
Introduction to Physics of Nanoparticles and Nano structures

Part II: Physics of Nanoparticles Questions on Module 7

1. Consider the electron states in a AlGaAs/AGaAs split gate dot for which within the Effective
Mass Approximation (EMA), the one electron wave function for non interacting electrons in
the QD is

Ψ(~r, z) = φ(~r)ξi(z),

where ~r is the position vector in the plane of the 2DEG (taken to be the x-y plane at the
planer interface of AlGaAs/AGaAs) and z-is the coordinate normal to the 2DEG; here ξi(z)
is the eigen function for the ith bound state (sub band) in the z-direction, and φ(~r) satisfies
the equation, [
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where m∗ is the effective mass in the plane of the dot. As a first approximation, the potential
is of parabolic form,
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for which the bound states in the dot are the usual harmonic oscillator solutions, with eigen-
values

E(nx, ny) = h̄ωx(nx + 1/2) + h̄ωy(ny + 1/2),

where nx, ny = 0, 1, 2, · · ·. For a AlGaAs/AGaAs split gate dot, these eigenvalues can be
several meV.
Show that for ωx = ωy = ωo, one has degenerate eigen-states (in addition to spin degeneracy)
due to radial symmetry of the problem:

En = (n+ 1)h̄ωo,

where n = nx + ny = 0, 1, 2, · · · . The lowest state nx = 0 = ny is non degenerate; the next
level nx = 1, ny = 0 and nx = 0, ny = 1 is doubly degenerate; and so on. In general, the
nth level En is (n+ 1)-fold degenerate. Show that these degeneracies correspond to different
angular momentum states sharing the same energy.

2. Consider the same quantum dot described above, in a magnetic field ~B along z-axis, and for
simplicity, assume ωx = ωy = ωo. In this case, the one electron Hamiltonian is
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where, ~B = ~∇ × ~A, g∗ is the effective Landé’s g-factor, and µB = eh̄/(2me) is the Bohr
magneton.
Now, choosing a gauge, where ~A = (−By/2, Bx/2, 0), so that ~B = ẑB show that
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Then show that the Hamiltonian can be rewritten as
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where,
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with ω =
√
ω2
o + ω2

c/4, and ωc = eB/(cm∗) (the cyclotron frequency).
Thereby show that the energy eigenvalues are,
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where, m = −n,−(n − 2), · · · , (n − 2), n, as shown schematically in the figure, showing
En,m/h̄ωo vs. ωc/ωo.

3. Consider now a two electron system QD, with the interaction between the electrons are
included. The Hamiltonian for the two electron system in the QD in the magnetic field B
may be written as

H(1, 2) = Ho(1) +Ho(2) + V (|~r1 − ~r2|),

where V (r) is the inter-electron Coulomb repulsion, and Ho(1), Ho(2) are the Hamiltonian
of the individual electrons when they are not interacting, given by

Ho(i) =
p2
i

2m∗
+

1

2
m∗ω2r2

i +
1

2
ωcLz,i +

g∗µB
h̄

BSz,i.

The Hamiltonian H(1, 2) is separable if one introduces the Center of Mass (CM) and Relative
(RM) coordinates, defined by

~R = (~r1 + ~r2)/2, ~P = (~p1 + ~p2)/2, · · · · · · (CM),

~r = ~r1 − ~r2, ~p = ~p1 − ~p2, · · · · · · (RM).

Show that
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where M = m1 +m2 = 2m∗ is the total mass, mr = m1m2/(m1 +m2) = m∗/2 is the reduced
mass, and Sz =

∑
i Sz,i, the z-component of the total spin operator for the two electrons.

Show that the energy eigenvalues corresponding to the CM system is

ECM = (N + 1)h̄ω +
1
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h̄ωcM, M = −N,−(N − 2), · · · , (N − 2), N,

where N and M denote the principal and angular momentum quantum numbers of the CM
system.
The eigen-states of the two-particle system requires consideration of the spin as well as the
spatial coordinates in order to find the proper antisymmetric state under the exchange of the



two particles. Considering this show that if the Coulomb interaction V (r) is ignored, then
the eigenvalues corresponding to the RM system are given by
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If the Coulomb interaction V (r) is approximated by a parabolic potential, then taking V (r)
as,
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where Vo is a constant, show that the total eigenvalue is

EnmNM = V0 + (N + 1)h̄ω +
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