
Introduction to Physics of Nanoparticles and Nano structures

Part I: Physics of Nanoparticles Questions on Module 6

1. The time harmonic em fields (E⃗(x⃗), H⃗(x⃗)) with time dependence e−iωt in a linear isotropic homo-
geneous medium must satisfy the equations

∇2E⃗ + q2E⃗ = 0, ∇⃗ · E⃗ = 0,

∇2H⃗ + q2H⃗ = 0, ∇⃗ · H⃗ = 0,

where q2 = ω2εµ. In addition the fields must satisfy the relations

∇⃗ × E⃗ = iωµH⃗, ∇⃗ × E⃗ = −iωεH⃗.

Show that if ψ(x⃗) is a scalar field satisfying the scalar wave equation, ∇2ψ + q2ψ = 0, then the
vector fields M⃗(x⃗) and N⃗(x⃗) satisfy all the equations for the em fields if

M⃗ = ∇⃗ × (c⃗ψ(x⃗)), and N⃗ =
1

q
∇⃗ × N⃗ ,

where c⃗ is a constant vector (can also be the radial position vector r⃗).

2. The vector spherical harmonics are defined as

M⃗eml = ∇⃗ × (r⃗ ψeml), M⃗oml = ∇⃗ × (r⃗ ψoml),

N⃗eml =
1

q
∇⃗ × (M⃗eml), N⃗oml =

1

q
∇⃗ × (M⃗oml),

where
ψeml = zl(ρ)P

m
l (cos θ) cosmϕ, ψoml = zl(ρ)P

m
l (cos θ) sinmϕ,

with ρ = qr, m = 0, 1, · · · , zl denoting any of the four spherical Bessel functions jl, yl, h
(1)
l = jl+iyl,

and h
(2)
l = jl − iyl, and P

m
l denoting the Associated Legendre functions.

(a) Express the vector spherical harmonics defined above in terms of the components along the
unit vectors (êr, êθ, êϕ) in the spherical polar coordinates.

(b) Using the properties of Pm
l , show that,∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗em′l′ · M⃗oml = 0, for all m,m′, l, l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ N⃗em′l′ · N⃗oml = 0, for all m,m′, l, l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗om′l′ · N⃗oml = 0, for all m,m′, l, l′,



∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗em′l′ · N⃗eml = 0, for all m,m′, l, l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗em′l′ · N⃗oml = 0, for all m,m′, l, l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ N⃗em′l′ · M⃗oml = 0, for all m,m′, l, l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗em′l′ · M⃗eml = 0, for all m,m′, l ̸= l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ M⃗om′l′ · M⃗oml = 0, for all m,m′, l ̸= l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ N⃗em′l′ · N⃗eml = 0, for all m,m′, l ̸= l′,

∫ 2π

0
dϕ

∫ π

0
dθ sin θ N⃗om′l′ · N⃗oml = 0, for all m,m′, l ̸= l′,

(c) Consider a plane x-polarized wave E⃗i = Eoêxe
iq⃗.r⃗.

Show that

E⃗i =
∞∑
l=1

El

[
M⃗

(1)
o1l − iN⃗

(1)
e1l

]
, H⃗i = − q

ωµ

∞∑
l=1

El

[
M⃗

(1)
e1l + iN⃗

(1)
o1l

]
, ρ = qr,

where El = Eo
(2l+1)
l(l+1) i

l, and superscript (1) indicates choosing jl for zl.

(d) Let (E⃗s, H⃗s) be the em fields scattered by a sphere of radius R with refractive index N1 = n1+
ik1 (relative to the medium outside the sphere), when a plane x-polarized wave E⃗i = Eoêxe

iqz

scatters against the sphere, and (E⃗1, H⃗1) be the em fields inside the sphere.

