
Homework problems in Electrodymanics

The way to confirm that you have understood something is to see if you
are able to calculate. Hence these are questions designed to give the student
a lot of practice with analytical as well as numerical calculations. Most of
these have already appeared in the lectures at appropriate places. Please
note the following:

• The questions are often long, more like homework problems than ex-
amination problems, and some of them can be approached in multiple
ways. Some of the problems make the student complete parts of the
derivations that are not given completely in the lecture notes.

• Solutions to these problems have not been provided. The student is
expected to think independently about the problems, and take the help
of available experts.

• Some of the questions require numerical calculations using either a
programming language like C / Fortran, or a software like Mathematica
/ Maple / Matlab. If the knowledge of programming is not expected /
softeares are not available, then these questions may be skipped.

• Many questions ask for plots to be made, since they can give a clearer
intuitive picture. Once in a while, the exact values of quantities to be
used for plotting are not given, it is a good skill to be able to choose
values of parameters that bring out the important features in the plots.
The plots may be made by hand, or by using any available plotting
software.

• Some questions also ask for “commenting” on the results, at these
points it is a good idea to try to appreciate the physical significance of
the results.
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3 Module 3

3.1 Motion of charges in EM fields

3.1.1 Particle in uniform electric field

Generalize the analysis of a charge moving in a uniform electric field to the
case where the particle is moving at an angle θ with the electric field at t = 0.

3.1.2 Parallel and constant ~E and ~B

Let ~E = Ezẑ and ~B = Bzẑ. Initially, the particle has ~v = (vx0, 0, vz0).

• Show that the solutions for the coordinates x(t), y(t), z(t) are of the
form

x =
pT
eBz

sinφ , y =
pT
eBz

cosφ , z =
E0

eEz
cosh

(
Ezφ

cB

)
.

Determine pT in terms of the initial conditions given above.

• Draw the trajectory, and comment on the differences between the rel-
ativistic and non-relativistic case.

3.1.3 Orthogonal and constant ~E and ~B

Take ~E = Exx̂ and ~B = Bzẑ. Take the initial velocity of the particle to be
~v = (vx0, vy0, vz0).

• Find the trajectory of the particle.

• This problem involves some rather complicated algebra and different
initial conditions may give rise to qualitatively different trajectories.
It is advised to solve this problem numerically on a computer for
different sets of initial conditions (even if you get an analytical answer)
and comment on the results.
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3.2 Retarded potentials

3.2.1 The geometrical factor in Lienard-Wiechert potential

Show that f(t′) = t′ − t+ r(t′)
c

leads to

∂f

∂t′
= 1−

~v(t′) · r̂(t′)

c

where r̂(t′) is a unit vector along the direction of ~r(t′).

3.2.2 Solving for tr

Show that, given ~x, t and ~x′0(t′), the implicit equation for tr can have at most
one solution. What happens when there is no solution ?

3.2.3 Orthogonally moving charges

Two charges q1 and q2 are moving with uniform velocities along the x and y
axis respectively. Their position vectors are given as

~x1 = v1t x̂ , ~x2 = v2t ŷ .

• Calculate the potentials φ(x, y, z, t) and ~A(x, y, z, t) due to the charge
q1.

• Hence calculate the fields ~E(x, y, z, t) and ~B(x, y, z, t) due to the
charge q1.

• Draw a diagram showing the positions of q1 and q2 at an arbitrary time
t. Qualitatively show the directions of ~E(~x2, t) and ~B(~x2, t). Point
out the important features.

• Calculate the force ~F12 on the charge q2 due to the charge q1.

• Calculate, and show in the figure, the force ~F21 on the charge q1 due
to the charge q2. Comment on the relative directions of ~F12 and ~F21.

