Introduction to Physics of Nanoparticles and Nano structures

Questions on Module 6

Part I: Physics of Nanoparticles

“wt in a linear isotropic homo-

1. The time harmonic em fields (E(Z), H(Z)) with time dependence e~
geneous medium must satisfy the equations

VE+¢@E=0, V-E=0,

V2H+¢H=0, V-H=0,

where ¢? = w?ep. In addition the fields must satisfy the relations

ﬁxﬁziwuﬁ, V x E = —iweH.

Show that if ¢ (Z) is a scalar field satisfying the scalar wave equation, V2 + ¢?¢ = 0, then the

vector fields M () and N (&) satisfy all the equations for the em fields if
V x N,

Q|

M=V x (&), and N=

where ¢ is a constant vector (can also be the radial position vector 7).

The vector spherical harmonics are defined as

Meml = ﬁ X (F¢eml)a

where
Yemi = 21(p) P (cos ) cosmap, Yomi = z1(p) P (cos 0) sin ma,
, 2; denoting any of the four spherical Bessel functions j;, v, hl(l) = ity

withp=¢qr, m=0,1,--
and hl(2) = ji — iy, and P/" denoting the Associated Legendre functions.

(a) Express the vector spherical harmonics defined above in terms of the components along the

unit vectors (&, €y, €,) in the spherical polar coordinates.

(b) Using the properties of P/™, show that,
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(c) Consider a plane z-polarized wave E; = E,é,eT.

Show that
2N [0 _ e 3(1)
=) B {Moll _iNell}’ | = ZE [ M) +iN 11} p=qr
=1 wn =1
where E; = F, g?zli%)) !, and superscript (1) indicates choosing j; for z;.

(d) Let (Es, H s) be the em fields scattered by a sphere of radius R with refractive index Ny = n; +
ik (relative to the medium outside the sphere) when a plane z-polarized wave E; = E,é,e'%
scatters against the sphere, and (El, H 1) be the em fields inside the sphere.

(i) Show that

Z {wlNu—bl (511)] a :quZEl [N?l NG+ a M5 )}7 p=qr,
=1 =1
Z e Myl —idi NG, Hi= - o ZEI AN +ia NG| e =am
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(1)

where ¢; = ¢N1, and the superscript (3) indicates choosing h;’ for z;. Determine the unknown
coefficients «a;, by, ¢; and d; using appropriate boundary conditions.

(ii) Find the conditions for exciting the normal modes of the sperical particle.



(iii) Show that the scattering cross-section Cyq, and the extinction cross sction Cp,y for the
sperical particle are given by

2m & 9
_?Z (20 + 1) [lag|* + |00,
=1
Y s
ea’;t qﬁz 2l+1 Real+bl]
=1

(iv) For the a-polarized incident plane wave find the amplitude scattering matrix elements Sy,
S9, S3, and Sy, and then find the relation between Stoke’s parameters for the incident and
scattered waves.

(v) Using the small p expansions for spherical Bessel functions, show that for small size pa-
rameter x for a sphere,
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where m is the refractive index of the particle relative to that of its surrounding medium.

(vi) Show that accurate to order x°®, the 4 x 4 scattering matrix (Mueller matrix) is given
by

[ %(cos2 0+1) %(COS29 -1 0 0 ]
oy | 01 Yoo st 0 o
4q?r? 0 0 cos 0

i 0 0 0 cosf |

(vii) Show that for unpolarized incident light of irradiance I;, the irradiance of light scattered

from a spherical partcile of radius R is

8TANARS |m? — 1|2
M2 im?2 4 2)2

Iy = (1+cos®0) I

where A is the wavelength in free space and N is the refractive index of the medium surround-
ing the particle.

