
MODULE 2: Worked-out Problems 
 
Problem 1: 
The steady-state temperature distribution in a one–dimensional slab of thermal conductivity 
50W/m.K and thickness 50 mm is found to be T= a+bx2, where a=2000C, b=-20000C/ m2, T 
is in degrees Celsius and x in meters. 
(a) What is the heat generation rate in the slab? 
(b) Determine the heat fluxes at the two wall faces. From the given temperature distribution 
and the heat fluxes obtained, can you comment on the heat generation rate?  
 
Known: Temperature distribution in a one dimensional wall with prescribed thickness and 
thermal conductivity. 
 
Find: (a) the heat generation rate, q in the wall, (b) heat fluxes at the wall faces and relation 
to q. 
 

Schematic:  
 
 

     
 
 
 
 
Assumptions: (1) steady-state conditions, (2) one –dimensional heat flow, (3) constant 
properties. 
 
Analysis: (a) the appropriate form of heat equation for steady state, one dimensional 
condition with constant properties is 
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(b) The heat fluxes at the wall faces can be evaluated from Fourier’s law, 
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Using the temperature distribution T(x) to evaluate the gradient, find  
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The flux at the face, is then x=0 
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Comments: from an overall energy balance on the wall, it follows that 
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Problem 2: 
Consider a solar pond having three distinct layers of water-salt solution. The top and bottom 
layers are well mixed with salt. These layers are subjected to natural convention, but the 
middle layer is stationary.  With this arrangement, the top and bottom surfaces of the middle 
layer is maintained at uniform temperature T1 and T2, where T1>T2. Solar radiation is 
absorbed in the middle layer in the form q=Ae-mx , resulting in the following temperature 
distribution in the central layer  
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In the above equation, k is the thermal conductivity, and the constants A (W/m3), a (1/m), B 
(K/m) and C(K) are also known. 
Obtain expressions for the interfacial heat flux from the bottom layer to the middle layer, and 
from the middle layer to the top layer.  Are the conditions are steady or transient? Next, 
obtain an expression for the rate at which thermal energy is generated in the entire middle 
layer, per unit surface area. 

 
Known: Temperature distribution and distribution of heat generation in central layer of 
a solar pond. 

 
Find: (a) heat fluxes at lower and upper surfaces of the central layer, (b) whether 
conditions are steady or transient (c) rate of thermal energy generation for the entire 
central layer. 
 

Schematic: 
 

 
 
 
 
Assumptions: (1) central layer is stagnant, (2) one-dimensional conduction, (3)constant 
properties. 
 
Analysis (1) the desired fluxes correspond to conduction fluxes in the central layer at the 
lower and upper surfaces. A general form for the conduction flux is 
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(b) Conditions are steady if T/t=0. Applying the heat equation, 
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Hence conditions are steady since 
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For the central layer, the energy generation is      
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Alternatively, from an overall energy balance, 
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Comments: Conduction is the negative x-direction, necessitating use of minus signs in the 
above energy balance. 



Problem 3: 
Consider 1D heat transfer across a slab with thermal conductivity k and thickness L. The 
steady state temperature is of the form T=Ax3+Bx2+Cx+D. Find expressions for the heat 
generation rate per unit volume in the slab and heat fluxes at the two wall faces (i.e. x=0, L). 
 
Known: steady-state temperature distribution in one-dimensional wall of thermal 
conductivity, T(x)=Ax3+Bx2+CX+d. 
 
Find: expressions for the heat generation rate in the wall and the heat fluxes at the two wall 
faces(x=0, L). 
 
Assumptions: (1) steady state conditions, (2) one-dimensional heat flow, (3) homogeneous 
medium. 
 
Analysis: the appropriate form of the heat diffusion equation for these conditions is 
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Hence, the generation rate is  
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which is linear with the coordinate x. The heat fluxes at the wall faces can be evaluated from 
Fourier’s law, 
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Using the expression for the temperature gradient derived above. Hence, the heat fluxes are: 

Surface x=0;                          (0)=-kC   "
xq

Surface x=L; 
"
xq (L) = -K [3AL2+2BL+C] 

 
COMMENTS: (1) from an over all energy balance on the wall, find 
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From integration of the volumetric heat rate, we can also find  
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Problem 4: 
Consider a one dimensional system of mass M with constant properties and no internal heat 
generation as shown in the figure below. The system is initially at a uniform temperature Ti. 
The electrical heater is suddenly switched ON, resulting in a uniform heat flux q”o at the 
surface x=0 . The boundaries at x=L and elsewhere are perfectly insulated. 

 
(a) Set up the differential equation along with the boundary and initial conditions for the 

temperature T(x,t).  
(b) Sketch the temperature variation with x for the initial condition (t<=0) and for several 

times after the heater is switched ON. Comment whether a steady-state temperature 
distribution will ever be reached. 

(c) For any given time, sketch the heat flux variation with x. Choose the following 
planes: x=0, x=L/2, and x=L. 