(i) Show that

E⃗s =
∞∑
l=1

El

[
ial N⃗

(3)
e1l − bl M⃗

(3)
o1l

]
, H⃗s =

q

ωµ

∞∑
l=1

El

[
ibl N⃗

(3)
e1l + al M⃗

(3)
o1l

]
, ρ = qr,

E⃗1 =
∞∑
l=1

El

[
cl M⃗

(1)
o1l − idl N⃗

(1)
e1l

]
, H⃗i = − q1

ωµ1

∞∑
l=1

El

[
dl M⃗

(1)
e1l + icl N⃗

(1)
o1l

]
, ρ = q1r,

where q1 = qN1, and the superscript (3) indicates choosing h
(1)
l for zl. Determine the unknown

coefficients al, bl, cl and dl using appropriate boundary conditions.

(ii) Find the conditions for exciting the normal modes of the sperical particle.



(iii) Show that the scattering cross-section Csca and the extinction cross sction Cext for the
sperical particle are given by

Csca =
2π

q2

∞∑
l=1

(2l + 1) [|al|2 + |bl|2],

Cext =
2π

q2

∞∑
l=1

(2l + 1)Re[al + bl].

(iv) For the x-polarized incident plane wave find the amplitude scattering matrix elements S1,
S2, S3, and S4, and then find the relation between Stoke’s parameters for the incident and
scattered waves.

(v) Using the small ρ expansions for spherical Bessel functions, show that for small size pa-
rameter x for a sphere,

a1 = −i2x
3

3

(m2 − 1)

(m2 + 2)
− i

2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2
+

4x6

9

(m2 − 1)2

(m2 + 2)2
+O(x7),

b1 = −ix
5

45
(m2 − 1) +O(x7), a2 = −ix

5

15

(m2 − 1)

(2m2 + 3)
+O(x7), b2 = O(x7),

where m is the refractive index of the particle relative to that of its surrounding medium.

(vi) Show that accurate to order x6, the 4 × 4 scattering matrix (Mueller matrix) is given
by

9|a1|2

4q2r2



1
2(cos

2 θ + 1) 1
2(cos

2 θ − 1) 0 0

1
2(cos

2 θ − 1) 1
2(cos

2 θ + 1) 0 0

0 0 cos θ 0

0 0 0 cos θ


.

(vii) Show that for unpolarized incident light of irradiance Ii, the irradiance of light scattered
from a spherical partcile of radius R is

Is =
8π4N4R6

λ4r2
|m2 − 1|2

|m2 + 2|2
(1 + cos2 θ) Ii,

where λ is the wavelength in free space and N is the refractive index of the medium surround-
ing the particle.

(viii) Show that, when the incident light is unpolarized, the degree of polarization for light
scattered by a sphere is

P =
1− cos2 θ

1 + cos2 θ
.

(ix) Show that accurate to order x4, the extinction efficiency Qext and the scattering effi-
ciency Qsca are given by

Qext = 4x Im

[
(m2 − 1)

(m2 + 2)

(
1 +

x2

15

(m2 − 1)

(m2 + 1)

(m4 + 27m2 + 38)

2m2 + 3)

)]
+

8x4

3
Re

[
(m2 − 1)2

(m2 + 2)2

]
,



Qsca =
8x4

3

|m2 − 1|2

|m2 + 2|2
.

3. Using electrostatic approximation, show that the effective polarizability α for a spherical particle
of radius R and dielectric permittivity ε1 surrounded by a nonabsorbing medium of dielectric
permittivity εm is given by

α = 4πR3 (ε1 − εm)

(ε1 + 2εm)
.

Thereby show that the scattering and extinction cross sections arte given by

Csca = πR2 8x
4

3

|ε1 − εm|2

|ε1 + 2εm|2
,

Cext = πR2 4x Im

[
ε1 − εm
ε1 + 2εm

]

where x is the size parameter defined as x = 2πR
√
εm/λ, with λ denoting the wavelength in vacuum.

