Module 1: Worked out problems

Problem 1:

A cold storage consists of a cubical chamber of dimension 2m x 2m x 2m, maintained at
10°C inside temperature. The outside wall temperature is 35°C. The top and side walls are
covered by a low conducting insulation with thermal conductivity k = 0.06 W/mK. There is
no heat loss from the bottom. If heat loss through the top and side walls is to be restricted to
500W, what is the minimum thickness of insulation required?

Solution:

Known: Dimensions of the cold storage, inner and outer surfaces temperatures, thermal
conductivity of the insulation material.

To find: Thickness of insulation needed to maintain heat loss below 500W.

Schematic:

T=35°C

2m=W

- q=500W
insulation

Assumptions: (1) perfectly insulted bottom, (2) one-dimensional conduction through
five walls of areas A=4m’, (3) steady-state conditions

Analysis: Using Fourier’s law, the heat rate is given by

" AT
q=q A= kTAtotal

Solving for L and recognizing that A (o =5*W*
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L=0.108m =108 mm



Problem 2:

A square silicon chip is of width W=5mm on a side and of thickness t=Imm. The chip is
mounted in a substrate such that there is no heat loss from its side and back surfaces. The top
surface is exposed to a coolant. The thermal conductivity of the chip is 200W/m.K. If 5W are
being dissipated by the chip, what is the temperature difference between its back and front
surfaces?

Known: Dimensions and thermal conductivity of a chip. Power dissipated on one surface.

Find: temperature drop across the chip

Schematic:

7
44— Substrate
7
Chip, k=

Assumptions: (1) steady-state conditions, (2) constant properties, (3) uniform dissipation,
(4) negligible heat loss from back and sides, (5) one-dimensional conduction in chip.

Analysis: All of the electrical power dissipated at the back surface of the chip is transferred
by conduction through the chip. Hence, Fourier’s law,

P=¢g= kAAtT
t.P 0.001m*5W
AT =" = -
kW? 2000 / m.K(0.005m )
AT =1.0°C

Comments: for fixed P, the temperature drop across the chip decreases with increasing k
and W, as well as with decreasing t.



Problem 3:

Air flows over a rectangular plate having dimensions 0.5 m x 0.25 m. The free stream
temperature of the air is 300°C. At steady state, the plate temperature is 40C. If the
convective heat transfer coefficient is 250 W/m?.K, determine the heat transfer rate from the
air to one side of the plate.

Known: air flow over a plate with prescribed air and surface temperature and convection
heat transfer coefficient.

Find: heat transfer rate from the air to the plate

Schematic:

T,=40"C

.m Plate
— 9 =025%0.05
To=300'C———» o

E250W/m E——>

Assumptions: (1) temperature is uniform over plate area, (2) heat transfer coefficient is
uniform over plate area

Analysis: the heat transfer coefficient rate by convection from the airstreams to the plate
can be determined from Newton’s law of cooling written in the form,

q=q A =hA(T,-T,)
where A is the area of the plate. Substituting numerical values,

q=250W/m?*K *(0.25*0.50)m* (300 — 40)°C
q=8125W

Comments: recognize that Newtown’s law of cooling implies a direction for the
convection heat transfer rate. Written in the form above, the heat rate is from the air to plate.



Problem 4 :
A sphere of diameter 10 mm and emissivity 0.9 is maintained at 80°C inside an oven with a
wall temperature of 400°C. What is the net transfer rate from the oven walls to the object?

Known: spherical object maintained at a prescribed temperature within a oven.

Find: heat transfer rate from the oven walls to the object

Schematic:

Sphere‘l

Oven walls,
Tsuw=400°C

Assumptions: (1) oven walls completely surround spherical object, (2) steady-state
condition, (3) uniform temperature for areas of sphere and oven walls, (4) oven enclosure is
evacuated and large compared to sphere.