(d) After time te, the heater power is switched off. Assuming no heat loss, derive an 
expression determine Tf   , the final uniform temperature, as a function of the relevant 
parameters.   
 

Known: one dimensional system, initially at a uniform temperature Ti, is suddenly exposed 
to a uniform heat flux at one boundary while the other boundary is insulated. 
 
Find: (a) proper form of heat diffusion equation; identify boundary and initial conditions, (b) 
sketch temperature distributions for following conditions: initial condition (t<=0), several 
times after heater is energized ;will a steady-state condition be reached?, (c) sketch heat flux 
for x=0, L/2, L as a function of time, (d) expression for uniform temperature, Tf, reached 
after heater has been switched off the following an elapsed time , te, with the heater on.] 
 

Schematic: 
                                   
 
Assumptions: (1) one dimensional conduction, (2) no internal heat generation, (3) constant 
properties. 
 
Analysis: (a) the appropriate form of the heat equation follows. Also the appropriate 
boundary and initial conditions are: 
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(b) The temperature distributions are as follows: 
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(c) The heat flux as a function of time for positions x=0, L/2 and L appears as: 
 

                            
( d) If the heater is energized until t=to and then switched off, the system will eventually reach 
a uniform temperature , Tf. Perform an energy balance on the system, for an interval of time  
t=te,    
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Problem 5:  

 
A 1–m-long metal plate with thermal conductivity k=50W/m.K is insulated on 
its sides. The top surface is maintained at 1000C while the bottom surface is 
convectively cooled by a fluid at 200C. Under steady state conditions and with 
no volumetric heat generation, the temperature at the midpoint of the plate is 
measured to be 850C.   Calculate the value of the convection heat transfer 
coefficient at the bottom surface. 
 
      Known: length, surface thermal conditions, and thermal conductivity of a   
       Plate. Plate midpoint temperature. 
 
      Find: surface convection coefficient 

      Schematic:  
 
                              
 
Assumptions: (1) one-dimensional, steady conduction with no generation, (2) 
Constant properties 

 
Analysis: for prescribed conditions, is constant. Hence, 
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Comments: The contributions of conduction and convection to the thermal 
resistance are 
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Problem 6:  

The wall of a building is a multi-layered composite consisting of brick (100-mm 
layer), a 100-mm layer of glass fiber(paper faced. 28kg/m2), a 10-mm layer of 
gypsum plaster (vermiculite), and a 6-mm layer of pine panel. If hinside is 
10W/m2.K and houtside is 70W/m2.K, calculate the total thermal resistance and the 
overall coefficient for heat transfer. 
 
 
Known: Material thickness in a composite wall consisting of brick, glass fiber, 
and vermiculite and pine panel. Inner and outer convection coefficients. 
 
Find:  Total thermal resistance and overall heat transfer coefficient. 
 

Schematic:  
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Assumptions: (1) one dimensional conduction, (2) constant properties, (3) 
negligible contact resistance. 

 
Properties: T= 300K: Brick, kb=1.3 W/m.K: Glass fiber (28kg/m3), kg1= 
0.038W/m.K: gypsum, kgy=0.17W/m.K: pine panel, kp=0.12W/m.K. 
 
Analysis: considering a unit surface Area, the total thermal resistance  
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The overall heat transfer coefficient is 
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Comments:  an anticipated, the dominant contribution to the total resistance is 
made by the insulation. 
 



Problem 7:  

The wall of an oven is a composite of the following layers. Layers A has a 
thermal conductivity kA=20W/m.K, and layer C has a thermal conductivity 
kC=50W/m.K. The corresponding thicknesses are LA=0.30m and LC=0.15m, 
respectively.  Layer B is sandwiched between layers A and C, is of known 
thickness, LB=0.15m, but unknown thermal conductivity kB. Under steady-state 
operating conditions, the outer surface temperature is measured to be   
Ts,0=200C. Measurements also tell us that the inner surface temperature Ts,i is 
6000C and the oven air temperature is T =8000C. The inside convection 
coefficient h is known to be 25W/m2.K. Find the value of kB. 
 

 
Known: Thickness of three material which form a composite wall and thermal 
conductivities of two of the materials. Inner and outer surface temperatures of 
the composites; also, temperature and convection coefficient associated with 
adjoining gas. 
 

 
Find: value of unknown thermal conductivity, kB. 

Schematic:  
 

Ts,0=200C 

LA=0.3m 
LB=LC=0.15m 
kA=20W/m.K 
kC=50W/m.K 

KC 

T=8000C 
h= 25W/m2.K 

KB KA Ts,i=6000C 

LA LB LC  
 
 
Assumptions: (1) steady state conditions, (2) one-dimensional conduction, (3) 
constant properties, (4) negligible contact resistance, (5) negligible radiation 
effects. 