(viii) Show that, when the incident light is unpolarized, the degree of polarization for light
scattered by a sphere is
1 —cos?6

p=-_"""
14 cos20

(ix) Show that accurate to order x*, the extinction efficiency Qe;; and the scattering effi-
ciency Qgscq are given by

Qext =4xIm

(m? —1) 22 (m? —1) (m* +27m? + 38) 8
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Ques = 8zt |m? — 1|2
sca — 3 ‘m2+2|2

3. Using electrostatic approximation, show that the effective polarizability « for a spherical particle
of radius R and dielectric permittivity €; surrounded by a nonabsorbing medium of dielectric
permittivity e, is given by

(e1—&m)

= 47 R> .
@ T (e1+ 2epm)

Thereby show that the scattering and extinction cross sections arte given by

9 8zt |e1 — eml?
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where x is the size parameter defined as x = 2w R,/g,, /A, with A denoting the wavelength in vacuum.

4. For N identical spheres of volume vy, each, embedded in a medium of dielectric function ¢,,, the
Clausius-Mossotti formula gives the effective dielectric function €); for the system as

(em — €m)

(ear £ 260) = fa, (Maxwell — Garnet theory),

where f = nvgp, n = N/V being the density of spheres.

5. Consider an ellipsoidal particle of semiaxes a > b > ¢. Choose a along z-axis, b along y-axis and ¢
along z-axis.

(a) Using electrostatic approximation, and ellipsoidal coordinates, show that (consult Bohren and
Huffmann), if the dielectric permittivity of the particle is €; and that of the surrounding
nonabsorbing medium is e, (assume p = 1 for all the media), then the effective polarizability
a; (j = z,y, 2) for the particle along the j* principal axis is given by

(e1—&m)
3em +3Lj(e1 —em)’

o = 4mabe

where the so called geometrical factor Ljs are defined by (z =1, y =2, 2 = 3)

abe [ dg ;. abe (< dg p._abe (< dg
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with f(q) = v/(a? + ¢)(0* + ¢)(? + q).

Ly =

(b) Show that Ly + Lo + Ly = 1.



(c)

(d)

()

Show that for a prolate (cigar shaped) sphereoid, for which b = ¢,

1 1+e
L1 = g°*(e) —1+%ln1_e ,

where €2 =1 — b?/a® and g(e) = V1 — e2/e.

Show that for a oblate (pancake shaped) sphereoid, for which b = a,

where €2 =1 — ¢?/a? and g(e) = V1 — €2/e.

Show that for a randomly oriented ellipsoid,

4

(Cas) = 2 Imlor+as+0s],  (Coea) = 7 [laaf? + |2 + g ?]
3 187

6. Consider a coated ellipsoidal particle of semiaxes a; > b; > ¢; for the inner (core) ellipsoid with
dielectric permittivity 1, and az > by > ¢y for the outer (coat) ellipsoid with dielectric permittivity
€9, placed in a nonabsorbing medium of dielectric permittivity &, (assume p = 1 for all the media).

(a)

()

Using the electrostatic approximation, and ellipsoidal coordinates (same as in the previous
problem, only the boundary conditions are to be implemented at the additional interface be-
tween the core and the coat), show that the effective polarizability as (along z-axis) for the
particle is

4mabe (2 —em)[e2 + (61 — 62)(L§1) - fLéQ))] + f(e1 — &2)
3 e+ (e1 — 82)(L§1) - fLéZ))][am + (g9 — Em)ng)] + fL§2)€2(E1 - 52)7

a3 =

where f = (a1bic1)/(azbace), the volume fraction of the core, and

10 _ arbrcy /°° dq
’ 2 Jo (G+a)fu(@)

with fi(q) = \/(a} + @) (B + q)(c} + q), (k =1,2).

Reduce the result above to the case of a coated sphere for which oy = as = a3 = «, and then
show that the particle becomes invisible (i.e., & = 0) if the coating material is such that

(e1—¢e2) _ (em —e2)

(614 2e2)  (em +2e2)

Reduce the result above further to the case of a coated sphere with ultra thin coating, by
taking a2 = a1 + d where the coating thickness d is very small compared with as.



