
Homework problems in Electrodymanics

The way to confirm that you have understood something is to see if you
are able to calculate. Hence these are questions designed to give the student
a lot of practice with analytical as well as numerical calculations. Most of
these have already appeared in the lectures at appropriate places. Please
note the following:

• The questions are often long, more like homework problems than ex-
amination problems, and some of them can be approached in multiple
ways. Some of the problems make the student complete parts of the
derivations that are not given completely in the lecture notes.

• Solutions to these problems have not been provided. The student is
expected to think independently about the problems, and take the help
of available experts.

• Some of the questions require numerical calculations using either a
programming language like C / Fortran, or a software like Mathematica
/ Maple / Matlab. If the knowledge of programming is not expected /
softeares are not available, then these questions may be skipped.

• Many questions ask for plots to be made, since they can give a clearer
intuitive picture. Once in a while, the exact values of quantities to be
used for plotting are not given, it is a good skill to be able to choose
values of parameters that bring out the important features in the plots.
The plots may be made by hand, or by using any available plotting
software.

• Some questions also ask for “commenting” on the results, at these
points it is a good idea to try to appreciate the physical significance of
the results.
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2 Module 2

2.1 Relativity and Maxwell’s equations

2.1.1 Faraday Disc

See the figure. There is a cylindrical bar
magnet that is placed along the axis of
the disc, so that it produces a uniform
magnetic field in a cylindrical zone along
the axis of the disc. The conduction loop
is completed through the brush, which is
made of a conducting material.

Will a current flow if:

• The magnet is stationary and the disc is spinning?

• The disc is stationary and the magnet is spinning about its axis?

• Both the disc and the magnet are spinning with the same angular
speed?

2.2 Lorentz transformations of EM fields and waves

2.2.1 Transformation of ~E and ~B fields

The transformations for components of ∇′ and ∂/∂t′ were obtained in the

lectures. Assume the components of ~E′ and ~B′ to be some linear combinations
of the components of ~E and ~B, with coefficients that are functions of v. Show
that

E ′x = Ex , E ′y = γ(Ey − vBz) , E ′z = γ(Ez + vBy) ,

B′x = Bx , B′y = γ(By +
v

c2
Ez) , B′z = γ(Bz −

v

c2
Ey) .

2.2.2 Intensity of a moving source

A source emitting light of wavelength λ isotropically (Intensity I(θ′) = I ′0)
is mounted on a rocket moving with a large (relativistic) speed v along x
direction.
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• Calculate an analytic expression for the intensity I(θ) ∝ |~E|2 of the
emitted light, as observed in the stationary frame, as a function of θ.
(Hint: You may separate ~E into two components, one in the xy plane,
one along the z axis.)

• Plot intensity as a function of θ for v = 0.5c, v = 0.9c, v = 0.99c.

2.2.3 Reflection of polarized light

Polarized light (~E in the plane of incidence) of frequency ω is incident on
an infinitely large dielectric surface (dielectric constant n) at an angle of
incidence θI . It is partly reflected and partly transmitted.

As observed by an observer moving with a large (relativistic) velocity ~v
towards the dielectric surface, in a direction normal to the surface:

• Determine the angle of incidence θ′I , the angle of reflection θ′R, and the
angle of transmission θ′T .

• Calculate the magnitude of the incident ~E′ as observed by this observer
in terms of |~E|, ω, ~v, θI .

[Lorentz transformations for ~E and ~B fields:

~E′‖ = ~E‖ , ~E′⊥ = γ(~E⊥ + ~v × ~B⊥) ,

~B′‖ = ~B‖ , ~B′⊥ = γ(~B⊥ − ~v × ~E⊥) . ]

2.2.4 Static EM fields due to a charged cylinder

An infinite cylinder of radius R carries a constant current I, and has zero
charge density as observed by an observer A. Another observer C travels
parallel to the wire with a constant large (relativistic) speed v with respect
to A.

• Find ~E and ~B observed by C, both inside and outside the cylinder.

• Find the charge density measured by C. Comment on your answer.
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2.3 Kinematic quantities in Special Relativity

2.3.1 Acceleration in a moving frame

Calculate the components of acceleration in frame S’, in terms of the com-
ponents of velocity and acceleration in frame S, and the boost.

2.3.2 Force and acceleration

Find the conditions under which ~F and ~a can be parallel.

