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Unsteady State Heat Conduction
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Many heat transfer problems require the understanding of
the complete time history of the temperature variation. For
example, in metallurgy, the heat treating process can be
controlled to directly affect the characteristics of the
processed materials. Annealing (slow cool) can soften
metals and 1mmprove ductility. On the other hand,
quenching (rapid cool) can harden the strain boundary and
increase strength. In order to characterize this transient

behavior, the full unsteady equation 1s needed:
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where a=£ 1s the thermal diffusivity
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“A heated/cooled body at T; Is suddenly exposed to fluid at T, with a
known heat transfer coefficient . Either evaluate the temperature at a
given time, or find time for a given temperature.”

Fig. 5.1

Q: “How good an approximation would it be to say the annular cylinder 1s
more or less isothermal?”

A: “Depends on the relative importance of the thermal conductivity in the
thermal circuit compared to the convective heat transfer coefficient”.



Biot No. Bl

*Defined to describe the relative resistance in a thermal circuit of
the convection compared

AL kA

B — Internal conduction resistance within solid

k  1/hA  External convection resistance at body surface

L 1s a characteristic length of the body

B1—0: No conduction resistance at all. The body 1s 1sothermal.
Small Bi: Conduction resistance 1s less important. The body may still
be approximated as 1sothermal

Lumped capacitance analysis can be performed.

Large Bi: Conduction resistance is significant. The body cannot be treated as
isothermal.
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Transient heat transfer with no mternal
resistance: Lumped Parameter Analysis

Valid for Bi<0.1 "
Solid
Total Resistance=R_ ...+ R. ...,
dT - —0)=
S (T T ) BC: T(t=0)=T
dt mc
Solution: let ® =T — T, therefore
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s S £ / mec, - To determine the temperature at a given time, or
R hd - To determine the time required for the
1T —-T temperature to reach a specified value.
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Note: Temperature function only of time and not of
space!




Lumped Parameter Analysis
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Lumped Parameter Analysis -
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Define Fo as the Fourier number (dimensionless time)

hL,
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Fo= ?t and Biot number Bi =

c

The temperature variation can be expressed as

T = exp(-Bi1*Fo)

where L 1s a characteristic length scale : realte to the size of the solid invloved in the problem

for example L = %O (half - radius) when the solid is a cylinder.

Lc= o (one - third radius) when the solid is sphere
3

L. = L (half thickness) when the solid is aplane wall with a 2L thickness



Solutions

The Plane Wall: Solution to the Heat Equation for a Plane Wall
with Symmetrical Convection Conditions
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Spatial Effects and the Role of Analytic %,
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The Plane Wall:

Note: Once spatial variability of temperature is included,
there is existence of seven different independent
variables.

How may the functional dependence be simplified?

*The answer is Non-dimensionalisation. We first
need to understand the physics behind the
phenomenon, identify parameters governing the
process, and group them into meamngful non-
dimensional numbers.
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Dimensionless temperature difference: 0 = i
: Hi ]: X T o0
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Dimensionless coordinate: e Z
Dimensionless time: [ = P = Fo
ol
The Biot Number: L I
solid

The solution for temperature will now be a function of the other non-dimensional
quantities

0" = f(x",Fo,Bi)
Exact Solution: @° = iCn eXp(— é’nzFo)cos(é’nx*)
n=1

o LS ¢ tanl, = Bi
AL sm(2§n )

The roots (eigenvalues) of the equation can be obtained from tables given in standard textbooks.




o The One-Term Approximation £Fo > 0.2

Variation of mid-plane temperature with time /o (x = 0)
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From tables given in standard textbooks, one can obtain C, and é/ 1

=~ C, exp(— é’leo)

as a function of Bi.

Variation of temperature with location (x") and time ( Fo ):

0 =6 = cos({lx*)

Change in thermal energy storage with time: = AEF = -0




Numerical Methods for Unsteady e
Heat Transfer S

] Unsteady heat transfer equation, no generation, constant k, one-
dimensional in Cartesian coordinate:
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 The term on the left hand side of above eq. is the storage term,
arising out of accumulation/depletion of heat in the domain under
consideration. Note that the eq. 1s a partial differential equation as a
result of an extra independent variable, time (t). The corresponding

grid system 1s shown in fig. on next slide.



(dx)y,

(dXx
\\\\\\

a\ 2\ M G
N\ s Y
W E

AX

N

Integration over the control volume and over a time interval

gives
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If the temperature at a node 1s assumed to prevail over the whole
control volume, applying the central differencing scheme, one obtains:
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Now, an assumption 1s made about the variation of 7, T, and T,
with time. By generalizing the approach by means of a weighting
parameter / between 0 and 1:
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Repeating the same operation for points E and W,

T;ew L Tj;)ld Tnew e Tnew Tnew = Tnew E
A)C 3% k P w

e w

old  rpold old _ rmrold .
S e s R st e
OX ox

w

&



~ Upon re-arranging, dropping the superscript “new”, and casting the
f equation into the standard form
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The time integration scheme would depend on the choice of the
parameter f. When f = 0, the resulting scheme is “explicit”’; when
0 <f<1, the resulting scheme is “implicit”’; when f= 1, the
resulting scheme is “fully implicit”, when f = 1/2, the resulting
scheme 1s “Crank-Nicolson”.



Variation of T within the time interval At for different schemes
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Explicit scheme
Linearizing the source term as and setting f=0
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For stability, all coefficients must be positive in the discretized
equation. Hence,

ag—(aW +a.—-9S,)>0
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The above limitation on time step suggests that the explicit
scheme becomes very expensive to improve spatial accuracy.
Hence, this method 1s generally not recommended for general
transient problems.

Crank-Nicolson scheme
Setting f= 0.5, the Crank-Nicolson discretisation becomes:
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For stability, all coefficient must be positive in the discretized
equation, requiring
050 B

ap > - At < pc
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The Crank-Nicolson scheme only slightly less restrictive than the

explicit method. It 1s based on central differencing and hence it 1s
second-order accurate in time.

The fully implicit scheme
Setting f= 1, the fully implicit discretisation becomes:
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General remarks:

A system of algebraic equations must be solved at each time
level. The accuracy of the scheme 1s first-order in time. The time
marching procedure starts with a given initial field of the scalar
¢°. The system is solved after selecting time step At. For the
implicit scheme, all coefficients are positive, which makes it
unconditionally stable for any size of time step. Hence, the
implicit method 1s recommended for general purpose transient
calculations because of its robustness and unconditional stability.
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