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In real ocean wave field, a typical measurement of 20 min. record is sampled to represent a wave 

field of 3-hr (Fig. 1). The time averaged statistics over 20min time record is equal to the time 

averaged statistics of every 20min records within the 3-hr time interval. And, in addition, the 

event averaged statistics (at a particular time frame across all the 20min records) is also equal to 

the time averaged statistics of one frame following the ergodicity.  If the stationary, ergodicity 

process is not valid, one has to measure for a longer period to take statistical averages to 

represent a wave climate for 3-hr intervals.  

 

 

Note some keywords: 

 

Ensemble: Total collection of samples 

Sample: Each record 

Stationary: All the ensemble average such as mean, standard deviation etc., are independent of 

absolute time.    

Weakly stationary: If only first and second order probability distributions are same 

Ergodic: Ensemble average (at any time, t1) is equal to time average of any record and also time 

average is same for all records (Fig. 2). 

 

Expected value of   x(t) =  )()( tktx  

 

Average or mean value of a random process:  

 
0

1
( ) lim ( )

T

TE x t x t dt
T   

 

 

Random 
process
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In the above, how n is defined? See again in the above figure, the origin of ith wave is defined 

from the point where the time series is crossing the mean value (here, zero for all the zero mean 

process) and the slope of time series has positive value at the origin of ith position. This is called 

up cross analysis. 

On the other hand, if our starting point of the time series is such that at the zero crossing, at the 

mean value, the progressive slope is negative, then it is called down cross analysis. 

 

These are two types of analysis and which one to choose depends on the variable under 

consideration. For the wave surface elevation, if we observe the time progress of the event, (t), 

the wave progress from right to left and our time scale is positive from left to right. Hence, in the 

real field (on our assumption of a conventional wave, crest followed by a trough), the trough 

accompanying a crest cross the 'time' step forward than the following crest. Hence, downcross 

analysis is preferred. However, if the convention is different, the up-cross analysis can be 

adopted. 

 

Now, follow the time series, and pick up the sequences of values, Hi & Ti and we have almost all 

the information on the time series.  

 

We have a range of values for H & T with two extremes of each.  

 

But the questions in the mind of the engineer or navigator are,  

'What is the value to be taken among these?  

Shall I take the mean of the above group?', Or,  

Shall I pick the maximum value?'  

There should not be any ambiguity between two users who want to get the wave field estimate at 

a same location. 

 

So, it is important to define a unique parameter which is also matching with a visual field 

observer (good navigator). Always, a visual observer makes a bias in the estimation of the wave 

height above its mean value? The estimate of the visual observer in general is found to be 

correlated with the average of the 1/3 rd of the largest wave heights among the group. Hence, for 
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the generality condition, a definition for this value is defined as 'significant wave height' which is 

defined as the average of the highest one third of the waves. 

 

i.e., Rewrite the group of values, Hi in descending order of n values. Then, 

Significant wave height, 
3/

3/

1
3/1 n

H
H

n

i
i

 ,        (1) 

where, Hi's are listed in descending order of its magnitude. 

 

It is the most concern for an engineer to find the maximum value and other statistical properties 

useful for design and operational purposes. 

 

Different statistical properties can be defined as follows from the list of descending order. 

 

Maximum wave height, Hmax = H1        (2) 

Average of highest 0.2% waves, 
500/

500/

1
500/1 n

H
H

n

i
i

       (3) 

Average of highest one-hundredth, 

/100

1
1/100 /100

n

i
i

H
H

n



      (4) 

Average of highest one-tenth, 
10/

10/

1
10/1 n

H
H

n

i
i

        (5) 

Mean wave height, 
n

H
HH

n

i
i

av


 1         (6) 

   

The above calculations require a long time series of sufficient records, i.e., to say to calculate 

H1/500 one should have more than 1000 records in the series. What should be the optimum value 

to find an average? In general, the time series with a record length of 3000 is required.  
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Now, if you take the typical record of 20min to represent a wave climate, say with an average 

wave period of 6s in that location, we can have about 200 records in the series. This is not 

sufficient to adopt in the above form of calculations. 

 

The distribution of wave heights, Hi is found to follow Rayleigh probability distribution which 

addresses our concern for the estimate. Following Rayleigh distribution, the various statistical 

parameters can be estimated from the characteristic wave height, i.e., significant wave height, 

H1/3. 

