
Introduction to Physics of Nanoparticles and Nano structures

Part II: Physics of Nanostructures Questions on Module 4

1. In a semiconductor having a concentration gradient of electrons, the electrons diffuse from
region of higher concentration to lower one following Fick’s law, which says that the electron
diffusion flux Fn of electrons is directly proportional to the concentration gradient:

Fn ∝
dn

dx
= −Dn

dn

dx
,

where Dn is the Diffusion coefficients or diffusivity for the electrons.
Then show that in one dimension, the diffusion current density is given by

Jn = −eFn = −eDn
dn

dx
.

Similarly for holes, show that with hole diffusion flux given by

Fp ∝
dp

dx
= −Dp

dp

dx
,

where Dp is the hole diffusion constant, the hole diffusion current density is

Jp = +eFp = −eDp
dp

dx
.

2. When an electric field ~E is applied, the total current density is sum of the usual drift and
diffusion components of currents,(in 3-dimension):

~Jn(x) = eµnn(x) ~E + eDn
~∇n(x), ~Jp(x) = eµpp(x) ~E − eDp

~∇p(x).

The total current arising from both type of carriers is ~J = ~Jn + ~Jp.
The mobility and diffusion coefficients are related (Einstein’s relation). Considering an unbi-
ased n-type semiconductor in thermal equilibrium, show that

Dn = VTµn, with VT = kBT/e.

This is the so called Einstein’s relation.
Similarly considering p-type doping, one finds

Dp = VTµp, with VT = kBT/e.

3. A set of five equations are usually necessary for deriving most of the transport properties
of semiconductor devices. Two of them are the drift-diffusion equations. Third equation
determines the field ~E, from Maxwell equation ~∇. ~D = ρ, where ~D = ε↔ : ~E and ρ is the
charge density.
Writing ~E = −~∇φ(x) and assuming dielectric permittivity tensor of the sample to be spatially
constant and approximated by a scalar ε↔ ≈ εs = εoεs, with εo and εs respectively denoting
the dielectric permittivity of free space (εo = 8.854 × 10−14 Farads/cm) and the relative
dielectric constant of the semiconductor, one has the so called Poisson equation

∇2φ(~x) = −ρ(~x)

εs
,



where ρ(~x) = e[p(~x)− n(~x) +N+
d −N−a ], which forms the third equation. Another set of two

equations describe the time evolution of the carriers provided by the continuity equations.
Also, there can be intrinsic generation, i.e., recombination of carriers with rates Rn and Rp,
distinctly different from the extrinsic generation rates Gn and Gp. These are taken care of
via the continuity equations,

∂n

∂t
= − 1

−e
~∇. ~Jn + (Gn −Rn), and

∂p

∂t
= − 1

+e
~∇. ~Jp + (Gp −Rp).

In thermal equilibrium, np = n2
i . But, for carrier injection, one has a non-equilibrium situ-

ation, such that np 6= n2
i . When disturbed from equilibrium, the system tries to relax back

to equilibrium (so that np = n2
i ). In case of injection of minority carriers, the restoration to

equilibrium takes place by recombination with the majority carriers. In the radiative recom-
bination, energy released in the recombination process is emitted as photons, while in the
non-radiative recombination, the energy is released in the form of heat (or phonons) to the
lattice.
Using appropriate approximations for a unbiased n-type direct band gap semiconductor ex-
posed to radiation which generates additional e-h pairs at the rate GL, (say), and with
thermally generated process of creating carriers represented by the rate Gth, show that the
time dependent equation for the excess minority carrier is

dp

dt
= GL −

(p− po)
τp

,

where τp is the excess minority carrier life time.
Therefore in the steady state, GL = U = ∆p/τp, or p = po + τpGL.
If the carrier generator (i.e., GL) is on for t < 0 and switched off at t = 0, then show that
the excess minority carrier relax according to

p(t) = po + τpGLe
−t/τp .

