝑧 =  −𝑀𝑠𝐻0 sin 𝜃 (20.2) 
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Figure 20.1: Schematic representation of current, magnetization and easy axis directions in the MR element. 

Minimizing the total energy (eqns.(3.1) – (3.5)) gives 

sin 𝜃 =
𝑀𝑠𝐻0

2𝐾
 (20.3) 

Suppose that the current now flows along the easy axis. This may be resolved into 

components parallel and perpendicular to the magnetization, as shown in Figure 20.1. 

Since the resistivities associated with these directions are different, the electric field 

components are 

ℰ∥ = 𝜌∥𝑗∥ 

ℰ⊥ =  𝜌⊥𝑗⊥ 

(20.4) 

Therefore, the measured electric field is 

ℰ𝑧 =  ℰ∥ cos 𝜃 + ℰ⊥ sin 𝜃 

ℰ𝑧 =  𝜌∥𝑗 𝑐𝑜𝑠2 𝜃 + 𝜌⊥𝑗 𝑠𝑖𝑛2 𝜃 

(20.5) 
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The resistivity becomes 

𝜌 =
ℰ𝑧

𝑗
=  𝜌∥ 𝑐𝑜𝑠2 𝜃 + 𝜌⊥ 1 − 𝑐𝑜𝑠2 𝜃    ⟹ 

𝜌 = 𝜌⊥ +  𝜌∥ − 𝜌⊥ 𝑐𝑜𝑠2 𝜃    ⟹ 

𝜌 = 𝜌⊥ +  𝜌∥ − 𝜌⊥  1 − 𝑠𝑖𝑛2 𝜃  

𝜌 = 𝜌⊥ +  𝜌∥ − 𝜌⊥ −  𝜌∥ − 𝜌⊥ 𝑠𝑖𝑛2 𝜃 

 

 

𝜌 = 𝜌0 + ∆𝜌𝑚𝑎𝑥 − ∆𝜌𝑚𝑎𝑥  𝐻0  
2𝐾

𝑀𝑠
 

−1

 

2

 

where, 𝜌0 ≡ 𝜌⊥; and ∆𝜌𝑚𝑎𝑥 =  𝜌∥ − 𝜌⊥  

(20.6) 

Eqn.(20.6) suggests that the resistivity of the film decreases with increasing the field due 

to the alignment of the domains in the field directions, resulting less scattering to the 

electrons travelling through the films.  
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Analysis of readback signal: 

In order to improve the resolution of the MR sensor and to avoid the interference of noise 

from the external sources, it is usually shielded from the approaching transition as shown 

in Figure 20.2. The response of MR sensor can be analysed using the reciprocity theorem 

by calculating the flux in the element. To obtain the field, let us consider a coil wrapped 

around the MR element. In the absence of the shields, this would correspond to a pole-tip 

head.In the presence of the shields the magnetic potential along the face of the head has 

the form (see Figure20.2b), which is the sum of two Karlqvist potentials with opposite 

signs, one centred at x=−(g+t)/2 and another at x = (g+t)/2.Therefore, the field will be, 

𝐻𝑥 𝑥, 𝑦 =  𝐻𝑥  𝑥 +
(𝑔 + 𝑡)

2
, 𝑦 − 𝐻𝑥  𝑥 −

(𝑔 + 𝑡)

2
, 𝑦  (20.7) 

 

(a) 

 

(b) 

Figure 20.2: (a) Schematic drawing of MR head with shielding arrangements, (b) magnetic potential along the face of the 

MR head. 
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When this result is used in the reciprocity relation (as in eqn.(18.3)), the voltage will be 

the difference of two Wallace-like expressions. Since the voltage is the time rate of 

change of the flux, the flux can be obtained by integrating the voltage, 

Φ(𝑥 ) =  
1

𝑉
  𝑉  𝑥′ +

(𝑔 + 𝑡)

2
 − 𝑉  𝑥′ −

(𝑔 + 𝑡)

2
 𝑑𝑥′ 

𝑥 

−∞

 (20.8) 

where x = vt. In practice, the MR sensor is biased with a transverse field H0 such that θ = 

π/4 where the response is linear. Thus, the last term in eqn.(20.7) turns out to be, 

 𝐻0  
2𝐾

𝑀𝑠
 

−1

 

2

→  𝐻0  
2𝐾

𝑀𝑠
 

−1

 

2

+  2𝐻0∆𝐻  
2𝐾

𝑀𝑠
 

−2

  (20.9) 

Since θ = π/4, the term, 𝑠𝑖𝑛2 𝜃 =  𝐻0  
2𝐾

𝑀𝑠
 

−1

 
2

=
1

2
. Hence, the eqn.(20.9) turns out to 

be, 

→
1

2
+

2∆𝐻

𝐻0
 

1

2
 =

1

2
+

∆𝐻

𝐻0
 (20.10) 

Also,H0 induces the transverse magnetization,𝑀𝑦 = 𝑀𝑠/ 2, and since My >> H0, 

∆𝐻

𝐻0
=  

 2Φ(𝑥 )

4𝜋𝑀𝑠𝑡𝑤
 (20.11) 

Substituting the eqns.(20.10) and (20.11) in eqn.(20.7) results us 

𝜌 = 𝜌0 + ∆𝜌𝑚𝑎𝑥 − ∆𝜌𝑚𝑎𝑥  
1

2
+

 2Φ(𝑥 )

4𝜋𝑀𝑠𝑡𝑤
   

𝜌 = 𝜌0 +
1

2
∆𝜌𝑚𝑎𝑥 −  2∆𝜌𝑚𝑎𝑥  

Φ(𝑥 )

4𝜋𝑀𝑠𝑡𝑤
  (20.12) 

Here,Φ(𝑥 ) is the flux entering the sensor and ρ is the resistivity along this face. As one 

moves up the sensor element the flux leaks out of the element into the shields. If the 

height of the element is of the order of this characteristic decay length then the average 

flux is Φ/2. The voltage across the element is then 

𝑉 = −
𝑗

 2
 
∆𝜌𝑚𝑎𝑥  Φ(𝑥 )

4𝜋𝑀𝑠𝑡
  (20.13) 
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The peak to peak amplitude of the permalloy based MR head is of the order of 90 μV/μm 

track width. This is about ten times that of an inductive head and is the reason that such 

sensors are being important and developed for recording high density bits in magnetic 

recording. 

References: 

[1]. R.P. Hunt, IEEE Trans. Magn. 7 (1971) 150. 

[2]. T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11 (1975) 1051. 

Quiz: 

(1) Explain the mechanism to get the readback voltage from the written information? 

(2) What is pulse width? What are the parameters required to achieve a narrow pulse 

width? 

(3) Describe the different types of losses controlling the readback voltage? 

(4) How does the readback voltage in the magnetoresistive based head enhance as 

compared to inductive head? 

 

 

 