Analysis: heat transfer rate will be only due to the radiation mode. The rate equation is

ur = Ts4 )
Where As=nD?, the area of the sphere

Qraq = SASG(TS

Qrg =0.9*1(10*107°)*m? *5.67*10°* W/m?* K[(400+273)* — (80 +273)* K"
qrad = 304W

Discussions:

(1) this rate equation is applicable when we are calculating the net heat exchange between a
small object and larger surface that completely surrounds the smaller one.

(2) When performing radiant heat transfer calculations, it is always necessary to have
temperatures in Kelvin (K) units.



Problem 5:

A surface of area 0.5m’, emissivity 0.8 and temperature 150°C is placed in a large, evacuated
chamber whose walls are maintained at 25 °C. Find the rate at which radiation is emitted by

the surface? What is the net rate of radiation exchange between the surface and the chamber
walls?

Known: Area, emissivity and temperature of a surface placed in a large, evacuated
chamber of prescribed temperature.

Find: (a) rate of surface radiation emission, (b) net rate of radiation exchange between the
surface and chamber walls.

Schematic:

T.w=25"C

A=0.5m*
T.=150°C
£=0.8

Assumptions: (1) area of the enclosed surface is much less than that of chamber walls.

Analysis (a) the rate at which radiation is emitted by the surface is emitted

Qemit = qemit.A = SAGTS4

qemit = 0.8(0.5m?)5.67*10™* W /m* K *[(150+273)K]"
gemit = 726 W

(b) The net rate at which radiation is transferred from the surface to the chamber walls is

q = eAc(Ts4 — Tsurr4)

q=0.8(0.5m?)5.67 *10 W /m?* K*[(423K)* — (298K)*
q=547TW



Problem 6:

A solid aluminium sphere of emissivity €, initially at a high temperature, is cooled by
convection and radiation in a chamber having walls at a lower temperature. Convective
cooling is achieved with a gas passing through the chamber. Write a differential equation to
predict the variation of sphere temperature with time during the cooling process.

Known: Initial temperature, diameter and surface emissivity of a solid aluminium sphere
placed in a chamber whose walls are maintained at lower temperature. Temperature and
convection coefficient associated with gas flow over the sphere.

Find: equation which could be used to determine the aluminium temperature as a function
of time during the cooling process.

Schematic:

D.T.px

Chamber walls, Ty,
Aluminium
Sphere,
A €
;

Assumptions: (1) at any time t, the temperature T of the sphere is uniform, (2) constant
properties; (3) chamber walls are large relative to sphere.

Analysis: applying an energy balance at an instant of time to a control volume about the
sphere, it follows that

Est = _Eout

Identifying the heat rates out of the CV due to convection and radiation, the energy balance
has the form

d
= (pVeT) =— +
dt(p Y ) (qconv qrad)

dT _ _i[h(T ~T,)+eo(T* - Ta)]
dt pVce
aT_ 6

il h(T-T,)+eo(T* - T
a pCD[( ) +€0( qurr )]

Where A=rD?, V=rD’/6 and A/V=6/D for the sphere.



Problem 7: An electronic package dissipating 1 kW has a surface area 1m?. The package is
mounted on a spacecraft, such that the heat generated is transferred from the exposed surface
by radiation into space. The surface emissivity of the package is 1.0. Calculate the steady
state temperature of the package surface for the following two conditions:
(a) the surface is not exposed to the sun
(b) The surface is exposed to a solar flux of 750W/m” and its absorptivity to solar
radiation is 0.25?

Known: surface area of electronic package and power dissipation by the electronics.
Surface emissivity and absorptivity to solar radiation. Solar flux.

Find: surface temperature without and with incident solar radiation.

Schematic:

q’=750W/m? Surface, A,—lm?

Assumptions: steady state condition
Analysis: applying conservation of energy to a control surface about the compartment, at
any instant

+ E g = 0
It follows that, with the solar input,
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0.25*1m? *750W /m? +1000W
Im? *1*5.67*10°°W/m? K*