4. Following similar approximations as in the preceding problem, show that the relaxation of
excess minority in an indirect gap semiconductor, also follows similar results as above, with
suitably modified definition for the excess minority carrier life time.

5. Similarly considering Surface Recombination processes show that the relaxation of excess
minority, also follows similar results as above, with appropriately modified definition for the
excess minority carrier life time.

6. Steady injection of carrier by illuminating the end surface (x = 0) of a n-type semiconductor
of semi-infinite length, the excess carrier is injected at x = 0. Assume now that the light
penetration into the sample is negligible, (which implies zero field and zero carrier generation
for x > 0). Then, show that at steady state, the equation for minority carriers inside the
semiconductor (x > 0) is

d2p

dx2
=

(p− po)
Dpτp

.

For show that for the boundary condition p(x = 0) = p(0), and p(x → ∞) = po (thermal
equilibrium value), the solution is

p(x) = po + [p(0)− po]e−x/Lp ,

where Lp =
√
Dpτp, called diffusion length for the excess minority carriers.

If the semiconductor is of finite length L, and if one assumes that all excess carriers are



extracted at x = L, then p(L) = po, and with this boundary condition, show that the
solution becomes

p(x) = po + [p(0)− po]
sinh[(L− x)/Lp]

sinh(L/Lp)
,

and the current density at x = L becomes (purely diffusive)

Jp = −eDp

[
dp

dx

]
x=L

= e[p(0)− po]
(Dp/Lp)

sinh(L/Lp)
.

Thereby show that for nano-sized samples where L� Lp, one gets Jp = e[p(0)− po](Dp/L),
independent of Lp.

7. Describe schematically the experiment of Haynes and Shockley which allows independent
measurement of µ and D. After a pulse input to a n-type sample, show that the transport
equation for the minority carriers has the solution of the form

p(x, t) =
N√

4πDpt
exp

[
− x2

4Dpt
− t

τp

]
+ po,

where N is the number of electrons or holes generated per unit area, assuming that the pulse
is like a delta function at the instant t = 0.

8. Consider the thermionic emission from metal to vacuum, with a planar interface. Show that
the electric charge flux leaving the metal surface at temperature T is

Je = eJ = RT 2e−eβφm ,

where, R = 4πemek
2
B/h

3 (≈ 120 Amps./(cm2 K2), called Richardson constant), eφm = W
(the work function of the metal), and β = 1/(kBT ).

9. Consider a semiconductor structure comprising of GaAs on the left and AlxGa1−xAs on the
right; since the band gap in AlxGa1−xAs is larger than that of GaAs, there is a jump in Ec
(the conduction band minima) by the ∆Ec (the band offset); at finite temperature, there is
now a possibility of carriers moving from left to right via thermionic emission, in the manner
analogous to the thermionic emission in the case of metal to vacuum. Show that the electric
current density from left (GaAs) to right (AlxGa1−xAs) is

JL→R = R∗eβ(EL
Fn−E

L
c −∆Ec),

where R∗ = (m∗e/me)R is the effective Richardson constant, ELFn is the quasi Fermi level in
the left and ELc is the bottom of conduction band on the left, and the current density from
right (AlxGa1−xAs) to left (GaAs) is

JR→L = R∗eβ(ER
Fn−E

R
c ),

assuming that m∗e is same in left or right media for simplicity, and denoting ERFn as the quasi
Fermi level in the right and ERc as the bottom of conduction band on the right.
Suppose now that AlxGa1−xAs is doped with Nd donors while GaAs is undoped. The quasi-
Fermi levels then have different separations from the conduction band edge, so that JL→R 6=
JR→L, resulting in a net current. As the electrons start flowing from AlxGa1−xAs (doped) to
GaAs (undoped) region, the current density close to the interface changes with time, which can
be determined from the continuity equation (ignoring generation and recombination effects),