2.3.3 Trajectory, velocity and acceleration

A train is moving with a large (relativistic) speed v in the x direction. A
ball is launched from the floor of the carriage at a speed u, making an angle
θ′ with the horizontal, in the xy plane. Seen from the frame of the train,
it goes on a parabolic trajectory and returns to the floor. In the stationary
frame, calculate

• the trajectory (x(t), y(t)) of the ball

• the velocity ~u(t)

• the acceleration ~a(t)

2.3.4 Velocity and acceleration

A train is moving with a constant large (relativistic) velocity ~v. A person
sitting on the train is moving a pendulum in a vertical complete circle of
radius R with a constant angular velocity ω. The axis of the circle is
horizontal, and normal to the direction of motion of the train.

To a stationary observer outside the train, it appears that the speed of
the pendulum is the largest when it is at the bottom of its trajectory. At
this point, what does this observer measure as

• the velocity and acceleration of the pendulum bob ?

• the force on the pendulum bob ?
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2.4 Relativistic kinematics

2.4.1 Two-body scattering

• Determine all the Lorentz-invariant scalar products involved in the
AB→CD scattering in terms of pA · pB and pA · pC .

• In Compton scattering, if the photon is scattered at an angle θ, what
is its frequency after scattering ? Do this problem by the usual
conservation of energy and 3-momentum, and also by using the result
obtained above.

2.4.2 Particle decays

• If a particle A of mass mA decays into two particles B and C, of masses
mB and mC , respectively, calculate the energy of B.

• A moving particle A is observed to decay into three almost mass-
less particles that move in directions orthogonal to each other. If the
energies of the decay products are measured to be E1, E2, E3,

– Determine the mass of the particle A.

– What was the speed of A ?

[Keep track of all factors of c.]

2.4.3 Rutherford scattering, invariant q2 and energy loss

Rutherford scattering describes the process when an electron of mass me

scatters off a nucleus of a much larger mass mN . In this process, the energy
absorbed by the nucleus is very small, and the electron energy is unchanged,
though the direction of the electron changes by an angle θ. The cross section
for Rutherford scattering is given by

dσ

dΩ
=

Z2α2(h̄c)2

4|~pe|2β2 sin4(θ/2)
.

where |~pe| = |~pe1| = |~pe2|. Here ~pe1 and ~pe2 are the momenta of the electron
before and after the scattering, respectively, Z is the atomic number of the
nucleus, α is the fine structure constant, and β = |~v|/c, where ~v is the
velocity of the incoming electron.
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Let us describe Rutherford scattering in terms of qi = pie1 − pie2, the
4-momentum transferred by the electron to the nucleus.

• Neglecting the electron mass me, calculate the Lorentz invariant quan-
tity q2 in terms of |~pe| and θ.

• Hence, calculate the cross section dσ/dq2.

Now view this process in the reference frame where the electron is orig-
inally stationary, and the nucleus scatters on it, transferring an energy E to
it. In this frame,

• Calculate the energy transfer E in terms of q2. Do not neglect the
electron mass.

• Hence, determine dσ/dE .

• Find an upper bound on the energy transfer E .

2.5 Lagrangian formulation

2.5.1 Hamiltonian for a particle in EM field

Using the Hamiltonian

H =
√

(~P− e~A)2c2 +m2c4 + qφ ,

determine the equations of motion.

2.5.2 Lorentz force law

Show that the covariant equation of motion

mc
duk
ds

= q(∂kAm − ∂mAk)uk = q Fkm um

corresponds to the Lorentz force law.
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2.5.3 Energy-momentum tensor

For a Lagrangian density L(q, ∂iq), the energy-momentum tensor T ki is given
by

T ki = ∂iq(∂L/∂kq)− δki L .

For the electromagnetic field in the absence of charges,

L = −(ε0c/4)FklF
kl .

• Taking q as the 4-potential Am, determine T ki in terms of the compo-
nents of the electromagnetic field tensor F .

• Calculate the components of T ki in terms of ~E and ~B.

2.5.4 Angular momentum tensor in 4-d

An infinitesimal rotation in 4-d is defined as x′i − xi = δxi = xkδΩ
ik.

• Show that δΩik is an antisymmetric tensor.

• For a collection of free particles, the action is S = −∑mc
∫ b
a ds. Show

that δS = δΩikM
ik where M ik = (1/2)

∑
(pixk − pkxi). Hence argue

that M ik is conserved.

• M ik is the angular momentum 4-tensor. Calculate the components of
this tensor in terms of ~r, ~p and ~M = ~r× ~p of the individual particles.
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