   

Average of highest 0.2% waves, 3/1500/1 91.1 HH        (7) 

Average of highest one-hundredth, 3/1100/1 67.1 HH       (8) 

Average of highest one-tenth, 3/110/1 27.1 HH        (9) 

Mean wave height, 3/163.0 HH av          (10) 

 

Since, the Rayleigh distribution has no upper bound, the maximum wave height, Hmax could not 

be estimated from the characteristic estimate. 

An approximate estimate, however, then can be given as, 

Maximum wave height, Hmax = 2 H1/3.       (11) 

Another salient parameter, a design engineer looking for is the root mean square wave height 

(Hrms), 

   
n

H
H

n

i
i

rms


 1

2

        (12)
 

Similarly, third and fourth order statistical parameters such as skewness and kurtosis can be 

evaluated to explore the nonlinearity in the random signal. The analysis of a nonlinear signal will 

be dealt later. 

The above process can be used for any independent variable of interest. However, depending on 

the distribution of variables, the fitting coefficients in Eqs.(7) to (11) have to be carefully chosen. 

For eg., the wave surface elevation, (t) follows Gaussian distribution and extreme values of 

wave heights for long term statistics follow Weibull or Gumbull distribution. 
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-------------------------------------------- 

Exercise: Write a MATLAB code to derive the statistical parameters using Eqs.(1) to (6) & (12) 

from a given time series. Adopt down-cross analysis. Compare the parameters with the estimate 

made from Rayleigh distribution (Eqs.(7) to (11)). 

Given time series: timeser1.dat 

Note: In the first step, make the random process 'zero mean'. 

------------------------------------------------------- 

Wave period: 

Similar to the concept in deriving statistical parameters for the wave height, the characteristic 

wave period can be derived. Some of the details will be dealt in the next section. 

 

3.0 SPECTRAL ANALYSIS 

Even though statistical analysis provides a comprehensive direct data analysis, the 

information on the distribution of concentration of wave energy at different frequency bands is 

lacking. It is particularly important, if the offshore system under design has natural frequency of 

the same order as the wave frequency in which the maximum energy concentrates. This is 

supplemented by the frequency domain analysis by decomposing the time series into various 

frequency components using Fourier Transform.  

In simple terms, a wave spectrum is the distribution of wave energy as a function of 

frequency. It describes the total energy transmitted by a wave-field at a given time. Many times a 

transformation is performed to provide a better or clearer understanding of such a phenomenon. 

The time representation of a sine wave may be difficult to interpret. By using a Fourier series 

representation, the original time signal can be easily transformed and much better understood. 

 Only a brief overview of Fourier Transform to obtain a frequency spectrum has been 

provided here. The salient aspects that need attention in the analysis, particularly to extract 

design parameters are dealt here. 

 

Auto correlation function 
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For a random process, x(t), the auto correlation function is defined as the average value of the 

product of x(t) and x (t+). 

           txtxtxtxERx .)(  

If x(t) is stationary,  E[x(t)]  = E[x(t+)] = m 

       txtx  

Correlation coefficient 
 

2

2





mRx 

  

 

3.1. Spectrum 

 

The concept of a spectrum is based on work by Joseph Fourier (1768 – 1830), who showed that 

almost any function x(t) over the interval (-T / 2 < t < T / 2 ) can be represented as the sum of an 

infinite series of sine and cosine functions with harmonic wave frequencies. 

   





1

''0 sincos
2 n

nn tnbtna
a

tx   (13a) 

where, 

 
2/

2/

' ,cos
2 T

Tn dttntx
T

a              (n=0,1,2,…) (13b) 

 
2/

2/

' ,sin
2 T

Tn tdtntx
T

b               (n=0,1,2,…) (13c) 

' = 2f' = 2/T is the fundamental frequency, and n f' are harmonics of the fundamental 

frequency. This form of x(t) is called a Fourier series, a0 is the mean value of x(t) over the 

interval. 

The above equations can be written in complex form, 

     tnitntni ''' sincosexp     and   

  





n

tin
nZtx

'

exp   (14a) 

where 
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 



2/

2/

'

exp
1 T

T

tin
n dttx

T
Z  ,        (n=0,1,2,…) (14b) 

Zn is called the Fourier transform of   x t  

The spectrum ( )S f of x(t) is: 

 *)( nn ZZfS   (15) 

where Z* is the complex conjugate of Z.  The computation of ocean wave spectra follows from 

these forms for the Fourier series and spectra. 