e
∂n

∂t
=
∂j

∂z
,



assuming that the current flows from AlxGa1−xAs to GaAs region. If further, one assumes
that this thermionic current flows only within a certain region, which is of the order of the
mean free path Ln for the electrons because of collisions or scattering, the average velocity is
much smaller beyond this region), then using ∂j/∂z = −JR→L/Ln, show that

e
∂n

∂t
≈ −(R∗T 2/Ln)eβE

R
Fn(t),

so that
∂n

∂t
≈ −(R∗T 2/eLn)n(t)/n∗o = −n(t)/τ,

where τ = eLnn
∗
o/(R

∗T 2) is a time constant (order of pico second near room temperature).
This equation for n has the solution

n(t) = n(0) e−t/τ ,

where n(0) is the carrier concentration in AlxGa1−xAs at the instant t = 0, which shows
that AlxGa1−xAs loses initially its electrons in picoseconds, leaving positively charged donors
behind, which then give rise to a potential barrier, slowing down further electron transfer,
until the equilibrium is reached and the energy bands are bent at the interface.

10. Consider now thermionic emission from a n-type semiconductor to vacuum. Show that the
thermionic emission current density (from semiconductor to vacuum) is

Je = R∗T 2e−eβ(χ+Vn),

where χ is called the electron affinity of the semiconductor, Vn = (EC − EFn)/e, R∗ is the
effective Richardson constant defined before.

11. Consider now a Metal-Semiconductor (MS) junction. Using the energy band diagram, explain
when and how the junction can act as a rectifier (Schottky diode), and under what conditions,
the junction can behave as a Ohmic contact.

12. Consider a Schottky diode comprising of a metal and n-type semiconductor. Describe the
depletion model for the junction, and show that the width of the space-charge (or depletion)
region is

W =

√
2εsc(Vi − Va)

eNd
,

where Vi is the built in potential, Va is the applied bias and Nd is the dopant concentration
in the semiconductor. Thereby, show that the differential capacitance C per unit area of the
depletion layer beys the relation

1

C2
= sl(Vi − Va)

(
F

cm2

)−2

, with sl =
2

εsceNd

(
F

cm2

)−2

V −1.

13. Explain Schottky effect using energy diagram and show that the effect corresponds to an
effective lowering of the potential barrier through

∆φb =

√
eEm
4πεsc

,

where Em = eNdW/εsc, so that

∆φb =

[
e3Nd

8π2ε3
sc

(Vi − Va)
]1/4

,



and the resulting potential barrier height equals φ′b = φb − ∆φb. Thereby, obtain the I-V
characteristic of a Scottky diode. What is the justification for this approximate formula for
∆φb?

14. For a MS junction, the specific contact resistance Rc is defined by Rc = (∂J/∂V )−1
V=0 Ω-cm2,

where J is the current density. Show that for metal-semiconductor contacts with low doping
concentrations, when the thermionic emission current dominates the current transport,

Rc =
kBT

eJs
,

where Js = R∗T 2 exp [−eφb/(kBT )].

15. Show that it is also possible to obtain an Ohmic contact between a metal and a semiconductor
that would normally form a Schottky diode, such as a metal for which EFm < EFsc. For
such a contact, usually a heavy inhomogeneous doping (called graded doping) close to the
interface is employed to achieve large barrier height having very narrow barrier width. In
such a case, the main mechanism of carrier transport is tunneling through the narrow barrier
(a topic to be dealt with later). The tunneling current is

I ∼ exp

[
−2W

h̄

√
2m∗ee(φb − V )

]
,

where W is the depletion layer width which can be approximated as

W ≈
√

2εsc
eNd

(φb − V ),

so that

I ∼ exp

[
− α√

Nd
(φb − V )

]
,

where α = 4
√
m∗eεsc/h̄. Then show that

Rc ∼ A
φb
ξ
eξ,

where where A is the Ohmic contact area, and ξ = αφb/
√
Nd. This shows that in the tunnel-

ing range, Rc depends strongly on the barrier height and the doping concentration Nd.
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