


MULTIDIMENSIONAL 
HEAT TRANSFER
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 This equation governs the Cartesian, temperature distribution 
for a three-dimensional unsteady, heat transfer problem 
involving heat generation.

 For steady state / t = 0

 No generation

 To solve for the full equation, it requires a total of six 
boundary conditions: two for each direction.  Only one initial 
condition is needed to account for the transient behavior.

q  0



Two-Dimensional, 
Steady State Case

For a 2 - D,  steady state situation, the heat equation is simplified to

 it needs two boundary conditions in each direction.
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There are three approaches to solve this equation:

 Numerical Method: Finite difference or finite element schemes, 
usually will be solved using computers.
 Graphical Method: Limited use.  However, the conduction 
shape factor concept derived under this concept can be useful for 
specific configurations.  (see Table 4.1 for selected configurations)
 Analytical Method: The mathematical equation can be solved 
using techniques like the method of separation of variables.  (refer 
to handout)



Conduction Shape Factor

This approach applied to 2-D conduction involving two isothermal 
surfaces, with all other surfaces being adiabatic.  The heat transfer from 
one surface (at a temperature T1 ) to the other surface (at T2 ) can be 
expressed as: q=Sk(T1 -T2 ) where k is the thermal conductivity of the 
solid and S is the conduction shape factor.
 The shape factor can be related to the thermal resistance: q=Sk(T1 - 
T2 )=(T1 -T2 )/(1/kS)= (T1 -T2 )/Rt

where Rt = 1/(kS)
 1-D heat transfer can use shape factor also.  Ex: Heat transfer inside a 
plane wall of thickness L is q=kA(T/L), S=A/L
Common shape factors for selected configurations can be found in 
most textbooks, as also illustrated in Table 4.1.







Example

Example: A 10 cm OD uninsulated pipe carries steam from the 
power plant across campus.  Find the heat loss if the pipe is 
buried 1 m in the ground is the ground surface temperature is 50 
ºC.  Assume a thermal conductivity of the sandy soil as k = 0.52 
w/m K.

z=1 m

T2

T1



The shape factor for long cylinders is found in Table 4.1 as Case 
2, with L >> D:  

S = 2L/ln(4z/D)

Where z = depth at which pipe is buried.  

S = 21m/ln(40) = 1.7 m

Then
q' = (1.7m)(0.52 W/mK)(100 oC - 50 oC)

q' = 44.2 W



Numerical Methods

 Due to the increasing complexities encountered in the 
development of modern technology, analytical solutions usually are 
not available.   For these problems, numerical solutions obtained 
using high-speed computer are very useful, especially when the 
geometry of the object of interest is irregular, or the boundary 
conditions are nonlinear. In numerical analysis, three different 
approaches are commonly used: the finite difference, the finite 
volume and the finite element methods. In heat transfer problems, the 
finite difference and finite volume methods are used more often. 
Because of its simplicity in implementation, the finite difference 
method will be discussed here in more detail.  



Numerical Methods (contd…)

 The finite difference method involves:



 
Establish nodal networks



 
Derive finite difference approximations for the governing 
equation at both interior and exterior nodal points



 
Develop a system of simultaneous algebraic nodal 
equations



 
Solve the system of equations using numerical schemes 



The Nodal Networks

 The basic idea is to subdivide the area of interest into sub- 
volumes with the distance between adjacent nodes by x and y as   
shown.  If the distance between points is small enough, the 
differential equation can be approximated locally by a set of finite 
difference equations.  Each node now represents a small region 
where the nodal temperature is a measure of the average 
temperature of the region.



The Nodal Networks 
(contd…)

x

m,n

m,n+1

m,n-1

m+1, nm-1,n

y

m-½,n
intermediate points

m+½,nx=mx, y=ny

Example



Finite Difference 
Approximation
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Finite Difference Approximation 
(contd...)
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Next, approximate the second order differentiation at m,n
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Finite Difference Approximation 
(contd...)
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equation can be obtained as
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This equation approximates the nodal temperature distribution based on
the heat equation.  This approximation is improved when the distance
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A System of Algebraic Equations

 The nodal equations derived previously are valid for all 
interior points satisfying the steady state, no generation heat 
equation.  For each node, there is one such equation.
For example: for nodal point m=3, n=4, the equation is
T2,4 + T4,4 + T3,3 + T3,5 - 4T3,4 =0
T3,4 =(1/4)(T2,4 + T4,4 + T3,3 + T3,5 )

 Nodal relation table for exterior nodes (boundary conditions) 
can be found in standard heat transfer textbooks (Table 4.2 in this 
presentation).   
 Derive one equation for each nodal point (including both 
interior and exterior points) in the system of interest.  The result is 
a system of  N algebraic equations for a total of N nodal points.







Matrix Form

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

The system of equations:

N N

N N

N N NN N N

a T a T a T C
a T a T a T C

a T a T a T C

   
   

   

L
L

M M M M M
L

A total of N algebraic equations for the N nodal points and the 
system can be expressed as a matrix formulation: [A][T]=[C]
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Numerical Solutions

Matrix form: [A][T]=[C].  
From linear algebra: [A]-1[A][T]=[A]-1[C],  [T]=[A]-1[C]
where [A]-1 is the inverse of matrix [A].  [T] is the solution 
vector.

Matrix inversion requires cumbersome numerical computations 
and is not efficient if the order of the matrix is high (>10)



Numerical Solutions 
(contd…)

 Gauss elimination method and other matrix solvers are 
usually available in many numerical solution package.  For 
example, “Numerical Recipes” by Cambridge University 
Press or their web source at www.nr.com.

 For high order matrix, iterative methods are usually more 
efficient.  The famous Jacobi & Gauss-Seidel iteration 
methods will be introduced in the following.



Iteration
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Replace (k) by (k-1)
for the Jacobi iteration



Iteration (contd…)

 (k) - specify the level of the iteration, (k-1) means the 
present level and (k) represents the new level.

 An initial guess (k=0) is needed to start the iteration.

 By substituting iterated values at (k-1) into the equation, 
the new values at iteration (k) can be estimated

 The iteration will be stopped when maxTi(k)-Ti(k-1), 
where 

 
specifies a predetermined value of acceptable error
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