 
Thus in complex form of a random signal, x(t) and its fourier transform can be written as below.  
 

 




 dtetxX ti )()(  

 




 


 deXtx ti)(
2

1
)(  

 X()-Fourier  transform of x(t) 

 x(t) – Inverse Fourier transform of X() 

 Note: The factor 21  can appear in any one of the above equation. 

 

Spectral density 
 
For a stationary process, x(t) goes on forever and the condition, 

 ( )x t dt




   is not satisfied 

so that the theory of Fourier analysis cannot be applied to a sample function.  This difficulty can 

be overcome by analyzing its auto correlation function ( )xR  ; since, 

 ( ) 0xR      for non – periodic wave with zero mean process and the condition 

 




dtR   is satisfied.  Given a random process that is stationary and ergodic, with an 

expected value of zero and autocorrelation  R  , the power spectral density, or spectrum of the 

random process is defined as the Fourier transform of the autocorrelation. 
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A one-sided spectrum, S+(), is a representation of the entire spectrum only in the 

positive frequency domain. It can be obtained by folding the energy over =0 and introduce the 

1

2
factor we get:                       

   2
S      for 0

S 2
0                 for  0   


       
   

       (18)  

This representation for the one-sided spectrum comes from the variance, R(0): 

                    2

0

1 2
R 0 S d S d

2 2

 


        

 
                (19) 

which we can rewrite in terms of the one-sided spectrum 

       2

0
S d


             (20a) 

where,     2
S S ;  for  0

2
    


        (20b) 

The spectrum provides a distributed amplitude, or “probability density” of amplitudes, 

indicating the energy of the system. Hereafter, S() represents S+(), i.e., ‘+’ sign is 

conventionally not added. 

 

We can expand the idea of a Fourier series to include series that represent surfaces (x, y) 

using similar techniques. Thus, any surface can be represented as an infinite series of sine and 

cosine functions oriented in all possible directions. 

 

 Considering the random process,  ,x t follows stationary and ergodic process, it is 

assumed that the expected value of the random process is zero. However this is not always 

possible.  If the expected value equals some constant a0, the random process can be adjusted such 

that the expected value is indeed zero, 

    0,, axttx           (21) 
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Note in our discussion of Fourier series that we assume the coefficients (an, bn, Zn) are 

constant. For times of perhaps an hour, and distances of perhaps tens of kilometers, the waves on 

the sea surface are sufficiently fixed that the assumption is true. Furthermore, non-linear 

interactions among waves are very weak. Therefore, we can represent a local sea surface by a 

linear super-position of real, sine waves having many different frequencies and different phases 

traveling in many different directions. The spectrum of the wave-height gives the distribution of 

the variance of sea-surface height at the wave staff as a function of frequency. Because wave 

energy is proportional to the variance of the spectrum, which  is called the energy spectrum or 

the wave-height spectrum. Typically three hours of wave staff data are used to compute a 

spectrum of wave-height. 

 

Window functions 
 

In the above frequency representation of a typical time series, it is assumed that the series 

is continuous. However, in practice, there is a definite time step between successive data. The 

time step is small enough such that the event is presented as a smooth functional variation over 

time. This discrete nature of data forces to adopt discrete Fourier transform and in turn add 

furious noise in the estimate. In addition, a sudden initiation of the event (represented by the time 

series at the initial step, say t=0) and also, an abrupt end of the event induce higher frequency 

noises which is otherwise unwanted change in the energy level. This is avoided by introducing a 

windowing function. 

In signal processing, a windowing function is a mathematical function that is zero-valued 

outside of some chosen compact interval. When another function or a signal (data) is multiplied 

by a window function, the product is also a window function: all that is left is the part where they 

overlap. 

 

The following window functions, w(n) are commonly adopted for filtering furious noises. 

 Cosine tappered window 

 Hanning window 

 Welch window 
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Cosine tapering  

 
( ) 0.5 1 cos

1

n
w n

M

        
    0 n M   

 ( ) 1w n      ( 2)M n N M     

 

 1
( ) 0.5 1 cos

1

N n
w n

M

  
   

 ( 2) 1N M n N      

 where, 
2

10

N
M INT

    
 

Hanning 

 

2
( ) 0.5 1 cos

1

n
w n

N

        
  0 1n N    

Welch 

 

2
0.5

( )
0.5

n N
w n

N

   
   

where, N is the number of time steps in the time series and M is the number of time steps to be 

windowing. 

