Module 3 Defect Diffusion and Conduction in Ceramics

- 1. What are the parameters governing diffusion? Can all of these parameters be expressed in terms of chemical potential gradient?
- 2. Draw a schematic plot of diffusivity vs temperature showing intrinsic and extrinsic regions for CaO doped ZrO₂. Clearly explain both regions.
- 3. Write the Schottky defect reaction for TiO_2 and then calculate the equilibrium oxygen vacancy concentration in TiO_2 at 1400°C given that enthalpy of defect formation is 5.2 eV. You can neglect the entropy of defect formation. Calculate the ionic and electrical conductivities at the same temperature using the data.
 - Assume that the Bandgap of TiO₂ is 3.2 eV. Assume that the electron and hole mobilities are equal (0.1 cm².V⁻¹s⁻¹) and m_e=0.33 m_o and m_h=0.77m_o. (N_c.N_v)^{1/2}=1.75*10²¹.T^{3/2} m⁻³
 - Diffusivity of oxygen vacancies is given as 2.2*10⁻⁷ (m²/s).exp(-200 kJ/RT)
 - Density of TiO_2 is 4 g/cc, Molecular weight is 80 g/mol.
- 4. Now imagine a sensor made of TiO_2 whose inside is maintained at atmospheric pressure (1 atm) and is inserted into molten steel at 1400°C to determine its oxygen content. If the voltage generated in 0.5 V, calculate the partial pressure of oxygen in the melt. Use the data of the the problem (3). Given that F = 96500 C/Mole.
- 5. Take the case of $Ca_{0.14}Zr_{0.86}O_{1.86}$ and assume that doping leads to creation of oxygen vacancies. The bandgap of ZrO_2 is ~5.2 eV. At high Temperatures, the diffusion coefficient is measured as $D_{V_0} = 1 \times 10^3 \exp[-0.84 \text{ eV/kT}] \text{ cm}^2/\text{s}$. At 1823 K, electron concentration, n_e, using band model, is estimated to be $1.32 \times 10^{13} \text{ cm}^{-3}$ and electron mobility, μ_e , is 24 cm²/V.s. Calculate the ionic conductivity and electronic conductivities in this compound at 1873 K. Analyze the results and think how can we make ZrO₂ as perfect ionic conductor at this temperature.
- 6. NiO has a rocksalt structure and has a bandgap of 4.2 eV. The energy for Schottky defect formation is estimated to be 6 eV. In non-stoichiometric form, Ni ions have a tendency to be oxidized to Ni⁺³ state and as result NiO tends to be slightly cation deficient.
 - a. Now considering a pure and stoichiometric form of NiO, what type of conductivity in NiO would you expect at 1200K. Show the procedure.
 - b. How will the cation deficiency be accommodated in the non-stoichiometric state? Write the defect reactions and reaction constants and mention why a particular oxidation mechanism is favoured.
 - c. What will the nature of electronic conductivity in the non-stoichiometic material? Explain.
 - d. Determine the pO_2 dependence of electronic conductivity (just the expression).
- 7. A sample of potassium ferrite with chemical formula $K^{+}_{1.25}Fe^{2+}_{0.25}Fe^{3+}_{10.75}O^{2-}_{17}$ is a mixed ionic/electronic conductor with the β -Alumina structure. It contains 4.07×10^{27} potassium ions per m³ located in (001) planes. For this material, the total electrical conductivity at 573 K is 1.53×10^{-2} S/m and the diffusion coefficient at 573K for K⁺ ions is 1.89×10^{-14} m²/s. Calculate the transport number for K⁺ ions at 573K. If the energy of migration of K⁺ ions is 23 kJ/mol, what will be the ionic conductivity of the sample at 298 K?