Your answers should be in terms of x, y, z, t, v1, v2 and other universal
constants, but no other variables. There is no need to combine terms to
simplify them.
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3.3 Radiation from charges in linear motion

3.3.1 Cherenkov cone and energy of relativistic particles

In a water Cherenkov neutrino detector, a high energy muon neutrino in-
teracts with a nucleus, producing a highly relativistic muon that gives out
Cherenkov radiation (refractive index of water: 4/3). This radiation is de-
tected by a photosensitive plane (made of photomultiplier tubes).

Two muons (mass = 100 MeV) of energies 1 GeV and 10 GeV, respec-
tively, are produced at the same point and travel in a direction normal to
the photosensitive plane at a distance 40 m from the point of production.
Sketch the pattern of light seen on the photosensitive plane, for both the
muons (in the same figure). Show all the relevant distances.

[Assume that the muons, once produced, are absorbed in water within a
relatively short distance (as compared to 40 m).]

3.3.2 Calculating ~B(~x, t) for an accelerating charge

Starting with
4πεc2

q
~B(~x, t) = ∇×

(
~v(tr)

s(tr)

)∣∣∣∣∣
t

,

• Calculate ~B and separate it into a component independent of ~a and a
component linear in ~a.

• Show that, the non-radiative part is

~B(~x, t)~a=0 =
q

4πε0c2

1

s3γ2
~v(tr)×~r(tr)

• Show that, for the radiative component,

~Brad(~x, t) =
~r(tr)× ~E(~x, t)

r(tr)c

• From the expressions for ~E(~x, t) and ~B(~x, t), calculate the Poynting vec-
tor. Hence argue that the accelerating charge indeed radiates nonzero
energy to infinity.
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3.3.3 Similarity with electric dipole radiation

Show that the expressions for radiation fields for a charge accelerating along
a streight line with a small velocity are equivalent to an electric dipole. Find
the relation between the electric dipole ~p and the acceleration ~a of the
charge.

3.3.4 Radiated energy for constant desceleration

For a charge accelerating and undergoing a linear motion,

• Show that the magnetic field ~B reduces to the form ~B = ~r × ~E/(rc)
where ~r = ~x(t)− ~x′(tr).

• Calculate the total energy radiated in Bremsstrahlung when the speed
of a charge q decreases at a constant rate a, from v0 to 0.

3.3.5 Particle losing energy at a constant rate

A relativistic particle is losing energy at a constant rate R = dE/dt′ while
moving through a material in a straight line. In the process, the speed of the
particle decreases from v = 0.9c to v = 0.

• Plot the power radiated as a function of cos θ (the angle between ~v and
~r), when the speed of the particle is v = 0.9c, v = 0.5c and v = 0.1c (on
the same plot, showing the relative magnitudes, in appropriate units).

• Calculate the total energy radiated by the particle in the form of
Bremsstrahlung radiation. You may need to integrate numerically.

3.4 Radiation from charge in circular motion

3.4.1 Dependence of radiated power on ϕ and θ

For a charge moving in a circle with speed v (see the notation in the lectures)

• Plot the ϕ-dependence of dU/dt in the x-y plane, for v = 0.5c, v = 0.9c
and v = 0.99c on the same plot in appropriate units. (You may have
to use a logarithmic scale.) Comment on the this angular dependence.
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• Plot the average power radiated by the charge as a function of θ for
v = 0.5c, v = 0.9c and v = 0.99c on the same plot in appropriate
units. (You may have to use a logarithmic scale.) Comment on the
this angular dependence.

3.4.2 Dependence of Synchrotron radiation on the boost

Plot dU/dtr as a function of θ̃, for two values of φ̃ : 0, π/2 and three values
of γ : 1, 10, 100. Comment on your results.

3.4.3 Angular dependence and total radiated power

For a charge moving in a circle with speed v (see the notation in the lectures)

• Show the angular distribution of the radiated power as a Spheri-
calPlot3D (Mathematica notation) for γ = 1, 10, 100 in appropriate
units. Comment on the angular dependence.