 

Spectral smoothening 

 Similar to the discrete time series, the derived frequency spectrum is also been specified 

in discrete frequency steps. This resulted in leaking of energy in between discrete steps. This can 

be rectified by smoothening the spectral curve. 5-point smoothening or higher order smoothening 

can be carried out to perform this task. 

 

Statistics 

 Now, the statistics of (t) given by the spectrum S   needs to be established. The 

wave heights, Hi and wave periods of interest Ti are the random variables in this problem.  As 

time statistics are equal to the event statistics almost everywhere, if (t) is a realization of the 

random process  xt,  then ergodicity says that Hi and Ti will provide the statistics on  ,t x

and vice versa. 
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Before defining the various statistics, let us define the moments of the spectrum as 

follows: 

Zeroth Moment: 

              VARIANCEdSm  


2

0

0         (22a) 

Second Moment: 

   dSm 2

0

2 


                           (22b) 

Fourth Moment: 

   dSm 4

0

4 


          (22c) 

The root mean square wave height, Hrms or standard deviation, o is given by, 

oorms mH   

os mH 4  

Mean wave height, 2.5 oH m  

Average of highest 1/10th waves, 1
10

5.09 oH m  

Average of highest 1/100th waves,
 

1
100

6.67 oH m  

The average period, T can be found by calculating the centre of the area of the spectrum. 

1

2
m

m
T o  

The peak period, Tp is the wave period at which the wave energy is maximum. This can 

be calculated either by differentiating the spectral function or interpreting the spectral 

values. 

4

22
m

m
Tp   

The mean zero crossing period, zT can be estimated as follows. 

 
2
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40

2
22 11
mm

m

T

T

z

p           (24) 

The value of  is between 0 and 1. In the ocean, a bandwidth between 0.6 and 0.8 is common. In 

general,  > 0.6 is called broad band spectrum and <0.6 is called narrow band spectrum. In 

general, it can be said that most sea spectra are relatively narrow banded. It is due to the fact that 

the very small, high frequency waves (ripples) are of no interest in the prediction of ship 

response. 

 

It is to be noted that the significant wave height, Hs is dependent on the bandwidth of the 

spectrum and can be estimated as below.  

 









2
14

2
os mH  

On the assumption of narrow bandedness, the significant wave height ( 0  ) is given by, 

 os mH 4  

If the spectrum is wide band (=1), 

 os mH 83.2  

 

However, the following points have to be noted before continuing to analyse in comparison with 

statistical analysis that we have seen in the earlier section. 

1. Maximum wave period obtained from the above procedure may mislead since it would not 

correspond to maximum wave energy.  

----------------------------------------------------------------------- 

Problem 2: 
Given the wave climate, evaluate the frequency spectrum and spectral characteristics. 
   f (Hz)    a (m)     S(f) (m

2-s) 
  0.05        0.0        0.0 
  0.075      0.0012       3.0E-05 
  0.100      0.1415189      0.4005518     
  0.125      0.3610530       2.607185     
  0.150      0.3915139       3.065662     
  0.175      0.3352098       2.247313     
  0.200      0.2684360       1.441158     
  0.225      0.2122135      0.9006911     
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  0.250      0.1687059      0.5692335     
  0.275      0.1356967      0.3682719     
 
Ans:  Hs = 2.15m     

fp = 0.15 Hz 
----------------------------------------------------------------------- 

Tutorial 1: 
Calculate various statistical averages of wave height ( 1/ 3H , 1/10H , 1/100H , 1/500H , etc.) and wave 

period ( 1/3T , 1/10T , 1/100T , 1/500T , etc.) for the given random wave surface elevation time history. 

----------------------------------------------------------------------- 
 

3.0 ALGORITHM 
 
3.1 Statistical analysis 
 
The first step is to make use of zero-mean process for a given time series. For this, the mean of 

the wave elevations is calculated and then this mean is subtracted from all the individual wave 

elevation values. 

 

From this zero-mean time-series, locate the time values where the wave elevation becomes zero. 

Let the elevation be 1h at time 1t  and 2h at time 2t . Assume that the time steps are small enough. 