4. For N identical spheres of volume vsph each, embedded in a medium of dielectric function ϵm, the
Clausius-Mossotti formula gives the effective dielectric function ϵM for the system as

(ϵM − ϵm)

(ϵM + 2ϵm)
= fα, (Maxwell−Garnet theory),

where f ≡ nvsph, n ≡ N/V being the density of spheres.

5. Consider an ellipsoidal particle of semiaxes a > b > c. Choose a along x-axis, b along y-axis and c
along z-axis.

(a) Using electrostatic approximation, and ellipsoidal coordinates, show that (consult Bohren and
Huffmann), if the dielectric permittivity of the particle is ε1 and that of the surrounding
nonabsorbing medium is εm (assume µ = 1 for all the media), then the effective polarizability
αj (j = x, y, z) for the particle along the jth principal axis is given by

αj = 4πabc
(ε1 − εm)

3εm + 3Lj(ε1 − εm)
,

where the so called geometrical factor Ljs are defined by (x ≡ 1, y ≡ 2, z ≡ 3)

L1 =
abc

2

∫ ∞

0

dq

(a2 + q)f(q)
, L2 =

abc

2

∫ ∞

0

dq

(b2 + q)f(q)
, L3 =

abc

2

∫ ∞

0

dq

(c2 + q)f(q)
,

with f(q) =
√
(a2 + q)(b2 + q)(c2 + q).

(b) Show that L1 + L2 + L3 = 1.



(c) Show that for a prolate (cigar shaped) sphereoid, for which b = c,

L1 = g2(e)

[
−1 +

1

2e
ln

1 + e

1− e

]
,

where e2 = 1− b2/a2 and g(e) =
√
1− e2/e.

(d) Show that for a oblate (pancake shaped) sphereoid, for which b = a,

L1 =
g(e)

2e2

[
π

2
− tan−1 g(e)

]
− g2(e)

2
,

where e2 = 1− c2/a2 and g(e) =
√
1− e2/e.

(e) Show that for a randomly oriented ellipsoid,

⟨Cabs⟩ =
q

3
Im [α1 + α2 + α3] , ⟨Csca⟩ =

q4

18π

[
|α1|2 + |α2|2 + |α3|2

]
.

6. Consider a coated ellipsoidal particle of semiaxes a1 > b1 > c1 for the inner (core) ellipsoid with
dielectric permittivity ε1, and a2 > b2 > c2 for the outer (coat) ellipsoid with dielectric permittivity
ε2, placed in a nonabsorbing medium of dielectric permittivity εm (assume µ = 1 for all the media).

(a) Using the electrostatic approximation, and ellipsoidal coordinates (same as in the previous
problem, only the boundary conditions are to be implemented at the additional interface be-
tween the core and the coat), show that the effective polarizability α3 (along z-axis) for the
particle is

α3 =
4πabc

3

(ε2 − εm)[ε2 + (ε1 − ε2)(L
(1)
3 − fL

(2)
3 )] + f(ε1 − ε2)

[ε2 + (ε1 − ε2)(L
(1)
3 − fL

(2)
3 )][εm + (ε2 − εm)L

(2)
3 ] + fL

(2)
3 ε2(ε1 − ε2)

,

where f = (a1b1c1)/(a2b2c2), the volume fraction of the core, and

L
(k)
3 =

akbkck
2

∫ ∞

0

dq

(c2k + q)fk(q)
,

with fk(q) =
√
(a2k + q)(b2k + q)(c2k + q), (k = 1, 2).

(b) Reduce the result above to the case of a coated sphere for which α1 = α2 = α3 = α, and then
show that the particle becomes invisible (i.e., α = 0) if the coating material is such that

f
(ε1 − ε2)

(ε1 + 2ε2)
=

(εm − ε2)

(εm + 2ε2)
.

(c) Reduce the result above further to the case of a coated sphere with ultra thin coating, by
taking a2 = a1 + d where the coating thickness d is very small compared with a2.

*** END ***