 
Analysis: Referring to the thermal circuit, the heat flux may be expressed as  
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The heat flux can be obtained from  
 

2''

02
i,s

"

m/W5000q

C)600800(K.m/W25)TT(hq



   

 
Substituting for heat flux, 
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Comments: In an over, radiation effects are likely to have a significant influence on the 
net heat flux at the inner surface of the oven. 



Problem 8:  

A steam pipe of 0.12 m outside diameter is insulated with a 20-mm-thick layer 
of calcium silicate. If the inner and outer surfaces of the insulation are at 
temperatures of Ts,1=800 K and Ts,2=490 K, respectively, what is the heat loss 
per unit length of the pipe? 

 
Known: Thickness and surface temperature of calcium silicate insulation on 
a steam pipe. 
 
Find: heat loss per unit pipe length. 
 

     Schematic:    

 Ts,1=800K 

D2=0.16m 

 
 

Steam 

Ts,2=490K 
D1=0.12m 

Calcium silicate insulation 
 

 Assumptions: (steady state conditions, (2) one-dimensional conduction, (3) 
constant properties. 

 
Properties: calcium silicate (T=645K): k=0.089W/m.K 

 
Analysis:  The heat per unit length is  
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Comments: heat transferred to the outer surface is dissipated to the surroundings 
by convection and radiation. 



Problem 9:  

A cylindrical nuclear fuel rod of 0.1m dia has a thermal conductivity 
k=0.0W/m.K and generates uniformly 24,000W/m3. This rod is encapsulated 
within another cylinder having an outer radius of 0.2m and a thermal 
conductivity of 4W/m.K. The outer surface is cooled by a coolant fluid at 
1000C, and the convection coefficient between the outer surface and the coolant 
is 20W/m2.K. Find the temperatures at the interface between the two cylinders 
and at the outer surface. 

 
Known: A cylindrical rod with heat generation is cladded with another cylinder 
whose outer surface is subjected to a convection process. 
Find: the temperature at the inner surfaces, T1, and at the outer surface, Tc. 

 

Schematic: 

 
 

                       
 
 
 
 
 
Assumptions: (1) steady-state conditions, (2) one-dimensional radial 
conduction, (3), negligible contact resistance between the cylinders. 
 
Analysis: The thermal circuit for the outer cylinder subjected to the 
convection process is 
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Using the energy conservation requirement, on the inner cylinder, 
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Comments: knowledge of inner cylinder thermal conductivity is not 
needed. 



Problem 10:  

A steel cable having a diameter of 0.005m and an electrical resistance of 6*10-4 
/m carries an electrical current of 700 A.  The surrounding temperature of the 
cable is 300°C, and the effective coefficient associated with heat loss by 
convection and radiation between the cable and the environment is 
approximately 25W/m2.K. 

 
(a) If the cable is uncoated, what is its surface temperature? 
 
(b) If a very thin coating of electrical insulation is applied to the cable, with a 
contact resistance of 0.02m2K/W, what are the insulation and cable surface 
temperatures? 
 
(c) What thickness of this insulation (k=0.5W/m.K) will yields the lowest 
value of the maximum insulation temperature? What is the value of the 
maximum temperature when the thickness is used? 
 
Known: electric current flow, resistance, diameter and environmental 
conditions associated with a cable. 
 
Find: (a) surface temperature of bare cable, (b) cable surface and insulation 
temperatures for a thin coating of insulation, (c) insulation thickness which 
provides the lowest value of the maximum insulation temperature. 
Corresponding value of this temperature. 

Schematic: 
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Assumptions: (1) steady-state conditions, (2) one-dimensional conduction in r, 
(3) constant properties. 
 



Analysis: (a) the rate at which heat is transferred to the surroundings is fixed by 
the rate of heat generation in the cable. Performing an energy balance for a 

control surface about the cable, it follows that  or, for the bare cable, 
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It follows that 
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(b) With thin coating of insulation, there exists contact and convection 
resistances to heat transfer from the cable. The heat transfer rate is 
determined by heating within the cable, however, and therefore remains the 
same, 
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And solving for the surface temperature, find 
 
 

C1153T

C30
W

K.m
04.0

W

K.m
02.0

)m005.0(

m/W294
T

h

1
R

D

q
T

0
s

0
22

c,t
i

'

s





















 


   

 
 
The insulation temperature is then obtained from 
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(c) The maximum insulation temperature could be reduced by reducing the 
resistance to heat transfer from the outer surface of the insulation. Such a 
reduction is possible Di<Dcr. 
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Hence, Dcr =0.04m> Di =0.005m. To minimize the maximum temperature, which 
exists at the inner surface of the insulation, add insulation in the amount. 
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The cable surface temperature may then be obtained from  
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Comments: use of the critical insulation in lieu of a thin coating has the 
effect of reducing the maximum insulation temperature from 778.70C to 
318.20C. Use of the critical insulation thickness also reduces the cable 
surface temperatures to 692.50C from 778.70C with no insulation or fro 
11530C with a thin coating.  
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