Then, if the wave elevation reaches a 0 between 1t  and 2t then 1h and 2h must be of opposite sign. 

We observe that the zero-crossing lie between two time instances 1t  and 2t such that the product 

of 1h and 2h is negative. 

 

Hence, two points  1 1 1,P t h  and  2 2 2,P t h  are obtained between which the curve representing 

the time-series crosses the x-axis, say at the point P . This point P can be conveniently and 

accurately obtained by assuming the portion of the curve between 1P  and 2P  to be a straight line 

provided the time steps are small enough. 
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                              Fig.6. Up crossing and down crossing  

 

Further, if there is a down-crossing between 1P  and 2P , the slope of the line joining 1P  and 2P  

will be negative and for an up-crossing the slope will be positive. In the Fig.6, from i to i+1 there 

is an up-crossing and down-crossing occurs between j and j+1.   

The following chunk of MATLAB code reads the time series from start to end ( N = total 

number of points in the time-series), finds all the zero-crossings and then stores the zero down-

crossings in a variable ‘downcross’. 

----------------------------------------------------------------------  
 while(next <= N) 
    if(height(current)*height(next) < 0) 
        p1 = [time(current) height(current)]; 
        p2 = [time(next) height(next)]; 
        slope = (p2(2) - p1(2))/(p2(1) - p1(1)); 
        if(slope < 0) 
            time_value = p1(1) + p1(2)*(p1(1) - p2(1))/(p2(2) - p1(2)); 
            downcross(index,1) = time_value; 
            points(index,1) = current; 
            index = index + 1; 
        end 
    end 
    current = current + 1; 
    next = current + 1; 
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end 
--------------------------------------------------------------------------- 
The time period is the difference between any two consecutive zero down-crossings. A number 
of time periods 1 2 3 1, , , ...., nT T T T   etc. are obtained from n  zero down-crossings. Also, the 

maximum and minimum heights between any two down-crossings are noted and then the wave-
height for that time-range is max minH H . A total of 1n  wave-heights are obtained 

corresponding to 1n time periods. The MATLAB code that calculates this is shown below: 
-------------------------------------------- 
for i = 1:(length(downcross)-1) 
    T_value(i,1) = downcross(i+1,1) - downcross(i,1); 
end 
  
for i = 1:(length(points)-1) 
    point1 = points(i); 
    point2 = points(i+1); 
    temp = height(point1:point2); 
    h_min = min(temp); 
    h_max = max(temp); 
    H_value(i,1) = h_max - h_min; 
end 
------------------------------------------------------- 
 
Simple calculations from standard formulae follow after arranging both, the wave heights and the 
periods, in descending order. The results are noted in the table below. All the values have been 
rounded to one decimal place. 
 

 
Fig. T1. Random wave surface elevation time history. 

 

1/3T  1.7s 
1/ 3H  8.7m 
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1/10T  1.9s 
1/10H  10.8m 

1/100T  2.8s 
1/100H  14.5m 

1/500T  3.2s 
1/500H  16.6m 

meanT  1.1s 
meanH  5.5m 

 
-------------------------------------------------------------------------------------------------------------------- 

 
Spectral Analysis: 
 
1. Read the given data using 'LOAD' command.  
2. The given time series has first column time (t) and second column, the wave elevation (). 
3. Transform it to zero mean process. 
4. Apply windowing function 
5. Take ‘Fourier transform’ of  by using fft command. 
6. Evaluate the spectrum using, 
 ffty = fft() 
 f=(0:N/2)/(t.N) 
 sf=2*dt*abs(ffty).^2/(N*t*0.875);  
7. Smoothing using 5 point smoothening. 
8. Find zero, second and fourth order moments of spectrum.  
9. Evaluate Hmean , Hrms H1/3,  H1/10   using   the moments  
10. Find out spectral width parameter 
 
 
 
----------------------------------------------------------------------------------------------------------------- 
Result 
Mean_WAVE_Height =       5.4684 m 
WAve_Height_rms      =       6.1726 m 
H_one_third                  =        9 m 
H_one_tenth                 =       11 m 
Mean time period      =        1.2463 s 
Time rms                       =        1.2998 s 
Spectral width parameter- 0.78 
It is a broad band spectrum 
------------------------------------------------------------------------------------------------------------------- 
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Time series analysis 
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