• Numerically perform the angular integration of dU/dtr (without the
approximation of small θ̃) to calculate the total power radiated for
γ = 1, 10, 100 in appropriate units. Compare the answers with those
obtained analytically by using cos θ̃ ≈ 1− θ̃2.

3.4.4 Synchrotron radiation for X-ray production

Electrons are to be accelerated in a circle of 10 cm radius in order to generate
X-rays of energy ∼ 1keV .

• Estimate the speed the electrons need to be accelerated to, and hence
the frequency ω0.

• What is the kinetic energy of the electrons ? hence, how much mag-
netic field will be needed to keep the electrons in this orbit ?

3.4.5 Radiation from circular motion in a magnetic field

Let a charge q be moving in the xy plane with a constant speed v, under the
influence of an external constant magnetic field ~B = B0ẑ. The instantaneous
velocity of the charge is ~v.
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• By explicitly calculating the RHS of the equation of motion

mc(dui/ds) = qF ikuk ,

determine the components of the 4-acceleration ai in terms of the
components of ~v and ~B. Hence write down the 3-acceleration ~a.

• Neglecting the loss of energy due to radiation, the charge will keep
on moving in a circle. Determine the radius of the circle and the
frequency of revolution of the charge, in terms of ~v, ~B, and energy E .

• The accelerating charge gives rise to the radiation fields

~Erad =
q

4πε0c2s3
~r× (~r~v × ~a) , ~Brad =

1

rc
(~r× ~Erad) .

When v � c, calculate the magnitude and direction of the Poynting
vector ~N(~r) of the radiation, in terms of ~v, ~B and E .

• The charge experiences a radiation reaction force, which is given to
leading order in γ as

fi =
q4

6πε0m2c5
(Fklu

l)(F kmum)ui .

Calculate the rate of energy loss of the charge in terms of ~v, ~B and E .

3.4.6 Power loss at particle accelerators

The power radiated from an accelerated electron may be written as

P =
1

4πε0

2

3

e2

c3
|~a|2

where ~a is the relativistic acceleration of the charge, defined as ~a =
(1/m)d~p/dτ . Here τ is the proper time (in the frame of the electron).

At the particle colliders, electrons are accelerated to a relativistic speed
v ≈ c and kept circulating in a ring with radius R.

• Calculate |~a| in terms of R and γ = E/(mc2) for the electron. Neglect
the change in γ due to the energy loss.
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• At the LEP accelerator at CERN, electrons of E=100 GeV were kept
circulating in a ring of R=4 km. Calculate the energy lost by an electron
(in GeV) due to Synchrotron radiation while completing one circle in
the ring.

• If protons are accelerated instead of electrons to the same energy, by
what factor will the Synchrotron loss increase / decrease ?

3.5 Radiation reaction force

3.5.1 Energy loss for ultra-relativistic charges

The radiation reaction force on an ultra-relativistic charge is ~frad ∝ γ2 ∝ E2,
where E is the kinematic energy of the charge.

Starting from dE/dx = −k(x)E2, determine how the kinematic energy of
the charge will change as a function of time / distance travelled.

3.5.2 Validity of radiation reaction force

Find the conditions of validity of the radiation reaction force in the ultra-
relativistic limit.

3.5.3 Small-v limit of the radiation reaction force

Can one obtain the small-v limit of the radiation reaction force starting from
the relativistic expression ?

3.6 Passage of radiation through matter

3.6.1 Dilute electron gas

Using the expression for the refractive index of a dilute electron gas with
number density N , plot the phase velocity and group velocity of an EM
wave as a function of ω. Neglect the damping term and choose an appropriate
value for N . Where is the “dilute” nature of the gas relevant ?

3.6.2 Dilute gas as a high-pass filter

Show that a dilute gas of free electrons will not allow an EM wave to prop-
agate through it, if the frequency of the wave is less than a cutoff frequency
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ωcutoff . Determine the cutoff frequency in terms of the number density of
electrons and other universal constants. For ω > ωcutoff , qualitatively plot
the behaviour of the wavenumber k as a function of ω.
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